Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928197

RESUMO

Breast cancer stands as one of the foremost cause of cancer-related deaths globally, characterized by its varied molecular subtypes. Each subtype requires a distinct therapeutic strategy. Although advancements in treatment have enhanced patient outcomes, significant hurdles remain, including treatment toxicity and restricted effectiveness. Here, we explore the anticancer potential of novel 1,4-naphthoquinone/4-quinolone hybrids on breast cancer cell lines. The synthesized compounds demonstrated selective cytotoxicity against Luminal and triple-negative breast cancer (TNBC) cells, which represent the two main molecular types of breast cancer that depend most on cytotoxic chemotherapy, with potency comparable to doxorubicin, a standard chemotherapeutic widely used in breast cancer treatment. Notably, these derivatives exhibited superior selectivity indices (SI) when compared to doxorubicin, indicating lower toxicity towards non-tumor MCF10A cells. Compounds 11a and 11b displayed an improvement in IC50 values when compared to their precursor, 1,4-naphthoquinone, for both MCF-7 and MDA-MB-231 and a comparable value to doxorubicin for MCF-7 cells. Also, their SI values were superior to those seen for the two reference compounds for both cell lines tested. Mechanistic studies revealed the ability of the compounds to induce apoptosis and inhibit clonogenic potential. Additionally, the irreversibility of their effects on cell viability underscores their promising therapeutic utility. In 3D-cell culture models, the compounds induced morphological changes indicative of reduced viability, supporting their efficacy in a more physiologically relevant model of study. The pharmacokinetics of the synthesized compounds were predicted using the SwissADME webserver, indicating that these compounds exhibit favorable drug-likeness properties and potential as antitumor agents. Overall, our findings underscore the promise of these hybrid compounds as potential candidates for breast cancer chemotherapy, emphasizing their selectivity and efficacy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Naftoquinonas , Humanos , Naftoquinonas/farmacologia , Naftoquinonas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Células MCF-7 , Quinolonas/farmacologia , Quinolonas/química , Apoptose/efeitos dos fármacos , Técnicas de Cultura de Células em Três Dimensões/métodos , Doxorrubicina/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
2.
Molecules ; 29(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398602

RESUMO

The use of gaseous CO in Pd-catalyzed carbonylative quinolone synthesis presents challenges related to safety and precise pressure control. In response, a streamlined non-gaseous synthesis of 4-quinolone compounds has been developed. This study introduces a tunable CO-releasing system utilizing Fe(CO)5 activated by a dual-base system of piperazine and triethylamine. This alternative liquid CO resource facilitates the palladium-catalyzed carbonylative C-C coupling and subsequent intramolecular cyclization. By tuning the tandem kinetics of carbonylation and cyclization, this non-gaseous method achieves the successful synthesis of 22 distinct 4-quinolones with excellent yields. This is achieved through the three-component condensation of sub-stoichiometric amounts of Fe(CO)5 with 2-iodoaniline and terminal alkynes. Operando mechanistic studies have revealed a novel CO transfer mechanism that facilitates homogeneous carbonylative cyclization, distinguishing this method from traditional techniques. In addition to addressing safety concerns, this approach also provides precise control over selectivity, with significant implications for pharmaceutical research and the efficient synthesis of pharmaceutical and bioactive compounds.

3.
Molecules ; 29(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39125082

RESUMO

A four-step synthesis of the natural product pseudane IX, starting from 3-oxododecanoic acid phenylamide and including only one chromatographic purification, was accomplished with an overall yield of 52%. The same synthetic sequence, but with a controlled partial reduction of a nitro group in the penultimate intermediate, led to the N-oxide of pseudane IX (NQNO). A shortened three-step variation of the synthesis allowed for the preparation of novel carboxamide analogs of the natural product. An agar diffusion assay against six different bacterial strains revealed significant antibacterial activity of the novel analogs against S. aureus at a concentration of 100 µg/mL. One of the novel compounds showed a remarkably broad spectrum of antibacterial activity, comparable to that of the positive control NQNO.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Estrutura Molecular , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Óxidos/química , Óxidos/farmacologia
4.
Microbiology (Reading) ; 169(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37018121

RESUMO

In Pseudomonas aeruginosa, quorum sensing (QS) depends on an interconnected regulatory hierarchy involving the Las, Rhl and Pqs systems, which are collectively responsible for the co-ordinated synthesis of a diverse repertoire of N-acylhomoserine lactones (AHLs) and 2-alkyl-4-quinolones (AQs). Apparent population density-dependent phenomena such as QS may, however, be due to growth rate and/or nutrient exhaustion in batch culture. Using continuous culture, we show that growth rate and population density independently modulate the accumulation of AHLs and AQs such that the highest concentrations are observed at a slow growth rate and high population density. Carbon source (notably succinate), nutrient limitation (C, N, Fe, Mg) or growth at 25 °C generally reduces AHL and AQ levels, except for P and S limitation, which result in substantially higher concentrations of AQs, particularly AQ N-oxides, despite the lower population densities achieved. Principal component analysis indicates that ~26 % variation is due to nutrient limitation and a further 30 % is due to growth rate. The formation of N-(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL) turnover products such as the ring opened form and tetramic acid varies with the limiting nutrient limitation and anaerobiosis. Differential ratios of N-butanoyl-homoserine lactone (C4-HSL), 3OC12-HSL and the AQs as a function of growth environment are clearly apparent. Inactivation of QS by mutation of three key genes required for QS signal synthesis (lasI, rhlI and pqsA) substantially increases the concentrations of key substrates from the activated methyl cycle and aromatic amino acid biosynthesis, as well as ATP levels, highlighting the energetic drain that AHL and AQ synthesis and hence QS impose on P. aeruginosa.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Pseudomonas aeruginosa/genética , Lactonas/química , Lactonas/metabolismo , 4-Butirolactona/metabolismo , Acil-Butirolactonas/metabolismo , Proteínas de Bactérias/genética
5.
Anal Bioanal Chem ; 411(24): 6247-6253, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30972473

RESUMO

Gas phase ion/molecule reactions are often used in analytical applications to support the analysis of isomers or to identify specific functional groups of organic molecules. Until now, deliberate chemical reactions have not been performed in differential ion mobility spectrometry (DMS) devices except for hydrogen exchange and cluster formation. The present work extends that of Colorado and Brodbelt (Anal Chem 66:2330-5, 1994) on ion/molecule reactions in an ion trap mass spectrometer. In this study, class-specific chemical reactions of 4-quinolone antibiotics with various chemical reagents were used to demonstrate the analytical utility of ion/molecule reactions in a DMS drift cell. For these reactions, dehydrated reactive precursor ions were initially formed and made to undergo annulation reactions with selected reagents within the timescale of the DMS separation. Careful study of the energies required for dissociation of the adducts confirmed the covalent nature of the newly formed bond; thus demonstrating the analytical utility of this approach. Graphical abstract.

6.
Bioorg Chem ; 92: 103291, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31561107

RESUMO

In the modern scenario, the quinolone scaffold has emerged as a very potent motif considering its clinical significance. Quinolones possess wide range of pharmacological activities such as anticancer, antibacterial, antifungal, antiprotozoal, antiviral, anti-inflammatory, carbonic anhydrase inhibitory and diuretic activity etc. The versatile synthetic approaches have been successfully applied and several of the resulted synthesized compounds exhibit fascinating biological activities in numerous fields. This has prompted to discover quinolone-based analogues among the researchers due to its great diversity in biological activities. In the past few years, various new, efficient and convenient synthetic approaches (including green chemistry and microwave-assisted synthesis) have been designed and developed to synthesize diverse quinolone-based scaffolds which represent a growing area of interest in academic and industry as well as to explore their biological activities. In this review, an attempt has been made by the authors to summarize (1) One of the most comprehensive listings of quinolone-based drugs or agents in the market or under various stages of clinical development; (2) Recent advances in the synthetic strategies for quinolone derivatives as well as their biological implications including insight of mechanistic studies. (3) Further, the biological data is correlated with structure-activity relationship studies to provide an insight into the rational design of more active agents.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Quinolonas/farmacologia , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Antineoplásicos/síntese química , Antineoplásicos/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Humanos , Estrutura Molecular , Quinolonas/síntese química , Quinolonas/química
7.
Bioorg Med Chem ; 22(14): 3670-83, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24906513

RESUMO

Protein tyrosine phosphatase 1B is a negative regulator in the insulin and leptin signaling pathways, and has emerged as an attractive target for the treatment of type 2 diabetes and obesity. However, the essential pharmacophore of charged phosphotyrosine or its mimetic confer low selectivity and poor cell permeability. Starting from our previously reported aryl diketoacid-based PTP1B inhibitors, a drug-like scaffold of 4-quinolone-3-carboxylic acid was introduced for the first time as a novel surrogate of phosphotyrosine. An optimal combination of hydrophobic groups installed at C-6, N-1 and C-3 positions of the quinolone motif afforded potent PTP1B inhibitors with low micromolar IC50 values. These 4-quinolone-3-carboxylate based PTP1B inhibitors displayed a 2-10 fold selectivity over a panel of PTP's. Furthermore, the bidentate inhibitors of 4-quinolone-3-carboxylic acids conjugated with aryl diketoacid or salicylic acid were cell permeable and enhanced insulin signaling in CHO/hIR cells. The kinetic studies and molecular modeling suggest that the 4-quinolone-3-carboxylates act as competitive inhibitors by binding to the PTP1B active site in the WPD loop closed conformation. Taken together, our study shows that the 4-quinolone-3-carboxylic acid derivatives exhibit improved pharmacological properties over previously described PTB1B inhibitors and warrant further preclinical studies.


Assuntos
4-Quinolonas/farmacologia , Ácidos Carboxílicos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , 4-Quinolonas/síntese química , 4-Quinolonas/química , Animais , Células CHO , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/química , Linhagem Celular , Cricetulus , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Relação Estrutura-Atividade
8.
BMC Chem ; 16(1): 111, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482476

RESUMO

Quinolone is a privileged scaffold in medicinal chemistry and 4-Quinolone-3-Carboxamides have been reported to harbor vast therapeutic potential. However, conversion of N-1 substituted 4-Quinolone 3-Carboxylate to its corresponding carbamates is highly restrictive. This motivated us to adopt a much simpler, scalable and efficient methodology for the synthesis of highly pure N-1 substituted 4- Quinolone-3-Carboxamides with excellent yields. Our adopted methodology not only provides a robust pathway for the convenient synthesis of N-1 substituted 4- Quinolone-3-Carboxamides which can then be explored for their therapeutic potential, this may also be adaptable for the derivatization of other such less reactive carboxylate species.

9.
J Med Microbiol ; 69(1): 25-34, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31794380

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that produces several virulence factors such as lectin A, pyocyanin, elastase and rhamnolipids. These compounds are controlled transcriptionally by three quorum-sensing circuits, two based on the synthesis and detection of N-acyl-homoserine-lactone termed the Las and Rhl system and a third system named the Pseudomonas quinolone signal (PQS) system, which is responsible for generating 2-alkyl-4(1 h)-quinolones (AQs). The transcriptional regulator called PqsR binds to the promoter of pqsABCDE in the presence of PQS or HHQ creating a positive feedback-loop. PqsE, encoded in the operon for AQ synthesis, is a crucial protein for pyocyanin production, activating the Rhl system by a still not fully understood mechanism. In turn, the regulation of the PQS system is modulated by Las and Rhl systems, which act positively and negatively, respectively. This review focuses on the PQS system, from its discovery to its role in Pseudomonas pathogenesis, such as iron depletion and pyocyanin synthesis that involves the PqsE protein - an intriguing player of this system.


Assuntos
Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Percepção de Quorum/fisiologia , Proteínas de Bactérias/genética , Retroalimentação Fisiológica/fisiologia , Regulação Bacteriana da Expressão Gênica/genética , Óperon/genética , Pseudomonas aeruginosa/genética , Piocianina/metabolismo , Percepção de Quorum/genética , Transdução de Sinais , Transativadores/genética , Fatores de Virulência/metabolismo
10.
ACS Infect Dis ; 6(12): 3237-3246, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33210530

RESUMO

Bacterial quorum sensing (QS) is being contemplated as a promising target for developing innovative diagnostic and therapeutic strategies. Here we report for the first time the development of antibodies against 2-heptyl-4-quinolone (HHQ), a signaling molecule from the pqs QS system of Pseudomonas aeruginosa, involved in the production of important virulent factors and biofilm formation. The antibodies produced were used to develop an immunochemical diagnostic approach to assess the potential of this molecule as a biomarker of P. aeruginosa infection. The ELISA developed is able to reach a detectability in the low nM range (IC50 = 4.59 ± 0.29 nM and LOD = 0.34 ± 0.13 nM), even in complex biological samples such as Müeller Hinton (MH) culture media. The ELISA developed is robust and reproducible and has been found to be specific to HHQ, with little interference from other related alkylquinolones from the pqs QS system. The ELISA has been used to analyze the HHQ production kinetics of P. aeruginosa clinical isolates grown in MH media, pointing to its potential as a biomarker of infection and at the possibility to use the technology developed to obtain additional information about the disease stage.


Assuntos
Infecções por Pseudomonas , Percepção de Quorum , 4-Quinolonas , Biomarcadores , Humanos , Infecções por Pseudomonas/diagnóstico
11.
Pest Manag Sci ; 75(8): 2264-2270, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30701660

RESUMO

BACKGROUND: Waltheria indica exhibited strong nematocidal activity against Meloidogyne incognita, a causal agent of root-knot nematode disease. This study aimed to characterize the nematocidal metabolites and to evaluate the efficacy of the formulated extract of W. indica in the biological control of M. incognita under both pot and field conditions. RESULTS: Three 4-quinolone alkaloids, 5'-methoxywaltherione A, waltherione A and waltherione C, were isolated and characterized as nematocidal metabolites. 5'-Methoxywaltherione A and waltherione A caused high mortality in juveniles of Meloidogyne arenaria, Meloidogyne hapla, M. incognita and Bursaphelenchus xylophilus, whereas waltherione C exhibited significant nematocidal activity against only root-knot nematodes. In pot experiments, application of a wettable powder-type formulation of the ethyl acetate extract of W. indica (W. indica WP20) at 26.7, 53.4 and 106.8 mg a.i. kg-1 soil significantly reduced the formation of galls and egg masses on the roots of tomato plants in a dose-dependent manner. In addition, application of 20 mg a.i. per plant W. indica WP20 effectively reduced gall formation on the roots of melon plants and population density of nematode in soil compared with untreated control under field conditions. CONCLUSION: W. indica can be used as an effective botanical nematicide in the eco-friendly control of root-knot nematode disease. © 2019 Society of Chemical Industry.


Assuntos
4-Quinolonas , Alcaloides , Antinematódeos , Malvaceae/parasitologia , Doenças das Plantas/prevenção & controle , Tylenchoidea , Animais , Doenças das Plantas/parasitologia
12.
Microbiome ; 7(1): 93, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208456

RESUMO

BACKGROUND: Marine bacteria form complex relationships with eukaryotic hosts, from obligate symbioses to pathogenic interactions. These interactions can be tightly regulated by bioactive molecules, creating a complex system of chemical interactions through which these species chemically communicate thereby directly altering the host's physiology and community composition. Quorum sensing (QS) signals were first described in a marine bacterium four decades ago, and since then, we have come to discover that QS mediates processes within the marine carbon cycle, affects the health of coral reef ecosystems, and shapes microbial diversity and bacteria-eukaryotic host relationships. Yet, only recently have alkylquinolone signals been recognized for their role in cell-to-cell communication and the orchestration of virulence in biomedically relevant pathogens. The alkylquinolone, 2-heptyl-4-quinolone (HHQ), was recently found to arrest cell growth without inducing cell mortality in selected phytoplankton species at nanomolar concentrations, suggesting QS molecules like HHQ can influence algal physiology, playing pivotal roles in structuring larger ecological frameworks. RESULTS: To understand how natural communities of phytoplankton and bacteria respond to HHQ, field-based incubation experiments with ecologically relevant concentrations of HHQ were conducted over the course of a stimulated phytoplankton bloom. Bulk flow cytometry measurements indicated that, in general, exposure to HHQ caused nanoplankton and prokaryotic cell abundances to decrease. Amplicon sequencing revealed HHQ exposure altered the composition of particle-associated and free-living microbiota, favoring the relative expansion of both gamma- and alpha-proteobacteria, and a concurrent decrease in Bacteroidetes. Specifically, Pseudoalteromonas spp., known to produce HHQ, increased in relative abundance following HHQ exposure. A search of representative bacterial genomes from genera that increased in relative abundance when exposed to HHQ revealed that they all have the genetic potential to bind HHQ. CONCLUSIONS: This work demonstrates HHQ has the capacity to influence microbial community organization, suggesting alkylquinolones have functions beyond bacterial communication and are pivotal in driving microbial community structure and phytoplankton growth. Knowledge of how bacterial signals alter marine communities will serve to deepen our understanding of the impact these chemical interactions have on a global scale.


Assuntos
4-Quinolonas/farmacologia , Bactérias/metabolismo , Microbiota , Fitoplâncton/efeitos dos fármacos , Percepção de Quorum , Transdução de Sinais , Bactérias/classificação , Proteínas de Bactérias/genética , Clorofila/análise , Recifes de Corais , Oceanos e Mares , Fitoplâncton/microbiologia , Água do Mar/microbiologia
13.
Biomed Pharmacother ; 116: 109025, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31154267

RESUMO

Rheumatoid arthritis (RA) is a chronic, inflammatory, synovitis-dominated systemic disease with unknown etiology. RA is characterized by the involvement of multiple affected joints, symmetry, and invasive arthritis of the limbs, which can lead to joint deformity, cartilage destruction, and loss of function. Cannabinoid receptor 2 (CB2) has potent immunomodulatory and anti-inflammatory effects and is predominantly expressed in non-neuronal tissues. In the current study, the role of CB2 in the process of inflammatory bone erosion in RA was examined. The selective agonist or high-affinity ligand of CB2 (4-quinolone-3-carboxamides CB2 agonist, 4Q3C CB2 agonist, 4Q3C) significantly reduced the severity of arthritis, decreased histopathological findings, and markedly reduced bone erosion in collagen-induced arthritis (CIA) mice. In addition, 4Q3C prevented an increase in the nuclear factor-κB ligand (RANKL)/osteoprotegerin (OPG) ratio and inhibited the formation of osteoclasts in CIA mice. Furthermore, the expression of tumor necrosis factor-alpha, interleukin-1ß, cyclooxygenase-2, and inducible nitric oxide synthase was lower in 4Q3C-treated CIA mice than in control CIA mice. Micro-computed tomography corroborated the finding that 4Q3C reduced joint destruction. These data clearly indicate that the CB2-selective agonist, 4Q3C, may have anti-inflammatory and anti-osteoclastogenesis effects in RA and may be considered to be a novel treatment for RA.


Assuntos
Artrite Experimental/tratamento farmacológico , Inflamação/tratamento farmacológico , Articulações/patologia , Substâncias Protetoras/uso terapêutico , Receptor CB2 de Canabinoide/agonistas , Animais , Artrite Experimental/complicações , Artrite Experimental/diagnóstico por imagem , Artrite Experimental/patologia , Biomarcadores/metabolismo , Osso e Ossos/patologia , Citocinas/sangue , Inflamação/complicações , Inflamação/diagnóstico por imagem , Inflamação/patologia , Mediadores da Inflamação/sangue , Articulações/diagnóstico por imagem , Masculino , Camundongos Endogâmicos DBA , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Microtomografia por Raio-X
14.
Curr Top Med Chem ; 18(17): 1465-1474, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30129412

RESUMO

BACKGROUND: Breast cancer is a major cause of death among women worldwide. Treatment for breast cancer involves the surgical removal of cancer tissue, followed by chemotherapy. Although the treatment is efficient, especially when the cancer is detected early, recurrence is common and is often resistant to the previous treatment. Therefore, a constant search for efficient and novel drugs for the treatment of breast cancer is mandatory. Recently, triazole derivatives have shown promising effects against different types of cancer, revealing these molecules as putative anticancer drugs. EXPERIMENTAL: We have synthesized a series of naphthotriazolyl-4-oxoquinoline derivatives and tested their activity against a human breast cancer cell line. Among the compounds tested, we identified a molecule that killed the human breast cancer cell line MCF-7 with minimal effects on its noncancer counterpart, MCF10A. This effect was seen after 24 hours of treatment and persisted for additional 24 hours after treatment withdrawal. After 1 hour of treatment, the compound, here named 12c, promoted a decrease in cell glucose consumption and lactate production. Moreover, the cells treated with 12c for 1 hour showed diminished intracellular ATP levels with unaltered mitochondrial potential and increased reactive oxygen species production. Additionally, apoptosis was triggered after treatment with the drug for 1 hour. All of these effects are only observed with MCF-7 cells, and not MCF10A. These data show that 12c has selective activity against breast cancer cells and is a potential candidate for a novel anticancer drug. RESULTS AND CONCLUSION: The naphthotriazolyl-4-oxoquinoline derivatives were obtained in good to moderate yields, and one of them, 12c, exhibited strong and selective antitumor properties. The antitumor mechanism involves inhibition of glycolysis, diminished intracellular ATP levels, induction of ROS production and triggering of apoptosis. These effects are all selective for cancer cells, since noncancer cells are unaffected, and these effects can only be attributed to the whole molecule, as different pharmacophoric groups did not reproduce these effects.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Quinolonas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Estrutura Molecular , Quinolonas/síntese química , Quinolonas/química , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
15.
Eur J Med Chem ; 140: 239-251, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28942112

RESUMO

A series of novel water-soluble 4-quinolone-3-carboxamides was prepared and evaluated as antiproliferative agents. Preliminary results indicated that most compounds tested in this study showed potent antiproliferative potencies against human tumor cell lines, and compound 8k was found to be the most potent antiproliferative agents with IC50 value of lower than 10 µM against nine human tumor cell lines. These results suggested that (1) the alkylamino side chain substituent was the advisable pharmacophoric group for the enhanced antiproliferative activities; (2) the length of the alkylamino side chain moiety also affected their antiproliferative potencies, and three methylene units were more favorable; (3) introducing arylated alkyl substituent into N1-position of quinolone facilitated antiproliferative activities of this class of compounds. Further investigations on mechanism of action of this class of compound demonstrated that the representative compound 8k could trigger p53/Bax-independent colorectal cancer cell apoptosis via inducing ROS accumulation.


Assuntos
Antineoplásicos/farmacologia , Quinolonas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Quinolonas/síntese química , Quinolonas/química , Solubilidade , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Água/química
16.
Asian J Org Chem ; 3(4): 453-457, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26207200

RESUMO

Phosphinocatalysis provides a new approach toward 3-substituted-4-quinolones. A simple procedure, which uses Ph3P as an inexpensive catalyst and S-phenyl 2-(N-tosylamido)benzothioates and activated alkynes as starting materials, provides direct access to several 3-aroyl-4-quinolones and methyl 4-quinolone-3-carboxylate esters. The reaction presumably occurs through general base catalysis, with the initial addition of Ph3P to the activated alkyne generating the phosphonium enoate zwitterion, which acts as the strong base that initiates the reaction.

17.
ACS Med Chem Lett ; 3(7): 592-5, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-24900515

RESUMO

Penicillin-binding proteins (PBPs) are important bacterial enzymes that carry out the final steps of bacterial cell wall assembly. Their DD-transpeptidase activity accomplishes the essential peptide cross-linking step of the cell wall. To date, all attempts to discover effective inhibitors of PBPs, apart from ß-lactams, have not led to new antibiotics. Therefore, the need for new classes of efficient inhibitors of these enzymes remains. Guided by a computational fragment-based docking procedure, carried out on Escherichia coli PBP5, we have designed and synthesized a series of 4-quinolones as potential inhibitors of PBPs. We describe their binding to the PBPs of E. coli and Bacillus subtilis. Notably, these compounds bind quite tightly to the essential high molecular mass PBPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA