Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.479
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(13): 3236-3248.e21, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772369

RESUMO

Leveraging AAVs' versatile tropism and labeling capacity, we expanded the scale of in vivo CRISPR screening with single-cell transcriptomic phenotyping across embryonic to adult brains and peripheral nervous systems. Through extensive tests of 86 vectors across AAV serotypes combined with a transposon system, we substantially amplified labeling efficacy and accelerated in vivo gene delivery from weeks to days. Our proof-of-principle in utero screen identified the pleiotropic effects of Foxg1, highlighting its tight regulation of distinct networks essential for cell fate specification of Layer 6 corticothalamic neurons. Notably, our platform can label >6% of cerebral cells, surpassing the current state-of-the-art efficacy at <0.1% by lentivirus, to achieve analysis of over 30,000 cells in one experiment and enable massively parallel in vivo Perturb-seq. Compatible with various phenotypic measurements (single-cell or spatial multi-omics), it presents a flexible approach to interrogate gene function across cell types in vivo, translating gene variants to their causal function.


Assuntos
Redes Reguladoras de Genes , Análise de Célula Única , Animais , Feminino , Humanos , Camundongos , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Vetores Genéticos/metabolismo , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/citologia , Análise de Célula Única/métodos , Transcriptoma/genética , Linhagem Celular , Transcrição Gênica
2.
Cell ; 187(1): 44-61.e17, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38134932

RESUMO

Cytokines employ downstream Janus kinases (JAKs) to promote chronic inflammatory diseases. JAK1-dependent type 2 cytokines drive allergic inflammation, and patients with JAK1 gain-of-function (GoF) variants develop atopic dermatitis (AD) and asthma. To explore tissue-specific functions, we inserted a human JAK1 GoF variant (JAK1GoF) into mice and observed the development of spontaneous AD-like skin disease but unexpected resistance to lung inflammation when JAK1GoF expression was restricted to the stroma. We identified a previously unrecognized role for JAK1 in vagal sensory neurons in suppressing airway inflammation. Additionally, expression of Calcb/CGRPß was dependent on JAK1 in the vagus nerve, and CGRPß suppressed group 2 innate lymphoid cell function and allergic airway inflammation. Our findings reveal evolutionarily conserved but distinct functions of JAK1 in sensory neurons across tissues. This biology raises the possibility that therapeutic JAK inhibitors may be further optimized for tissue-specific efficacy to enhance precision medicine in the future.


Assuntos
Dermatite Atópica , Imunidade Inata , Pulmão , Células Receptoras Sensoriais , Animais , Humanos , Camundongos , Citocinas , Dermatite Atópica/imunologia , Inflamação , Pulmão/imunologia , Linfócitos , Células Receptoras Sensoriais/enzimologia
3.
Cell ; 186(24): 5394-5410.e18, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37922901

RESUMO

Parkinson's disease (PD) is a debilitating neurodegenerative disorder. Its symptoms are typically treated with levodopa or dopamine receptor agonists, but its action lacks specificity due to the wide distribution of dopamine receptors in the central nervous system and periphery. Here, we report the development of a gene therapy strategy to selectively manipulate PD-affected circuitry. Targeting striatal D1 medium spiny neurons (MSNs), whose activity is chronically suppressed in PD, we engineered a therapeutic strategy comprised of a highly efficient retrograde adeno-associated virus (AAV), promoter elements with strong D1-MSN activity, and a chemogenetic effector to enable precise D1-MSN activation after systemic ligand administration. Application of this therapeutic approach rescues locomotion, tremor, and motor skill defects in both mouse and primate models of PD, supporting the feasibility of targeted circuit modulation tools for the treatment of PD in humans.


Assuntos
Terapia Genética , Doença de Parkinson , Animais , Humanos , Camundongos , Corpo Estriado/metabolismo , Levodopa/uso terapêutico , Levodopa/genética , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/terapia , Primatas , Receptores de Dopamina D1/metabolismo , Modelos Animais de Doenças
4.
Cell ; 186(2): 446-460.e19, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36638795

RESUMO

Precise targeting of large transgenes to T cells using homology-directed repair has been transformative for adoptive cell therapies and T cell biology. Delivery of DNA templates via adeno-associated virus (AAV) has greatly improved knockin efficiencies, but the tropism of current AAV serotypes restricts their use to human T cells employed in immunodeficient mouse models. To enable targeted knockins in murine T cells, we evolved Ark313, a synthetic AAV that exhibits high transduction efficiency in murine T cells. We performed a genome-wide knockout screen and identified QA2 as an essential factor for Ark313 infection. We demonstrate that Ark313 can be used for nucleofection-free DNA delivery, CRISPR-Cas9-mediated knockouts, and targeted integration of large transgenes. Ark313 enables preclinical modeling of Trac-targeted CAR-T and transgenic TCR-T cells in immunocompetent models. Efficient gene targeting in murine T cells holds great potential for improved cell therapies and opens avenues in experimental T cell immunology.


Assuntos
Dependovirus , Engenharia Genética , Linfócitos T , Animais , Camundongos , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Marcação de Genes , Engenharia Genética/métodos
5.
Cell ; 184(19): 4919-4938.e22, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34506722

RESUMO

Replacing or editing disease-causing mutations holds great promise for treating many human diseases. Yet, delivering therapeutic genetic modifiers to specific cells in vivo has been challenging, particularly in large, anatomically distributed tissues such as skeletal muscle. Here, we establish an in vivo strategy to evolve and stringently select capsid variants of adeno-associated viruses (AAVs) that enable potent delivery to desired tissues. Using this method, we identify a class of RGD motif-containing capsids that transduces muscle with superior efficiency and selectivity after intravenous injection in mice and non-human primates. We demonstrate substantially enhanced potency and therapeutic efficacy of these engineered vectors compared to naturally occurring AAV capsids in two mouse models of genetic muscle disease. The top capsid variants from our selection approach show conserved potency for delivery across a variety of inbred mouse strains, and in cynomolgus macaques and human primary myotubes, with transduction dependent on target cell expressed integrin heterodimers.


Assuntos
Capsídeo/metabolismo , Dependovirus/metabolismo , Evolução Molecular Direcionada , Técnicas de Transferência de Genes , Músculo Esquelético/metabolismo , Sequência de Aminoácidos , Animais , Capsídeo/química , Células Cultivadas , Modelos Animais de Doenças , Células HEK293 , Humanos , Integrinas/metabolismo , Macaca fascicularis , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/terapia , Miopatias Congênitas Estruturais/patologia , Miopatias Congênitas Estruturais/terapia , Multimerização Proteica , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/uso terapêutico , RNA Guia de Cinetoplastídeos/metabolismo , Recombinação Genética/genética , Especificidade da Espécie , Transgenes
6.
Cell ; 184(21): 5465-5481.e16, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34582787

RESUMO

In vivo cell fate conversions have emerged as potential regeneration-based therapeutics for injury and disease. Recent studies reported that ectopic expression or knockdown of certain factors can convert resident astrocytes into functional neurons with high efficiency, region specificity, and precise connectivity. However, using stringent lineage tracing in the mouse brain, we show that the presumed astrocyte-converted neurons are actually endogenous neurons. AAV-mediated co-expression of NEUROD1 and a reporter specifically and efficiently induces reporter-labeled neurons. However, these neurons cannot be traced retrospectively to quiescent or reactive astrocytes using lineage-mapping strategies. Instead, through a retrograde labeling approach, our results reveal that endogenous neurons are the source for these viral-reporter-labeled neurons. Similarly, despite efficient knockdown of PTBP1 in vivo, genetically traced resident astrocytes were not converted into neurons. Together, our results highlight the requirement of lineage-tracing strategies, which should be broadly applied to studies of cell fate conversions in vivo.


Assuntos
Astrócitos/citologia , Diferenciação Celular , Linhagem da Célula , Neurônios/citologia , Animais , Astrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/patologia , Lesões Encefálicas/patologia , Linhagem Celular Tumoral , Reprogramação Celular , Dependovirus/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica , Genes Reporter , Proteína Glial Fibrilar Ácida/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo
7.
Annu Rev Neurosci ; 45: 447-469, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35440143

RESUMO

Recombinant adeno-associated viruses (AAVs) are commonly used gene delivery vehicles for neuroscience research. They have two engineerable features: the capsid (outer protein shell) and cargo (encapsulated genome). These features can be modified to enhance cell type or tissue tropism and control transgene expression, respectively. Several engineered AAV capsids with unique tropisms have been identified, including variants with enhanced central nervous system transduction, cell type specificity, and retrograde transport in neurons. Pairing these AAVs with modern gene regulatory elements and state-of-the-art reporter, sensor, and effector cargo enables highly specific transgene expression for anatomical and functional analyses of brain cells and circuits. Here, we discuss recent advances that provide a comprehensive (capsid and cargo) AAV toolkit for genetic access to molecularly defined brain cell types.


Assuntos
Dependovirus , Vetores Genéticos , Encéfalo , Capsídeo/metabolismo , Dependovirus/genética , Técnicas de Transferência de Genes
8.
Trends Biochem Sci ; 49(5): 457-469, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531696

RESUMO

Gene delivery vehicles based on adeno-associated viruses (AAVs) are enabling increasing success in human clinical trials, and they offer the promise of treating a broad spectrum of both genetic and non-genetic disorders. However, delivery efficiency and targeting must be improved to enable safe and effective therapies. In recent years, considerable effort has been invested in creating AAV variants with improved delivery, and computational approaches have been increasingly harnessed for AAV engineering. In this review, we discuss how computationally designed AAV libraries are enabling directed evolution. Specifically, we highlight approaches that harness sequences outputted by next-generation sequencing (NGS) coupled with machine learning (ML) to generate new functional AAV capsids and related regulatory elements, pushing the frontier of what vector engineering and gene therapy may achieve.


Assuntos
Dependovirus , Técnicas de Transferência de Genes , Dependovirus/genética , Humanos , Terapia Genética/métodos , Vetores Genéticos/metabolismo , Engenharia Genética , Animais , Biologia Computacional/métodos
9.
Immunity ; 50(3): 567-575.e5, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30850342

RESUMO

Long-term delivery of anti-HIV monoclonal antibodies (mAbs) using adeno-associated virus (AAV) vectors holds promise for the prevention and treatment of HIV infection. We describe a therapy trial in which four rhesus monkeys were infected with SHIV-AD8 for 86 weeks before receiving the AAV-encoded mAbs 3BNC117, 10-1074, and 10E8. Although anti-drug antibody (ADA) responses restricted mAb delivery, one monkey successfully maintained 50-150 µg/mL of 3BNC117 and 10-1074 for over 2 years. Delivery of these two mAbs to this monkey resulted in an abrupt decline in plasma viremia, which remained undetectable for 38 successive measurements over 3 years. We generated two more examples of virologic suppression using AAV delivery of a cocktail of four mAbs in a 12-monkey study. Our results provide proof of concept for AAV-delivered mAbs to produce a "functional cure." However, they also serve as a warning that ADAs may be a problem for practical application of this approach in humans.


Assuntos
Anticorpos Monoclonais/imunologia , Dependovirus/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Animais , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes , Linhagem Celular , Células HEK293 , Anticorpos Anti-HIV/imunologia , Humanos , Macaca mulatta , Viremia/imunologia
10.
EMBO J ; 42(23): e114188, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916874

RESUMO

Hyper IgM1 is an X-linked combined immunodeficiency caused by CD40LG mutations, potentially treatable with CD4+ T-cell gene editing with Cas9 and a "one-size-fits-most" corrective template. Contrary to established gene therapies, there is limited data on the genomic alterations following long-range gene editing, and no consensus on the relevant assays. We developed drop-off digital PCR assays for unbiased detection of large on-target deletions and found them at high frequency upon editing. Large deletions were also common upon editing different loci and cell types and using alternative Cas9 and template delivery methods. In CD40LG edited T cells, on-target deletions were counter-selected in culture and further purged by enrichment for edited cells using a selector coupled to gene correction. We then validated the sensitivity of optical genome mapping for unbiased detection of genome wide rearrangements and uncovered on-target trapping of one or more vector copies, which do not compromise functionality, upon editing using an integrase defective lentiviral donor template. No other recurring events were detected. Edited patient cells showed faithful reconstitution of CD40LG regulated expression and function with a satisfactory safety profile. Large deletions and donor template integrations should be anticipated and accounted for when designing and testing similar gene editing strategies.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Edição de Genes/métodos , Genoma , Linfócitos T , Linfócitos T CD4-Positivos
11.
Hum Mol Genet ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38757200

RESUMO

Gaucher Disease (GD) is an inherited metabolic disorder caused by mutations in the GBA1 gene. It can manifest with severe neurodegeneration and visceral pathology. The most acute neuronopathic form (nGD), for which there are no curative therapeutic options, is characterised by devastating neuropathology and death during infancy. In this study, we investigated the therapeutic benefit of systemically delivered AAV9 vectors expressing the human GBA1 gene at two different doses comparing a neuronal-selective promoter with ubiquitous promoters. Our results highlight the importance of a careful evaluation of the promoter sequence used in gene delivery vectors, suggesting a neuron-targeted therapy leading to high levels of enzymatic activity in the brain but lower GCase expression in the viscera, might be the optimal therapeutic strategy for nGD.

12.
Am J Hum Genet ; 110(10): 1648-1660, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37673065

RESUMO

X-linked myotubular myopathy (XLMTM) is a severe congenital disease characterized by profound muscle weakness, respiratory failure, and early death. No approved therapy for XLMTM is currently available. Adeno-associated virus (AAV)-mediated gene replacement therapy has shown promise as an investigational therapeutic strategy. We aimed to characterize the transcriptomic changes in muscle biopsies of individuals with XLMTM who received resamirigene bilparvovec (AT132; rAAV8-Des-hMTM1) in the ASPIRO clinical trial and to identify potential biomarkers that correlate with therapeutic outcome. We leveraged RNA-sequencing data from the muscle biopsies of 15 study participants and applied differential expression analysis, gene co-expression analysis, and machine learning to characterize the transcriptomic changes at baseline (pre-dose) and at 24 and 48 weeks after resamirigene bilparvovec dosing. As expected, MTM1 expression levels were significantly increased after dosing (p < 0.0001). Differential expression analysis identified upregulated genes after dosing that were enriched in several pathways, including lipid metabolism and inflammatory response pathways, and downregulated genes were enriched in cell-cell adhesion and muscle development pathways. Genes involved in inflammatory and immune pathways were differentially expressed between participants exhibiting ventilator support reduction of either greater or less than 6 h/day after gene therapy compared to pre-dosing. Co-expression analysis identified similarly regulated genes, which were grouped into modules. Finally, the machine learning model identified five genes, including MTM1, as potential RNA biomarkers to monitor the progress of AAV gene replacement therapy. These findings further extend our understanding of AAV-mediated gene therapy in individuals with XLMTM at the transcriptomic level.


Assuntos
Miopatias Congênitas Estruturais , Transcriptoma , Humanos , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Terapia Genética , Músculo Esquelético/metabolismo , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/terapia , Miopatias Congênitas Estruturais/patologia , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , RNA/metabolismo , Transcriptoma/genética
13.
Annu Rev Neurosci ; 41: 323-348, 2018 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-29709207

RESUMO

Recombinant viruses allow for targeted transgene expression in specific cell populations throughout the nervous system. The adeno-associated virus (AAV) is among the most commonly used viruses for neuroscience research. Recombinant AAVs (rAAVs) are highly versatile and can package most cargo composed of desired genes within the capsid's ∼5-kb carrying capacity. Numerous regulatory elements and intersectional strategies have been validated in rAAVs to enable cell type-specific expression. rAAVs can be delivered to specific neuronal populations or globally throughout the animal. The AAV capsids have natural cell type or tissue tropism and trafficking that can be modified for increased specificity. Here, we describe recently engineered AAV capsids and associated cargo that have extended the utility of AAVs in targeting molecularly defined neurons throughout the nervous system, which will further facilitate neuronal circuit interrogation and discovery.


Assuntos
Sistema Nervoso Central/fisiologia , Engenharia Genética , Sistema Nervoso Periférico/fisiologia , Animais , Dependovirus/genética , Humanos
14.
Proc Natl Acad Sci U S A ; 120(35): e2302997120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603759

RESUMO

Tissue macrophages, including microglia, are notoriously resistant to genetic manipulation. Here, we report the creation of Adeno-associated viruses (AAV) variants that efficiently and widely transduce microglia and tissue macrophages in vivo following intravenous delivery, with transgene expression of up to 80%. We use this technology to demonstrate manipulation of microglia gene expression and microglial ablation, thereby providing invaluable research tools for the study of these important cells.


Assuntos
Dependovirus , Microglia , Dependovirus/genética , Capsídeo , Transgenes , Macrófagos
15.
Proc Natl Acad Sci U S A ; 120(23): e2303509120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252952

RESUMO

Vectored immunoprophylaxis was first developed as a means of establishing engineered immunity to HIV using an adenoassociated viral vector expressing a broadly neutralizing antibody. We applied this concept to establish long-term prophylaxis against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a mouse model using adenoassociated virus and lentiviral vectors expressing a high-affinity angiotensin-converting enzyme 2 (ACE2) decoy. Administration of decoy-expressing (adenoassociated virus) AAV2.retro and AAV6.2 vectors by intranasal instillation or intramuscular injection protected mice against high-titered SARS-CoV-2 infection. AAV and lentiviral vectored immunoprophylaxis was durable and was active against SARS-CoV-2 Omicron subvariants. The AAV vectors were also effective therapeutically when administered postinfection. Vectored immunoprophylaxis could be of value for immunocompromised individuals for whom vaccination is not practical and as a means to rapidly establish protection from infection. Unlike monoclonal antibody therapy, the approach is expected to remain active despite continued evolution viral variants.


Assuntos
COVID-19 , Animais , Camundongos , COVID-19/prevenção & controle , SARS-CoV-2/genética , Imunização , Imunoterapia , Vacinação , Dependovirus/genética , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico
16.
J Biol Chem ; 300(3): 105732, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336290

RESUMO

The manganese (Mn) export protein SLC30A10 is essential for Mn excretion via the liver and intestines. Patients with SLC30A10 deficiency develop Mn excess, dystonia, liver disease, and polycythemia. Recent genome-wide association studies revealed a link between the SLC30A10 variant T95I and markers of liver disease. The in vivo relevance of this variant has yet to be investigated. Using in vitro and in vivo models, we explore the impact of the T95I variant on SLC30A10 function. While SLC30A10 I95 expressed at lower levels than T95 in transfected cell lines, both T95 and I95 variants protected cells similarly from Mn-induced toxicity. Adeno-associated virus 8-mediated expression of T95 or I95 SLC30A10 using the liver-specific thyroxine binding globulin promoter normalized liver Mn levels in mice with hepatocyte Slc30a10 deficiency. Furthermore, Adeno-associated virus-mediated expression of T95 or I95 SLC30A10 normalized red blood cell parameters and body weights and attenuated Mn levels and differential gene expression in livers and brains of mice with whole body Slc30a10 deficiency. While our in vivo data do not indicate that the T95I variant significantly compromises SLC30A10 function, it does reinforce the notion that the liver is a key site of SLC30A10 function. It also supports the idea that restoration of hepatic SLC30A10 expression is sufficient to attenuate phenotypes in SLC30A10 deficiency.


Assuntos
Substituição de Aminoácidos , Proteínas de Transporte de Cátions , Dependovirus , Fígado , Manganês , Mutação , Animais , Camundongos , Peso Corporal , Encéfalo/metabolismo , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular , Dependovirus/genética , Eritrócitos , Estudo de Associação Genômica Ampla , Hepatócitos/metabolismo , Fígado/citologia , Fígado/metabolismo , Hepatopatias/genética , Hepatopatias/metabolismo , Manganês/metabolismo , Intoxicação por Manganês/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Globulina de Ligação a Tiroxina/genética
17.
Annu Rev Med ; 74: 231-247, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36103998

RESUMO

In vivo gene therapy is rapidly emerging as a new therapeutic paradigm for monogenic disorders. For almost three decades, hemophilia A (HA) and hemophilia B (HB) have served as model disorders for the development of gene therapy. This effort is soon to bear fruit with completed pivotal adeno-associated viral (AAV) vector gene addition trials reporting encouraging results and regulatory approval widely anticipated in the near future for the current generation of HA and HB AAV vectors. Here we review the clinical development of AAV gene therapy for HA and HB and examine outstanding questions that have recently emerged from AAV clinical trials for hemophilia and other monogenic disorders.


Assuntos
Hemofilia A , Hemofilia B , Humanos , Hemofilia A/genética , Hemofilia A/terapia , Dependovirus/genética , Fator IX/genética , Vetores Genéticos , Hemofilia B/genética , Hemofilia B/terapia , Terapia Genética/métodos
18.
J Virol ; 98(6): e0063324, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38775479

RESUMO

Adeno-associated viruses (AAVs) package a single-stranded (ss) DNA genome of 4.7 kb in their capsid of ~20 nm in diameter. AAV replication requires co-infection of a helper virus, such as adenovirus. During the optimization of recombinant AAV production, a small viral nonstructural protein, membrane-associated accessory protein (MAAP), was identified. However, the function of the MAAP in the context of AAV infection remains unknown. Here, we investigated the expression strategy and function of the MAAP during infection of both AAV2 and AAV5 in human embryonic kidney (HEK)293 cells. We found that AAV2 MAAP2 and AAV5 MAAP5 are expressed from the capsid gene (cap)-transcribing mRNA spliced from the donor to the second splice site that encodes VP2 and VP3. Thus, this AAV cap gene transcribes a multicistronic mRNA that can be translated to four viral proteins, MAAP, VP2, AAP, and VP3 in order. In AAV2 infection, MAAP2 predominantly localized in the cytoplasm, alongside the capsid, near the nuclear and plasma membranes, but a fraction of MAAP2 exhibited nuclear localization. In AAV5 infection, MAAP5 revealed a distinct pattern, predominantly localizing within the nucleus. In the cells infected with an MAAP knockout mutant of AAV2 or AAV5, both viral DNA replication and virus replication increased, whereas virus egress decreased, and the decrease in virus egress can be restored by providing MAAP in trans. In summary, MAAP, a novel AAV nonstructural protein translated from a multicistronic viral cap mRNA, not only facilitates cellular egress of AAV but also likely negatively affects viral DNA replication during infection. IMPORTANCE: Recombinant adeno-associated virus (rAAV) has been used as a gene delivery vector in clinical gene therapy. In current gene therapies employing rAAV, a high dose of the vector is required. Consequently, there is a high demand for efficient and high-purity vector production systems. In this study, we demonstrated that membrane-associated accessory protein (MAAP), a small viral nonstructural protein, is translated from the same viral mRNA transcript encoding VP2 and VP3. In AAV-infected cells, apart from its prevalent expression in the cytoplasm with localization near the plasma and nuclear membranes, the MAAP also exhibits notable localization within the nucleus. During AAV infection, MAAP expression increases the cellular egress of progeny virions and decreases viral DNA replication and progeny virion production. Thus, the choice of MAAP expression has pros and cons during AAV infection, which could provide a guide to rAAV production.


Assuntos
Dependovirus , Infecções por Parvoviridae , Proteínas não Estruturais Virais , Humanos , Proteínas do Capsídeo/genética , Dependovirus/genética , Dependovirus/metabolismo , Dependovirus/fisiologia , Células HEK293 , Infecções por Parvoviridae/virologia , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral , Genes Virais/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo
19.
J Pathol ; 263(1): 22-31, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38332723

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung that leads rapidly to respiratory failure. Novel approaches to treatment are urgently needed. The bioactive lipid sphingosine-1-phosphate (S1P) is increased in IPF lungs and promotes proinflammatory and profibrotic TGF-ß signaling. Hence, decreasing lung S1P represents a potential therapeutic strategy for IPF. S1P is degraded by the intracellular enzyme S1P lyase (SPL). Here we find that a knock-in mouse with a missense SPL mutation mimicking human disease resulted in reduced SPL activity, increased S1P, increased TGF-ß signaling, increased lung fibrosis, and higher mortality after injury compared to wild type (WT). We then tested adeno-associated virus 9 (AAV9)-mediated overexpression of human SGPL1 (AAV-SPL) in mice as a therapeutic modality. Intravenous treatment with AAV-SPL augmented lung SPL activity, attenuated S1P levels within the lungs, and decreased injury-induced fibrosis compared to controls treated with saline or only AAV. We confirmed that AAV-SPL treatment led to higher expression of SPL in the epithelial and fibroblast compartments during bleomycin-induced lung injury. Additionally, AAV-SPL decreased expression of the profibrotic cytokines TNFα and IL1ß as well as markers of fibroblast activation, such as fibronectin (Fn1), Tgfb1, Acta2, and collagen genes in the lung. Taken together, our results provide proof of concept for the use of AAV-SPL as a therapeutic strategy for the treatment of IPF. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Dependovirus , Fibrose Pulmonar Idiopática , Lisofosfolipídeos , Esfingosina/análogos & derivados , Humanos , Camundongos , Animais , Dependovirus/genética , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/terapia , Fibrose Pulmonar Idiopática/metabolismo , Bleomicina , Modelos Animais , Terapia Genética , Aldeído Liases/genética , Aldeído Liases/metabolismo
20.
Brain ; 147(4): 1457-1473, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38066620

RESUMO

Acyl-CoA binding domain containing 5 (ACBD5) is a critical player in handling very long chain fatty acids (VLCFA) en route for peroxisomal ß-oxidation. Mutations in ACBD5 lead to the accumulation of VLCFA and patients present retinal dystrophy, ataxia, psychomotor delay and a severe leukodystrophy. Using CRISPR/Cas9, we generated and characterized an Acbd5 Gly357* mutant allele. Gly357* mutant mice recapitulated key features of the human disorder, including reduced survival, impaired locomotion and reflexes, loss of photoreceptors, and demyelination. The ataxic presentation of Gly357* mice involved the loss of cerebellar Purkinje cells and a giant axonopathy throughout the CNS. Lipidomic studies provided evidence for the extensive lipid dysregulation caused by VLCFA accumulation. Following a proteomic survey, functional studies in neurons treated with VLCFA unravelled a deregulated cytoskeleton with reduced actin dynamics and increased neuronal filopodia. We also show that an adeno-associated virus-mediated gene delivery ameliorated the gait phenotypes and the giant axonopathy, also improving myelination and astrocyte reactivity. Collectively, we established a mouse model with significance for VLCFA-related disorders. The development of relevant neuropathological outcomes enabled the understanding of mechanisms modulated by VLCFA and the evaluation of the efficacy of preclinical therapeutic interventions.


Assuntos
Adrenoleucodistrofia , Ácidos Graxos , Humanos , Camundongos , Animais , Ácidos Graxos/metabolismo , Dependovirus/genética , Proteômica , Ataxia , Terapia Genética , Adrenoleucodistrofia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA