Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Gastrointest Endosc ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604297

RESUMO

BACKGROUND AND AIMS: This pilot study evaluated the performance of a recently developed computer-aided detection (CADe) system for Barrett's neoplasia during live endoscopic procedures. METHODS: Fifteen patients with a visible lesion and 15 without were included in this study. A CAD-assisted workflow was used that included a slow pullback video recording of the entire Barrett's segment with live CADe assistance, followed by CADe-assisted level-based video recordings every 2 cm of the Barrett's segment. Outcomes were per-patient and per-level diagnostic accuracy of the CAD-assisted workflow, in which the primary outcome was per-patient in vivo CADe sensitivity. RESULTS: In the per-patient analyses, the CADe system detected all visible lesions (sensitivity 100%). Per-patient CADe specificity was 53%. Per-level sensitivity and specificity of the CADe assisted workflow were 100% and 73%, respectively. CONCLUSIONS: In this pilot study, detection by the CADe system of all potentially neoplastic lesions in Barrett's esophagus was comparable to that of an expert endoscopist. Continued refinement of the system may improve specificity. External validation in larger multicenter studies is planned. (Clinical trial registration number: NCT05628441.).

2.
Gastrointest Endosc ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636819

RESUMO

BACKGROUND & AIMS: Characterization of visible abnormalities in Barrett esophagus (BE) patients can be challenging, especially for unexperienced endoscopists. This results in suboptimal diagnostic accuracy and poor inter-observer agreement. Computer-aided diagnosis (CADx) systems may assist endoscopists. We aimed to develop, validate and benchmark a CADx system for BE neoplasia. METHODS: The CADx system received pretraining with ImageNet with consecutive domain-specific pretraining with GastroNet which includes 5 million endoscopic images. It was subsequently trained and internally validated using 1,758 narrow-band imaging (NBI) images of early BE neoplasia (352 patients) and 1,838 NBI images of non-dysplastic BE (173 patients) from 8 international centers. CADx was tested prospectively on corresponding image and video test sets with 30 cases (20 patients) of BE neoplasia and 60 cases (31 patients) of non-dysplastic BE. The test set was benchmarked by 44 general endoscopists in two phases (phase 1: no CADx assistance; phase 2: with CADx assistance). Ten international BE experts provided additional benchmark performance. RESULTS: Stand-alone sensitivity and specificity of the CADx system were 100% and 98% for images and 93% and 96% for videos, respectively. CADx outperformed general endoscopists without CADx assistance in terms of sensitivity (p=0.04). Sensitivity and specificity of general endoscopist increased from 84% to 96% and 90 to 98% with CAD assistance (p<0.001), respectively. CADx assistance increased endoscopists' confidence in characterization (p<0.001). CADx performance was similar to Barrett experts. CONCLUSION: CADx assistance significantly increased characterization performance of BE neoplasia by general endoscopists to the level of expert endoscopists. The use of this CADx system may thereby improve daily Barrett surveillance.

3.
Surg Endosc ; 36(11): 8316-8325, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35508665

RESUMO

BACKGROUND AND AIMS: Early gastric cancer (EGC) lesions are often subtle and endoscopically poorly visible. The aim of this study is to evaluate the additive effect of linked color imaging (LCI) next to white-light endoscopy (WLE) for identification of EGC, when assessed by expert and non-expert endoscopists. METHODS: Forty EGC cases were visualized in corresponding WLE and LCI images. Endoscopists evaluated the cases in 3 assessment phases: Phase 1: WLE images only; Phase 2: LCI images only; Phase 3: WLE and LCI images side-to-side. First, 3 expert endoscopists delineated all cases. A high level of agreement between the expert delineations corresponded with a high AND/OR ratio. Subsequently, 62 non-experts indicated their preferred biopsy location. Outcomes of the study are as follows: (1) difference in expert AND/OR ratio; (2) accuracy of biopsy placement by non-expert endoscopists; and (3) preference of imaging modality by non-expert endoscopists. RESULTS: Quantitative agreement between experts increased significantly when LCI was available (0.58 vs. 0.46, p = 0.007). This increase was more apparent for the more challenging cases (0.21 vs. 0.47, p < 0.001). Non-experts placed the biopsy mark more accurately with LCI (82.3% vs. 87.2%, p < 0.001). Again this increase was more profound for the more challenging cases (70.4% vs. 83.4%, p < 0.001). Non-experts indicated to prefer LCI over WLE. CONCLUSION: The addition of LCI next to WLE improves visualization of EGC. Experts reach higher consensus on discrimination between neoplasia and inflammation when using LCI. Non-experts improve their targeted biopsy placement with the use of LCI. LCI therefore appears to be a useful tool for identification of EGC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/patologia , Aumento da Imagem/métodos , Detecção Precoce de Câncer/métodos , Imagem de Banda Estreita/métodos , Endoscopia
4.
Gastroenterology ; 158(4): 915-929.e4, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31759929

RESUMO

BACKGROUND & AIMS: We aimed to develop and validate a deep-learning computer-aided detection (CAD) system, suitable for use in real time in clinical practice, to improve endoscopic detection of early neoplasia in patients with Barrett's esophagus (BE). METHODS: We developed a hybrid ResNet-UNet model CAD system using 5 independent endoscopy data sets. We performed pretraining using 494,364 labeled endoscopic images collected from all intestinal segments. Then, we used 1704 unique esophageal high-resolution images of rigorously confirmed early-stage neoplasia in BE and nondysplastic BE, derived from 669 patients. System performance was assessed by using data sets 4 and 5. Data set 5 was also scored by 53 general endoscopists with a wide range of experience from 4 countries to benchmark CAD system performance. Coupled with histopathology findings, scoring of images that contained early-stage neoplasia in data sets 2-5 were delineated in detail for neoplasm position and extent by multiple experts whose evaluations served as the ground truth for segmentation. RESULTS: The CAD system classified images as containing neoplasms or nondysplastic BE with 89% accuracy, 90% sensitivity, and 88% specificity (data set 4, 80 patients and images). In data set 5 (80 patients and images) values for the CAD system vs those of the general endoscopists were 88% vs 73% accuracy, 93% vs 72% sensitivity, and 83% vs 74% specificity. The CAD system achieved higher accuracy than any of the individual 53 nonexpert endoscopists, with comparable delineation performance. CAD delineations of the area of neoplasm overlapped with those from the BE experts in all detected neoplasia in data sets 4 and 5. The CAD system identified the optimal site for biopsy of detected neoplasia in 97% and 92% of cases (data sets 4 and 5, respectively). CONCLUSIONS: We developed, validated, and benchmarked a deep-learning computer-aided system for primary detection of neoplasia in patients with BE. The system detected neoplasia with high accuracy and near-perfect delineation performance. The Netherlands National Trials Registry, Number: NTR7072.


Assuntos
Esôfago de Barrett/diagnóstico por imagem , Benchmarking , Diagnóstico por Computador/estatística & dados numéricos , Neoplasias Esofágicas/diagnóstico por imagem , Esofagoscopia/estatística & dados numéricos , Adulto , Esôfago de Barrett/complicações , Diagnóstico por Computador/métodos , Neoplasias Esofágicas/etiologia , Esofagoscopia/métodos , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade
5.
Gastrointest Endosc ; 93(1): 89-98, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32504696

RESUMO

BACKGROUND AND AIMS: The endoscopic evaluation of narrow-band imaging (NBI) zoom imagery in Barrett's esophagus (BE) is associated with suboptimal diagnostic accuracy and poor interobserver agreement. Computer-aided diagnosis (CAD) systems may assist endoscopists in the characterization of Barrett's mucosa. Our aim was to demonstrate the feasibility of a deep-learning CAD system for tissue characterization of NBI zoom imagery in BE. METHODS: The CAD system was first trained using 494,364 endoscopic images of general endoscopic imagery. Next, 690 neoplastic BE and 557 nondysplastic BE (NDBE) white-light endoscopy overview images were used for refinement training. Subsequently, a third dataset of 112 neoplastic and 71 NDBE NBI zoom images with histologic correlation was used for training and internal validation. Finally, the CAD system was further trained and validated with a fourth, histologically confirmed dataset of 59 neoplastic and 98 NDBE NBI zoom videos. Performance was evaluated using fourfold cross-validation. The primary outcome was the diagnostic performance of the CAD system for classification of neoplasia in NBI zoom videos. RESULTS: The CAD system demonstrated accuracy, sensitivity, and specificity for detection of BE neoplasia using NBI zoom images of 84%, 88%, and 78%, respectively. In total, 30,021 individual video frames were analyzed by the CAD system. Accuracy, sensitivity, and specificity of the video-based CAD system were 83% (95% confidence interval [CI], 78%-89%), 85% (95% CI, 76%-94%), and 83% (95% CI, 76%-90%), respectively. The mean assessment speed was 38 frames per second. CONCLUSION: We have demonstrated promising diagnostic accuracy of predicting the presence/absence of Barrett's neoplasia on histologically confirmed unaltered NBI zoom videos with fast corresponding assessment time.


Assuntos
Esôfago de Barrett , Neoplasias Esofágicas , Algoritmos , Esôfago de Barrett/diagnóstico por imagem , Computadores , Neoplasias Esofágicas/diagnóstico por imagem , Esofagoscopia , Humanos , Imagem de Banda Estreita
6.
Gut ; 69(11): 2035-2045, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393540

RESUMO

There has been a vast increase in GI literature focused on the use of machine learning in endoscopy. The relative novelty of this field poses a challenge for reviewers and readers of GI journals. To appreciate scientific quality and novelty of machine learning studies, understanding of the technical basis and commonly used techniques is required. Clinicians often lack this technical background, while machine learning experts may be unfamiliar with clinical relevance and implications for daily practice. Therefore, there is an increasing need for a multidisciplinary, international evaluation on how to perform high-quality machine learning research in endoscopy. This review aims to provide guidance for readers and reviewers of peer-reviewed GI journals to allow critical appraisal of the most relevant quality requirements of machine learning studies. The paper provides an overview of common trends and their potential pitfalls and proposes comprehensive quality requirements in six overarching themes: terminology, data, algorithm description, experimental setup, interpretation of results and machine learning in clinical practice.


Assuntos
Endoscopia Gastrointestinal , Aprendizado de Máquina , Algoritmos , Humanos
7.
Gastrointest Endosc ; 91(6): 1242-1250, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31926965

RESUMO

BACKGROUND AND AIMS: We assessed the preliminary diagnostic accuracy of a recently developed computer-aided detection (CAD) system for detection of Barrett's neoplasia during live endoscopic procedures. METHODS: The CAD system was tested during endoscopic procedures in 10 patients with nondysplastic Barrett's esophagus (NDBE) and 10 patients with confirmed Barrett's neoplasia. White-light endoscopy images were obtained at every 2-cm level of the Barrett's segment and immediately analyzed by the CAD system, providing instant feedback to the endoscopist. At every level, 3 images were evaluated by the CAD system. Outcome measures were diagnostic performance of the CAD system per level and per patient, defined as accuracy, sensitivity, and specificity (ground truth was established by expert assessment and corresponding histopathology), and concordance of 3 sequential CAD predictions per level. RESULTS: Accuracy, sensitivity, and specificity of the CAD system in a per-level analyses were 90%, 91%, and 89%, respectively. Nine of 10 neoplastic patients were correctly diagnosed. The single lesion not detected by CAD showed NDBE in the endoscopic resection specimen. In only 1 NDBE patient, the CAD system produced false-positive predictions. In 75% of all levels, the CAD system produced 3 concordant predictions. CONCLUSIONS: This is one of the first studies to evaluate a CAD system for Barrett's neoplasia during live endoscopic procedures. The system detected neoplasia with high accuracy, with only a small number of false-positive predictions and with a high concordance rate between separate predictions. The CAD system is thereby ready for testing in larger, multicenter trials. (Clinical trial registration number: NL7544.).


Assuntos
Esôfago de Barrett , Aprendizado Profundo , Neoplasias Esofágicas , Esôfago de Barrett/diagnóstico por imagem , Neoplasias Esofágicas/diagnóstico por imagem , Esofagoscopia , Humanos , Gravação em Vídeo
8.
Cancers (Basel) ; 15(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37046611

RESUMO

Optical biopsy in Barrett's oesophagus (BE) using endocytoscopy (EC) could optimize endoscopic screening. However, the identification of dysplasia is challenging due to the complex interpretation of the highly detailed images. Therefore, we assessed whether using artificial intelligence (AI) as second assessor could help gastroenterologists in interpreting endocytoscopic BE images. First, we prospectively videotaped 52 BE patients with EC. Then we trained and tested the AI pm distinct datasets drawn from 83,277 frames, developed an endocytoscopic BE classification system, and designed online training and testing modules. We invited two successive cohorts for these online modules: 10 endoscopists to validate the classification system and 12 gastroenterologists to evaluate AI as second assessor by providing six of them with the option to request AI assistance. Training the endoscopists in the classification system established an improved sensitivity of 90.0% (+32.67%, p < 0.001) and an accuracy of 77.67% (+13.0%, p = 0.020) compared with the baseline. However, these values deteriorated at follow-up (-16.67%, p < 0.001 and -8.0%, p = 0.009). Contrastingly, AI-assisted gastroenterologists maintained high sensitivity and accuracy at follow-up, subsequently outperforming the unassisted gastroenterologists (+20.0%, p = 0.025 and +12.22%, p = 0.05). Thus, best diagnostic scores for the identification of dysplasia emerged through human-machine collaboration between trained gastroenterologists with AI as the second assessor. Therefore, AI could support clinical implementation of optical biopsies through EC.

9.
United European Gastroenterol J ; 11(4): 324-336, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37095718

RESUMO

INTRODUCTION: Endoscopic detection of early neoplasia in Barrett's esophagus is difficult. Computer Aided Detection (CADe) systems may assist in neoplasia detection. The aim of this study was to report the first steps in the development of a CADe system for Barrett's neoplasia and to evaluate its performance when compared with endoscopists. METHODS: This CADe system was developed by a consortium, consisting of the Amsterdam University Medical Center, Eindhoven University of Technology, and 15 international hospitals. After pretraining, the system was trained and validated using 1.713 neoplastic (564 patients) and 2.707 non-dysplastic Barrett's esophagus (NDBE; 665 patients) images. Neoplastic lesions were delineated by 14 experts. The performance of the CADe system was tested on three independent test sets. Test set 1 (50 neoplastic and 150 NDBE images) contained subtle neoplastic lesions representing challenging cases and was benchmarked by 52 general endoscopists. Test set 2 (50 neoplastic and 50 NDBE images) contained a heterogeneous case-mix of neoplastic lesions, representing distribution in clinical practice. Test set 3 (50 neoplastic and 150 NDBE images) contained prospectively collected imagery. The main outcome was correct classification of the images in terms of sensitivity. RESULTS: The sensitivity of the CADe system on test set 1 was 84%. For general endoscopists, sensitivity was 63%, corresponding to a neoplasia miss-rate of one-third of neoplastic lesions and a potential relative increase in neoplasia detection of 33% for CADe-assisted detection. The sensitivity of the CADe system on test sets 2 and 3 was 100% and 88%, respectively. The specificity of the CADe system varied for the three test sets between 64% and 66%. CONCLUSION: This study describes the first steps towards the establishment of an unprecedented data infrastructure for using machine learning to improve the endoscopic detection of Barrett's neoplasia. The CADe system detected neoplasia reliably and outperformed a large group of endoscopists in terms of sensitivity.


Assuntos
Esôfago de Barrett , Aprendizado Profundo , Neoplasias Esofágicas , Humanos , Esôfago de Barrett/diagnóstico , Esôfago de Barrett/patologia , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/patologia , Esofagoscopia/métodos , Estudos Retrospectivos , Sensibilidade e Especificidade
10.
Artif Intell Med ; 107: 101914, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32828453

RESUMO

Patients suffering from Barrett's Esophagus (BE) are at an increased risk of developing esophageal adenocarcinoma and early detection is crucial for a good prognosis. To aid the endoscopists with the early detection for this preliminary stage of esophageal cancer, this work concentrates on the development and extensive evaluation of a state-of-the-art computer-aided classification and localization algorithm for dysplastic lesions in BE. To this end, we have employed a large-scale endoscopic data set, consisting of 494,355 images, in combination with a novel semi-supervised learning algorithm to pretrain several instances of the proposed neural network architecture. Next, several Barrett-specific data sets that are increasingly closer to the target domain with significantly more data compared to other related work, were used in a multi-stage transfer learning strategy. Additionally, the algorithm was evaluated on two prospectively gathered external test sets and compared against 53 medical professionals. Finally, the model was also evaluated in a live setting without interfering with the current biopsy protocol. Results from the performed experiments show that the proposed model improves on the state-of-the-art on all measured metrics. More specifically, compared to the best performing state-of-the-art model, the specificity is improved by more than 20% points while simultaneously preserving high sensitivity and reducing the false positive rate substantially. Our algorithm yields similar scores on the localization metrics, where the intersection of all experts is correctly indicated in approximately 92% of the cases. Furthermore, the live pilot study shows great performance in a clinical setting with a patient level accuracy, sensitivity, and specificity of 90%. Finally, the proposed algorithm outperforms each individual medical expert by at least 5% and the average assessor by more than 10% over all assessor groups with respect to accuracy.


Assuntos
Adenocarcinoma , Esôfago de Barrett , Neoplasias Esofágicas , Esôfago de Barrett/diagnóstico , Neoplasias Esofágicas/diagnóstico , Esofagoscopia , Humanos , Projetos Piloto
11.
Comput Med Imaging Graph ; 80: 101701, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32044547

RESUMO

Barrett cancer is a treatable disease when detected at an early stage. However, current screening protocols are often not effective at finding the disease early. Volumetric Laser Endomicroscopy (VLE) is a promising new imaging tool for finding dysplasia in Barrett's esophagus (BE) at an early stage, by acquiring cross-sectional images of the microscopic structure of BE up to 3-mm deep. However, interpretation of VLE scans is difficult for medical doctors due to both the size and subtlety of the gray-scale data. Therefore, algorithms that can accurately find cancerous regions are very valuable for the interpretation of VLE data. In this study, we propose a fully-automatic multi-step Computer-Aided Detection (CAD) algorithm that optimally leverages the effectiveness of deep learning strategies by encoding the principal dimension in VLE data. Additionally, we show that combining the encoded dimensions with conventional machine learning techniques further improves results while maintaining interpretability. Furthermore, we train and validate our algorithm on a new histopathologically validated set of in-vivo VLE snapshots. Additionally, an independent test set is used to assess the performance of the model. Finally, we compare the performance of our algorithm against previous state-of-the-art systems. With the encoded principal dimension, we obtain an Area Under the Curve (AUC) and F1 score of 0.93 and 87.4% on the test set respectively. We show this is a significant improvement compared to the state-of-the-art of 0.89 and 83.1%, respectively, thereby demonstrating the effectiveness of our approach.


Assuntos
Esôfago de Barrett/diagnóstico por imagem , Esôfago de Barrett/patologia , Aprendizado Profundo , Neoplasias Esofágicas/patologia , Microscopia Confocal/métodos , Lesões Pré-Cancerosas/diagnóstico por imagem , Lesões Pré-Cancerosas/patologia , Detecção Precoce de Câncer , Humanos , Aumento da Imagem/métodos
12.
United European Gastroenterol J ; 7(4): 538-547, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31065371

RESUMO

Background: Computer-aided detection (CAD) systems might assist endoscopists in the recognition of Barrett's neoplasia. Aim: To develop a CAD system using endoscopic images of Barrett's neoplasia. Methods: White light endoscopy (WLE) overview images of 40 neoplastic Barrett's lesions and 20 non-dysplastic Barret's oesophagus (NDBO) patients were prospectively collected. Experts delineated all neoplastic images.The overlap area of at least four delineations was labelled as the 'sweet spot'. The area with at least one delineation was labelled as the 'soft spot'. The CAD system was trained on colour and texture features. Positive features were taken from the sweet spot and negative features from NDBO images. Performance was evaluated using leave-one-out cross-validation. Outcome parameters were diagnostic accuracy of the CAD system per image, and localization of the expert soft spot by CAD delineation (localization score) and its indication of preferred biopsy location (red-flag indication score). Results: Accuracy, sensitivity and specificity for detection were 92, 95 and 85%, respectively. The system localized and red-flagged the soft spot in 100 and 90%, respectively. Conclusion: This uniquely trained and validated CAD system detected and localized early Barrett's neoplasia on WLE images with high accuracy. This is an important step towards real-time automated detection of Barrett's neoplasia.


Assuntos
Adenocarcinoma/prevenção & controle , Esôfago de Barrett/diagnóstico , Neoplasias Esofágicas/prevenção & controle , Esofagoscopia/métodos , Interpretação de Imagem Assistida por Computador , Adenocarcinoma/patologia , Algoritmos , Esôfago de Barrett/patologia , Biópsia , Neoplasias Esofágicas/patologia , Esôfago/diagnóstico por imagem , Esôfago/patologia , Humanos , Estudos Prospectivos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA