Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Bioorg Chem ; 153: 107854, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39368143

RESUMO

The potential of cyclin-dependent kinases (CDKs) as therapeutic targets in cancer treatment is well established. In this study, we present our investigation into a group of 2,4-diaminopyrimidine derivatives that potently inhibit CDK9 and are cytotoxic when tested in colorectal cancer cell lines. We designed and synthesized forty analogues by altering substitutions at C-2 and C-4 position of the pyrimidine system. Among them, compounds 16 h and 16j exhibited strong inhibitory potency against both CDK9 enzymes (IC50 = 11.4 ± 1.4 nM, IC50 = 10.2 ± 1.3 nM respectively) with a significant preference for one over the other, and cytotoxic potency (IC50 = 61 ± 2 nM, IC50 = 20 ± 1 nM respectively) against HCT-116 was discovered through substantial modifications to its structure. Further investigations revealed that compounds 16 h and 16j were directly bound to CDK9, resulting in the suppression of its downstream signaling pathway. This inhibition of cell proliferation occurred by impeding the progression of the cell cycle and inducing apoptosis in cells by suppressing the phosphoryl RNA pol II Ser2. Significantly, compound 16 h and 16j effectively suppressed tumor growth in a xenograft mouse model and exhibited no apparent toxicity. This indicates that CDK9 inhibitors hold great potential as a therapeutic approach for colorectal cancer treatment. Therefore, the aforementioned discoveries are vital for the development of CDK9 inhibitors for the treatment of cancer.

2.
Bioorg Chem ; 141: 106895, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37797456

RESUMO

In this study, twenty-one novel 2,4-diaminopyrimidine cinnamyl derivatives as inhibitors targeting FAK were designed and synthesized based on the structure of TAE-226, and the inhibitory effects of these compounds on both the FAK enzyme and three cancer cell lines (MGC-803, HCT-116, and KYSE30) were investigated. Among them, compound 12s displayed potent inhibitory potency on FAK (IC50 = 47 nM), and demonstrated more significant antiproliferative activities in MGC-803, HCT-116 and KYSE30 cells (IC50 values were 0.24, 0.45 and 0.44 µM, respectively) compared to TAE-226. Furthermore, compound 12s significantly inhibited FAK activation leading to the negative regulation of FAK-related signaling pathways such as AKT/mTOR and MAPK signaling pathways. Molecular docking study suggested that compound 12s could well occupy the ATP-binding pocket site of FAK similar to TAE-226. In addition, compound 12s also efficiently inhibited the proliferation, induced apoptosis and cellular senescence in MGC-803 cells. In conclusion, compound 12s emerges a potent FAK inhibitor that could exert potent inhibitory activity against gastric cancer cells.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Humanos , Relação Estrutura-Atividade , Antineoplásicos/química , Simulação de Acoplamento Molecular , Neoplasias Gástricas/tratamento farmacológico , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases
3.
Molecules ; 26(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34771128

RESUMO

In this work, co-crystal screening was carried out for two important dihydrofolate reductase (DHFR) inhibitors, trimethoprim (TMP) and pyrimethamine (PMA), and for 2,4-diaminopyrimidine (DAP), which is the pharmacophore of these active pharmaceutical ingredients (API). The isomeric pyridinecarboxamides and two xanthines, theophylline (THEO) and caffeine (CAF), were used as co-formers in the same experimental conditions, in order to evaluate the potential for the pharmacophore to be used as a guide in the screening process. In silico co-crystal screening was carried out using BIOVIA COSMOquick and experimental screening was performed by mechanochemistry and supported by (solid + liquid) binary phase diagrams, infrared spectroscopy (FTIR) and X-ray powder diffraction (XRPD). The in silico prediction of low propensities for DAP, TMP and PMA to co-crystallize with pyridinecarboxamides was confirmed: a successful outcome was only observed for DAP + nicotinamide. Successful synthesis of multicomponent solid forms was achieved for all three target molecules with theophylline, with DAP co-crystals revealing a greater variety of stoichiometries. The crystalline structures of a (1:2) TMP:THEO co-crystal and of a (1:2:1) DAP:THEO:ethyl acetate solvate were solved. This work demonstrated the possible use of the pharmacophore of DHFR inhibitors as a guide for co-crystal screening, recognizing some similar trends in the outcome of association in the solid state and in the molecular aggregation in the co-crystals, characterized by the same supramolecular synthons.


Assuntos
Inibidores Enzimáticos/farmacologia , Pirimetamina/farmacologia , Pirimidinas/farmacologia , Tetra-Hidrofolato Desidrogenase/metabolismo , Trimetoprima/farmacologia , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Pirimetamina/química , Pirimidinas/química , Trimetoprima/química
4.
Bioorg Med Chem ; 28(20): 115715, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33069079

RESUMO

Aiming to identify new optimization strategy effective for ALK-mutations, two series of pyrroformyl-containing 2,4-diaminopyrimidine compounds (11a-o, 12a-o) were designed, synthesized and evaluated for their anti-proliferative activities against three cancer cell lines in vitro by MTT assay. The biological evaluations on cellular assay resulted in discovery of compound 11k, which performed considerable activity with IC50 value of 0.034 µM against H2228 cell. Meanwhile, 11k exhibited outstanding enzymatic inhibitory potency with IC50 values of 1.9 nM and 3.1 nM against ALKWT and ALKL1196M, respectively, surpassing the reference ceritinib (IC50 = 2.4 nM and 7.6 nM). Ultimately, the binding mode of 11k with ALK was established to explore the SARs. Overall, 11k was considered as a promising ALK inhibitor for mutation treatment.


Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Mutação , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
5.
Bioorg Chem ; 78: 258-268, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29614437

RESUMO

Interleukin-1ß converting enzyme contributes in various inflammatory and autoimmune diseases by maturing pro-inflammatory cytokines IL-1ß, IL-18 and IL-33. Therefore, inhibition caspase-1 may provide a potential therapeutic strategy for the treatment of chronic inflammatory diseases. Here we have reported structure-based design, synthesis and biological evaluation of 2,4-diaminopyrimidine derivatives (6a-6w) as potential caspase-1 inhibitors. Six compounds 6m, 6n, 6o, 6p, 6q and 6r showed significant enzymatic inhibition with IC50 ranging from 0.022 to 0.078 µM. These compounds also displayed excellent cellular potency at sub-micromolar concentration. Moreover, molecular docking studies provided the useful binding insights specific for caspase-1 inhibition. All these results indicated that compounds 6m, 6n and 6o could be potential leads for the development of newer caspase-1 inhibitors as anti-inflammatory agents.


Assuntos
Caspase 1/metabolismo , Inibidores de Caspase/farmacologia , Desenho de Fármacos , Pirimidinas/farmacologia , Inibidores de Caspase/síntese química , Inibidores de Caspase/química , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Células THP-1
6.
Bioorg Med Chem Lett ; 27(10): 2185-2191, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28385505

RESUMO

In this study, a series of novel 2,4-diaminopyrimidines bearing fused tricyclic ring moiety was described for ALK inhibitor. The pyrazole, imidazole, 1,2,4-triazole, piperazine and phenanthridine moieties were employed at the 2-position of pyrimidine. Among the compounds synthesized, 28, 29, 36, and 42 showed promising anti-ALK activities in enzymatic- and cell-based assays. In vivo H3122 xenograft model study showed that compound 29 effectively suppressed ALK-driven tumor growth, similar to the extent of ceritinib, suggesting that it could be used for a novel ALK inhibitor development.


Assuntos
Inibidores de Proteínas Quinases/química , Pirimidinas/química , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Administração Oral , Quinase do Linfoma Anaplásico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos SCID , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/toxicidade , Pirimidinas/síntese química , Pirimidinas/uso terapêutico , Pirimidinas/toxicidade , Receptores Proteína Tirosina Quinases/metabolismo , Transplante Heterólogo
7.
Molecules ; 22(10)2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28937657

RESUMO

Tuberculosis (TB) is a chronic, potentially fatal disease caused by Mycobacterium tuberculosis (Mtb). The dihyrofolate reductase in Mtb (mt-DHFR) is believed to be an important drug target in anti-TB drug development. This enzyme contains a glycerol (GOL) binding site, which is assumed to be a useful site to improve the selectivity towards human dihyrofolate reductase (h-DHFR). There have been previous attempts to design drugs targeting the GOL binding site, but the designed compounds contain a hydrophilic group, which may prevent the compounds from crossing the cell wall of Mtb to function at the whole cell level. In the current study, we designed and synthesized a series of mt-DHFR inhibitors that contain a 2,4-diaminopyrimidine core with side chains to occupy the glycerol binding site with proper hydrophilicity for cell entry, and tested their anti-tubercular activity against Mtb H37Ra. Among them, compound 16l showed a good anti-TB activity (MIC = 6.25 µg/mL) with a significant selectivity against vero cells. In the molecular simulations performed to understand the binding poses of the compounds, it was noticed that only side chains of a certain size can occupy the glycerol binding site. In summary, the novel synthesized compounds with appropriate side chains, hydrophobicity and selectivity could be important lead compounds for future optimization towards the development of future anti-TB drugs that can be used as monotherapy or in combination with other anti-TB drugs or antibiotics. These compounds can also provide much information for further studies on mt-DHFR. However, the enzyme target of the compounds still needs to be confirmed by pure mt-DHFR binding assays.


Assuntos
Antituberculosos/química , Antituberculosos/síntese química , Pirimidinas/química , Antituberculosos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade
8.
Bioorg Med Chem Lett ; 26(7): 1720-5, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26923695

RESUMO

A series of novel 2,4-diaminopyrimidines bearing tetrahydronaphthalenyl moiety were synthesized and evaluated for their anti-anaplastic lymphoma kinase (ALK) activities using enzymatic and cell-based assays. Among the compounds synthesized, compound 17b showed promising pharmacological results in in vitro, ex vivo, and pharmacokinetic studies. An in vivo efficacy study with compound 17b demonstrated highly potent inhibitory activity in H3122 tumor xenograft model mice. A series of kinase assays showed that compound 17b inhibited various kinases including FAK, ACK1, FGFR, RSK1, IGF-1R, among others, thus demonstrating its potential for synergistic anti-tumor activity and development as a multi-targeted non-small cell lung cancer (NSCLC) therapy.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Pirimidinas/química , Pirimidinas/uso terapêutico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Quinase do Linfoma Anaplásico , Animais , Antineoplásicos/farmacocinética , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Linhagem Celular Tumoral , Humanos , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Neoplasias Pulmonares/enzimologia , Masculino , Camundongos , Camundongos SCID , Naftalenos/química , Naftalenos/farmacocinética , Naftalenos/uso terapêutico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacocinética , Ratos , Receptores Proteína Tirosina Quinases/metabolismo
9.
Bioorg Med Chem Lett ; 25(18): 3992-8, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26235945
10.
Eur J Med Chem ; 250: 115192, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801517

RESUMO

To search for novel medicines for intervention of triple-negative breast cancer (TNBC), a series of phenylsulfonyl furoxan-based 2,4-diaminopyrimidine derivatives (8a-t) were designed and synthesized based on blocking FAK-mediated signaling pathways through both kinase-dependent and -independent manners. The most active compound 8f not only significantly inhibited FAK kinase activity (IC50 = 27.44 nM), displayed potent inhibitory effects on the proliferation (IC50 = 0.126 µM), invasion and migration of MDA-MB-231 cells, superior to the most widely studied FAK inhibitor, TAE226, bearing 2,4-diaminopyrimidine, but also released high levels of NO, contributing to blockage of FAK mediated-signaling pathways by upregulating of p53 as well as suppressing the Y397 phosphorylation and its downstream effectors, including p-Akt, MMP-2, and MMP-9 via kinase-independent manner, leading to apoptosis induction and decrease of FAs and SFs in TNBC cells. Importantly, 8f inhibited the lung metastasis of TNBC in vivo. Together, 8f may serve as a promising candidate for the treatment of metastatic TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Óxido Nítrico/farmacologia , Proliferação de Células , Apoptose , Linhagem Celular Tumoral , Movimento Celular
11.
Eur J Med Chem ; 200: 112412, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32502861

RESUMO

Staphylococcus aureus (Sa) is a serious concern due to increasing resistance to antibiotics. The bacterial dihydrofolate reductase enzyme is effectively inhibited by trimethoprim, a compound with antibacterial activity. Previously, we reported a trimethoprim derivative containing an acryloyl linker and a dihydophthalazine moiety demonstrating increased potency against S. aureus. We have expanded this series and assessed in vitro enzyme inhibition (Ki) and whole cell growth inhibition properties (MIC). Modifications were focused at a chiral carbon within the phthalazine heterocycle, as well as simultaneous modification at positions on the dihydrophthalazine. MIC values increased from 0.0626-0.5 µg/mL into the 0.5-1 µg/mL range when the edge positions were modified with either methyl or methoxy groups. Changes at the chiral carbon affected Ki measurements but with little impact on MIC values. Our structural data revealed accommodation of predominantly the S-enantiomer of the inhibitors within the folate-binding pocket. Longer modifications at the chiral carbon, such as p-methylbenzyl, protrude from the pocket into solvent and result in poorer Ki values, as do modifications with greater torsional freedom, such as 1-ethylpropyl. The most efficacious Ki was 0.7 ± 0.3 nM, obtained with a cyclopropyl derivative containing dimethoxy modifications at the dihydrophthalazine edge. The co-crystal structure revealed an alternative placement of the phthalazine moiety into a shallow surface at the edge of the site that can accommodate either enantiomer of the inhibitor. The current design, therefore, highlights how to engineer specific placement of the inhibitor within this alternative pocket, which in turn maximizes the enzyme inhibitory properties of racemic mixtures.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Staphylococcus aureus/enzimologia , Tetra-Hidrofolato Desidrogenase/química , Sítios de Ligação , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Trimetoprima/análogos & derivados , Trimetoprima/química
12.
J Mol Model ; 26(4): 68, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32130533

RESUMO

Pro-inflammatory activation of caspase-1 in the neurodegenerative pathway has been associated with age-dependent cognitive impairment and Alzheimer's disease (AD) in humans. A recent report highlighted 2,4-diaminopyrimidine ring as an essential fragment in the inhibition of human caspase-1. However, the role of the ring and its enzyme inhibitory mechanism is not thoroughly investigated at the molecular level. The purpose of this study is therefore in twofold: (1) to understand the enzyme binding mechanism of the 2,4-diaminopyrimidine ring and (2) to search for more potent caspase-1 inhibitors that contain the ring, using integrative per-residue energy decomposition (PRED) pharmacophore modeling. Ligand interaction profile of a reference compound revealed a peculiar hydrogen formation of the amino group of 2,4-diaminopyrimidine with active site residue Arg341, possibly forming the bases for its inhibitory prowess against caspase-1. A generated pharmacophore model for structure-based virtual screening identified compounds, ZINC724667, ZINC09908119, and ZINC09933770, as potential caspase-1 inhibitors that possessed desirable pharmacokinetic and physiochemical properties. Further analyses revealed active site residues, Arg179, Ser236, Cys285, Gln283, Ser339, and Arg341, as crucial to inhibitor binding by stabilizing and forming hydrogen bonds, hydrophobic, and pi-pi interactions with the 2,4-diaminopyrimidine rings. Common interaction patterns of the hits could have accounted for their selective and high-affinity ligand binding, which was characterized by notable disruptions in caspase-1 structural architecture. These compounds could further be explored as potential leads in the development of novel caspase-1 inhibitors.


Assuntos
Doença de Alzheimer , Caspase 1/química , Inibidores de Caspase/química , Pirimidinas/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Inibidores de Caspase/uso terapêutico , Humanos , Pirimidinas/uso terapêutico
13.
Eur J Med Chem ; 162: 203-211, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30447433

RESUMO

Several 6-substituted tetrahydrocarbazole derivatives were designed, synthesized and evaluated for the antibacterial activities against Staphylococcus aureus Newman strain. Subsequently, 2,4-diaminopyrimidine scaffold was merged with the tetrahydrocarbazole unit to generate a series of novel hybrid derivatives and the antibacterial activities were also investigated. Among these novel hybrids, compound 12c showed the most potent activity with a MIC of 0.39-0.78 µg/mL against S. aureus Newman and Escherichia coli AB1157 strain. In addition, compound 12c exhibited low MIC values against a panel of multidrug-resistant strains of S. aureus.


Assuntos
Antibacterianos/farmacologia , Carbazóis/farmacologia , Pirimidinas/química , Antibacterianos/síntese química , Antibacterianos/química , Carbazóis/síntese química , Carbazóis/química , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
14.
Eur J Med Chem ; 151: 214-225, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29614418

RESUMO

A series of novel azacalix[2]arene[2]pyrimidines were synthesized, and evaluated for their antiproliferative activities against A549, MCF7, SH-SY5Y and CNE human cancer cell lines in vitro by using the CCK-8 assay. A number of compounds showed low micromolar antiproliferative activities against MCF7 cell line. Compound 4j, containing a pyrrolidine moiety, exhibited the strongest inhibitory activity with an IC50 value of 0.58 µM. Furthermore, breast cancer cells were used to explore the inhibition mechanism of these azacalix[2]arene[2]pyrimidines. The results suggested these compounds were involved in inducing cell apoptosis via up-regulation of caspase-3 and caspase-9 protein expression, and the cell cycle was arrested at the S phase. Our reports here represent the first studies on the biological activities of azacalix[2]arene[2]pyrimidines.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Calixarenos/química , Calixarenos/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Calixarenos/síntese química , Caspase 3/metabolismo , Caspase 9/metabolismo , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7 , Pirimidinas/síntese química
15.
Eur J Med Chem ; 124: 896-905, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27668758

RESUMO

A series of 2,4 diamino-pyrimidines have been identified from an analysis of open access high throughput anti-malarial screening data reported by GlaxoSmithKline at the 3D7 and resistant Dd2 strains. SAR expansion has been performed using structural knowledge of the most plausible parasite target. Seventeen new analogs have been synthesized and tested against the resistant K1 strain of Plasmodium falciparum (Pf). The cytotoxicity of the compounds was assessed in Vero and A549 cells and their selectivity towards human kinases including JAK2 and EGFR were undertaken. We identified compound 5n and 5m as sub-micromolar inhibitors, with equivalent anti-malarial activity to Chloroquine (CQ). Compounds 5d and 5k, µM inhibitors of Pf, displayed improved cytotoxicity with weak inhibition of the human kinases.


Assuntos
Antimaláricos/farmacologia , Antimaláricos/toxicidade , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/toxicidade , Pirimidinas/farmacologia , Pirimidinas/toxicidade , Animais , Antimaláricos/química , Antimaláricos/metabolismo , Linhagem Celular Tumoral , Chlorocebus aethiops , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Plasmodium falciparum/efeitos dos fármacos , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Células Vero
16.
Acta Crystallogr C Struct Chem ; 72(Pt 9): 705-15, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27585936

RESUMO

A path to new synthons for application in crystal engineering is the replacement of a strong hydrogen-bond acceptor, like a C=O group, with a weaker acceptor, like a C=S group, in doubly or triply hydrogen-bonded synthons. For instance, if the C=O group at the 2-position of barbituric acid is changed into a C=S group, 2-thiobarbituric acid is obtained. Each of the compounds comprises two ADA hydrogen-bonding sites (D = donor and A = acceptor). We report the results of cocrystallization experiments of barbituric acid and 2-thiobarbituric acid, respectively, with 2,4-diaminopyrimidine, which contains a complementary DAD hydrogen-bonding site and is therefore capable of forming an ADA/DAD synthon with barbituric acid and 2-thiobarbituric acid. In addition, pure 2,4-diaminopyrimidine was crystallized in order to study its preferred hydrogen-bonding motifs. The experiments yielded one ansolvate of 2,4-diaminopyrimidine (pyrimidine-2,4-diamine, DAPY), C4H6N4, (I), three solvates of DAPY, namely 2,4-diaminopyrimidine-1,4-dioxane (2/1), 2C4H6N4·C4H8O2, (II), 2,4-diaminopyrimidine-N,N-dimethylacetamide (1/1), C4H6N4·C4H9NO, (III), and 2,4-diaminopyrimidine-1-methylpyrrolidin-2-one (1/1), C4H6N4·C5H9NO, (IV), one salt of barbituric acid, viz. 2,4-diaminopyrimidinium barbiturate (barbiturate is 2,4,6-trioxopyrimidin-5-ide), C4H7N4(+)·C4H3N2O3(-), (V), and two solvated salts of 2-thiobarbituric acid, viz. 2,4-diaminopyrimidinium 2-thiobarbiturate-N,N-dimethylformamide (1/2) (2-thiobarbiturate is 4,6-dioxo-2-sulfanylidenepyrimidin-5-ide), C4H7N4(+)·C4H3N2O2S(-)·2C3H7NO, (VI), and 2,4-diaminopyrimidinium 2-thiobarbiturate-N,N-dimethylacetamide (1/2), C4H7N4(+)·C4H3N2O2S(-)·2C4H9NO, (VII). The ADA/DAD synthon was succesfully formed in the salt of barbituric acid, i.e. (V), as well as in the salts of 2-thiobarbituric acid, i.e. (VI) and (VII). In the crystal structures of 2,4-diaminopyrimidine, i.e. (I)-(IV), R2(2)(8) N-H...N hydrogen-bond motifs are preferred and, in two structures, additional R3(2)(8) patterns were observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA