Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 136(9): 3597-606, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24559286

RESUMO

A novel solution-processable small molecule, namely, benzo[1,2-b:4,5-b]bis(4,4'-dihexyl-4H-silolo[3,2-b]thiophene-2,2'-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophene]-5-yl)benzo[c][1,2,5]thiadiazole (p-SIDT(FBTTh2)2), was designed and synthesized by utilizing the silaindacenodithiophene (SIDT) framework as the central D(2) donor unit within the D(1)AD(2)AD(1) chromophore configuration. Relative to the widely studied 7,7'-[4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl]bis[6-fluoro-4-(5'-hexyl-[2,2'-bithiophene]-5-yl)benzo[c][1,2,5]thiadiazole] (p-DTS(FBTTh2)2), which contains the stronger donor fragment dithienosilole (DTS) as D(2), one finds that p-SIDT(FBTTh2)2 exhibits a wider band gap and can be used to fabricate bulk heterojunction solar cells with higher open circuit voltage (0.91 V). Most remarkably, thin films comprising p-SIDT(FBTTh2)2 can achieve exceptional levels of self-organization directly via solution deposition. For example, high-resolution transmission electron microscopy analysis shows that p-SIDT(FBTTh2)2 spin-cast from chlorobenzene organizes into crystalline domains with lattice planes that extend over length scales on the order of hundreds of nanometers. Such features suggest liquid crystalline properties during the evolution of the film. Moreover, grazing incidence wide-angle X-ray scattering analysis shows a strong tendency for the molecules to exist with a strong "face-on" orientation relative to the substrate plane. Similar structural features, albeit of more restricted dimensions, can be observed within p-SIDT(FBTTh2)2:PC71BM bulk heterojunction thin films when the films are processed with 0.4% diiodooctane (DIO) solvent additive. DIO use also increases the solar cell power conversion efficiencies (PCEs) from 1.7% to 6.4%. Of significance from a practical device fabrication perspective is that, for p-SIDT(FBTTh2)2:PC71BM blends, there is a wide range of compositions (from 20:80 to 70:30 p-SIDT(FBTTh2)2:PC71BM) that provide good photovoltaic response, i.e., PCE = 4-6%, indicating a robust tendency to form the necessary continuous phases for charge carrier collection. Light intensity photocurrent measurements, charge selective diode fabrication, and internal quantum efficiency determinations were carried out to obtain insight into the mechanism of device operation. Inclusion of DIO in the casting solution results in films that exhibit much lower photocurrent dependence on voltage and a concomitant increase in fill factor. At the optimum blend ratio, devices show high charge carrier mobilities, while mismatched hole and electron mobilities in blends with high or low donor content result in reduced fill factors and device performance.

2.
Adv Mater ; 27(15): 2528-32, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25775936

RESUMO

The temperature dependence of exciton diffusion in a small-molecule organic semiconductor processed with and without additive is investigated. As-cast and 1,8-diiodooctane-processed films yield exciton diffusion lengths of 6.8 and 4.9 nm, respectively. Using a Monte Carlo simulation, it is shown that processing with 1,8-diiodooctane increases the excitonic trap density, which directly reduces the exciton diffusion length.

3.
J Phys Chem Lett ; 5(15): 2700-4, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26277966

RESUMO

Using ab initio calculations and classical molecular dynamics simulations coupled to complementary experimental characterization, four molecular semiconductors were investigated in vacuum, solution, and crystalline form. Independently, the molecules can be described as nearly isostructural, yet in crystalline form, two distinct crystal systems are observed with characteristic molecular geometries. The minor structural variations provide a platform to investigate the subtlety of simple substitutions, with particular focus on polymorphism and rotational isomerism. Resolved crystal structures offer an exact description of intermolecular ordering in the solid state. This enables evaluation of molecular binding energy in various crystallographic configurations to fully rationalize observed crystal packing on a basis of first-principle calculations of intermolecular interactions.

4.
Adv Mater ; 25(32): 4403-6, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23788212

RESUMO

By combining the molecular donor p-DTS(FBTTh2 )2 with a readily produced perylene diimide acceptor we are able to achieve a power conversion efficiency of 3.0%, making this one of the most efficient non-fullerene organic solar cells to date. The reduced power conversion efficiency of the present system compared to the use of phenyl-C71 -butyric acid methyl ester as an electron acceptor is shown to primarily be related to a significant reduction in the internal quantum efficiency. These results indicate the potential of small-molecule:non-fullerene bulk-heterojunction organic photovoltaics.

5.
Adv Mater ; 25(44): 6380-4, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24002890

RESUMO

Solvent additive processing can lead to drastic improvements in the power conversion efficiency (PCE) in solution processable small molecule (SPSM) bulk heterojunction solar cells. In situ grazing incidence wide-angle X-ray scattering is used to investigate the kinetics of crystallite formation during and shortly after spin casting. The additive is shown to have a complex effect on structural evolution invoking polymorphism and enhanced crystalline quality of the donor SPSM.


Assuntos
Energia Solar , Solventes/química , Cristalização , Vidro/química , Poliestirenos/química , Tiofenos/química , Compostos de Estanho/química
6.
Adv Mater ; 24(27): 3646-9, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22674636

RESUMO

A new small molecule, p-DTS(FBTTh(2))(2), is designed for incorporation into solution-fabricated high-efficiency organic solar cells. Of primary importance is the incorporation of electron poor heterocycles that are not prone to protonation and thereby enable the incorporation of commonly used interlayers between the organic semiconductor and the charge collecting electrodes. These features have led to the creation of p-DTS(FBTTh(2))(2)/PC(71)BM solar cells with power conversion efficiencies of up to 7%.


Assuntos
Compostos Heterocíclicos/química , Compostos de Organossilício/química , Energia Solar , Tiadiazóis/química , Eletrodos , Compostos de Organossilício/síntese química , Poliestirenos/química , Prótons , Semicondutores , Soluções/química , Tiadiazóis/síntese química , Tiofenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA