Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Dev Dyn ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360476

RESUMO

BACKGROUND: The development of coronary vessels in embryonic mouse heart involves various progenitor populations, including sinus venosus (SV), endocardium, and proepicardium. ELA/APJ signaling is known to regulate coronary growth from the SV, whereas VEGF-A/VEGF-R2 signaling controls growth from the endocardium. Previous studies suggest hypoxia might regulate coronary growth, but its specific downstream pathways are unclear. In this study, we further investigated the role of hypoxia and have identified SOX17- and VEGF-R2-mediated signaling as the potential downstream pathways in its regulation of developmental coronary angiogenesis. RESULTS: HIF-1α stabilization by knocking out von Hippel Lindau (VHL) protein in the myocardium (cKO) disrupted normal coronary angiogenesis in embryonic mouse hearts, resembling patterns of accelerated coronary growth. VEGF-R2 expression was increased in coronary endothelial cells under hypoxia in vitro and in VHL cKO hearts in vivo. Similarly, SOX17 expression was increased in the VHL cKO hearts, while its knockout in the endocardium disrupted normal coronary growth. CONCLUSION: These findings provide further evidence that hypoxia regulates developmental coronary growth potentially through VEGF-R2 and SOX17 pathways, shedding light on mechanisms of coronary vessel development.

2.
J Cell Mol Med ; 28(20): e70152, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39434201

RESUMO

The apelin receptor (APJ) is a key player in tumour angiogenesis, but its role in hepatocellular carcinoma (HCC) remains unclear. This study aims to elucidate the function of the apelin/APJ pathway in HCC using a multi-omics approach and identify potential therapeutic biomarkers. Differentially expressed genes related to the apelin/APJ axis were identified from bulk transcriptomics to reveal HCC-associated disparities. Single-cell and spatial transcriptomics were used to localize and analyse the function of these genes. Machine learning models were constructed to predict outcomes based on apelin/APJ expression, and experimental validation was conducted to explore the pathway's impact on HCC angiogenesis. Single cell analysis revealed an overexpression of APJ/Aplin in the endothelium. The stemness of endothelial cell (EC) with high apelin/APJ was enhanced, as well as the expression of TGFb, oxidative stresses and PI3K/AKT pathway genes. Spatial transcriptomics confirmed that EC populations with high APJ scores were enriched within the tumour. Machine learning models showed high prognostic accuracy. High APJ expression was linked to worse outcomes (p = 0.001), and AUC values were high (1 year, 3 year, 5 year) (0.95, 0.97, 0.98). Immune suppression and non-responsiveness of immune therapy were also seen in high-risk groups. The experimental validation showed that silencing apelin reduced angiogenesis (p < 0.05), endothelial proliferation, decreased expression of ANG2, KLF2, VEGFA and lower ERK1/2 phosphorylation. Apelin may serve as a potential therapeutic target in HCC, given its role in promoting tumour angiogenesis and poor patient outcomes.


Assuntos
Receptores de Apelina , Apelina , Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Neovascularização Patológica , Transcriptoma , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/irrigação sanguínea , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/irrigação sanguínea , Humanos , Receptores de Apelina/metabolismo , Receptores de Apelina/genética , Apelina/genética , Apelina/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Análise de Célula Única , Transdução de Sinais , Microvasos/patologia , Microvasos/metabolismo , Perfilação da Expressão Gênica , Progressão da Doença , Prognóstico , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Masculino
3.
Dev Biol ; 498: 77-86, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37037405

RESUMO

Outflow tract (OFT) develops from cardiac progenitor cells in the second heart field (SHF) domain. APJ, a G-Protein Coupled Receptor, is expressed by cardiac progenitors in the SHF. By lineage tracing APJ+SHF cells, we show that these cardiac progenitors contribute to the cells of OFT, which eventually give rise to aorta and pulmonary trunk/artery upon its morphogenesis. Furthermore, we show that early APJ â€‹+ â€‹cells give rise to both aorta and pulmonary cells but late APJ â€‹+ â€‹cells predominantly give rise to pulmonary cells. APJ is expressed by the outflow tract progenitors in the SHF but its role is unclear. We performed knockout studies to determine the role of APJ in SHF cell proliferation and survival. Our data suggested that APJ knockout in the SHF reduced the proliferation of SHF progenitors, while there was no significant impact on survival. In addition, we show that ectopic overexpression of WNT in these cells disrupted aorta and pulmonary morphogenesis from OFT. Overall, our study has identified APJ â€‹+ â€‹progenitor population within the SHF that give rise to aorta and pulmonary trunk/artery cells. Furthermore, we show that APJ signaling stimulates proliferation of these cells in the SHF.


Assuntos
Coração , Transdução de Sinais , Células-Tronco , Artéria Pulmonar , Aorta , Miocárdio , Regulação da Expressão Gênica no Desenvolvimento
4.
Cytokine ; 179: 156639, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38733946

RESUMO

AIMS: Polycystic ovarian syndrome (PCOS) is one of the most common (about 5-20%) reproductive disorders in women of reproductive age; it is characterized by polycystic ovaries, hyperandrogenism, and oligo/ anovulation. The levels and expression of ovarian adipokines are deregulated in the PCOS. Apelin is an adipokine that acts through its receptor (APJ) and is known to express in the various tissues including the ovary. It has also been suggested that apelin and APJ could be targeted as therapeutic adjuncts for the management of PCOS. However, no study has been conducted on the management of PCOS by targeting the apelin system. Thus, we aimed to evaluate its impact on combating PCOS-associated ovarian pathogenesis. METHODS: The current work employed a letrozole-induced-hyperandrogenism PCOS-like mice model to investigate the effects of apelin13 and APJ, antagonist ML221. The PCOS model was induced by oral administration of letrozole (1 mg/kg) for 21 days. A total of four experimental groups were made, control, PCOS control, PCOS + aplein13, and PCOS + ML221. The treatment of apelin13 and ML221 was given from day 22 for two weeks. KEY FINDINGS: The letrozole-induced PCOS-like features such as hyperandrogenism, cystic follicle, decreased corpus luteum, elevated levels of LH/FSH ratio, and up-regulation of ovarian AR expression were ameliorated by apelin13 and ML221 treatment. However, the PCOS-augmented oxidative stress and apoptosis were suppressed by apelin 13 treatments only. ML221 treatment still showed elevated oxidative stress and stimulated apoptosis as reflected by decreased antioxidant enzymes and increased active caspase3 and Bax expression. The expression of ERs was elevated in all groups except control. Furthermore, the PCOS model showed elevated expression of APJ and apelin13 treatment down-regulated its own receptor. Overall, observing the ovarian histology, corpus luteum formation, and decreased androgen levels by both apelin13 and ML221 showed ameliorative effects on the cystic ovary. SIGNIFICANCE: Despite the similar morphological observation of ovarian histology, apelin13 and ML221 exhibited opposite effects on oxidative stress and apoptosis. Therefore, apelin13 (which down-regulates APJ) and ML221 (an APJ antagonist) may have suppressed APJ signalling, which would account for our findings on the mitigation of polycystic ovarian syndrome. In conclusion, both apelin13 and ML221 mediated mitigation have different mechanisms, which need further investigation.


Assuntos
Receptores de Apelina , Apelina , Letrozol , Ovário , Síndrome do Ovário Policístico , Letrozol/farmacologia , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/tratamento farmacológico , Animais , Feminino , Receptores de Apelina/metabolismo , Camundongos , Apelina/metabolismo , Ovário/metabolismo , Ovário/patologia , Ovário/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Hiperandrogenismo/metabolismo , Hiperandrogenismo/induzido quimicamente , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças
5.
Mol Biol Rep ; 51(1): 74, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175266

RESUMO

BACKGROUND: Mechanical Ventilation (MV) is an essential mechanism of life support in the clinic. It may also lead to ventilator-induced acute lung injury (VILI) due to local alveolar overstretching and/or repeated alveolar collapse. However, the pathogenesis of VILI is not completely understood, and its occurrence and development may be related to physiological processes such as the inflammatory response, oxidative stress, and apoptosis. Some studies have found that the the apelin/APJ axis is an endogenous antagonistic mechanism activated during acute respiratory distress syndrome(ARDS), that can counteract the injury response and prevent uncontrolled lung injury. To indicate that apelin-13 plays a protective role in VILI, an animal model of VILI was established in this study to explore whether apelin-13 can alleviate VILI in rats by inhibiting inflammation, apoptosis and oxidative stress. METHODS: SD rats were divided into four groups: control, high tidal volume, high tidal volume + normal saline and high tidal volume + apelin-13. After tracheotomy, the rats in control maintained spontaneous breathing, and the other rats were connected to the small animal ventilator for 4 h to establish the rat VILI model. The mRNA expression of apelin was measured by real-time quantitative polymerase chain reaction(qRT-PCR), immunofluorescence and Western blotting(WB) were used to detect the expression level of APJ, and WB was used to detect the expression of the apoptotic proteins Bax and bcl-2. The degree of lung injury was evaluated by pathological staining of lung tissue,W/D ratio, and BALF total protein concentration. The expression of inflammatory factors(IL-1ß, IL-6, TNF-α) in alveolar lavage fluid was measured using ELISA. The activities of MPO and cat and the content of MDA, an oxidative product, in lung tissue were measured to evaluate the degree of oxidative stress in the lung. RESULTS: After treatment with apelin-13, the apelin/APJ axis in the lung tissue of VILI model rats was activated, and the effect was further enhanced. The pathological damage of lung tissue was alleviated, the expression of the antiapoptotic protein Bcl-2 and the proapoptotic protein Bax was reversed, and the levels of the inflammatory cytokines IL-1ß, IL-6, TNF-α levels were all decreased. MPO activity and MDA content decreased, while CAT activity increased. CONCLUSION: The apelin/apj axis is activated in VILI. Overexpression of apelin-13 further plays a protective role in VILI, mainly by including reducing pathological damage, the inflammatory response, apoptosis and antioxidant stress in lung tissue, thus delaying the occurrence and development of VILI.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Animais , Ratos , Ratos Sprague-Dawley , Apelina/farmacologia , Interleucina-6 , Fator de Necrose Tumoral alfa , Proteína X Associada a bcl-2/genética , Ventiladores Mecânicos
6.
J Physiol ; 601(12): 2371-2389, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37154385

RESUMO

Intestinal remodelling is dynamically regulated by energy metabolism. Exercise is beneficial for gut health, but the specific mechanisms remain poorly understood. Intestine-specific apelin receptor (APJ) knockdown (KD) and wild-type male mice were randomly divided into two subgroups, with/without exercise, to obtain four groups: WT, WT with exercise, APJ KD and APJ KD with exercise. Animals in the exercise groups were subjected to daily treadmill exercise for 3 weeks. Duodenum was collected at 48 h after the last bout of exercise. AMP-activated protein kinase (AMPK) α1 KD and wild-type mice were also utilized for investigating the mediatory role of AMPK on exercise-induced duodenal epithelial development. AMPK and peroxisome proliferator-activated receptor γ coactivator-1 α were upregulated by exercise via APJ activation in the intestinal duodenum. Correspondingly, exercise induced permissive histone modifications in the PR domain containing 16 (PRDM16) promoter to activate its expression, which was dependent on APJ activation. In agreement, exercise elevated the expression of mitochondrial oxidative markers. The expression of intestinal epithelial markers was downregulated due to AMPK deficiency, and AMPK signalling facilitated epithelial renewal. These data demonstrate that exercise-induced activation of the APJ-AMPK axis facilitates the homeostasis of the intestinal duodenal epithelium. KEY POINTS: Apelin receptor (APJ) signalling is required for improved epithelial homeostasis of the small intestine in response to exercise. Exercise intervention activates PRDM16 through inducing histone modifications, enhanced mitochondrial biogenesis and fatty acid metabolism in duodenum. The morphological development of duodenal villus and crypt is enhanced by the muscle-derived exerkine apelin through the APJ-AMP-activated protein kinase axis.


Assuntos
Proteínas Quinases Ativadas por AMP , Transdução de Sinais , Camundongos , Masculino , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Receptores de Apelina , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Homeostase , Mucosa Intestinal/metabolismo
7.
J Cell Biochem ; 124(4): 586-605, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36855998

RESUMO

The elabela-apelin/angiotensin domain type 1 receptor-associated protein (APJ) system is an important regulator in certain thrombosis-related diseases such as atherosclerosis, myocardial infarction, and cerebral infarction. Our previous reports have revealed that apelin exacerbates atherosclerotic lesions. However, the relationship between the elabela-apelin/APJ system and platelet aggregation and atherothrombosis is unclear. The results of the present study demonstrate that elabela and other endogenous ligands such as apelin-12, -17, and -36 induce platelet aggregation and thrombosis by activating the pannexin1(PANX1)-P2X7 signaling pathway. Interestingly, the diuretic, spironolactone, a novel PANX1 inhibitor, alleviated elabela- and apelin isoforms-induced platelet aggregation and thrombosis. Significantly, two potential antithrombotic drugs were screened out by targeting APJ receptors, including the anti-HIV ancillary drug cobicistat and the traditional Chinese medicine monomer Schisandrin A. Both cobicistat and Schisandrin A abolished the effects of elabela and apelin isoforms on platelet aggregation, thrombosis, and cerebral infarction. In addition, cobicistat significantly attenuated thrombosis in a ponatinib-induced zebrafish trunk model. Overall, the elabela-apelin/APJ axis mediated platelet aggregation and thrombosis via the PANX1-P2X7 signaling pathway in vitro and in vivo. Blocking the APJ receptor with cobicistat/Schisandrin A or inhibiting PANX1 with spironolactone may provide novel therapeutic strategies against thrombosis.


Assuntos
Hormônios Peptídicos , Trombose , Animais , Apelina , Peixe-Zebra/metabolismo , Espironolactona , Agregação Plaquetária , Hormônios Peptídicos/metabolismo , Transdução de Sinais , Receptores de Apelina/metabolismo , Trombose/tratamento farmacológico , Infarto Cerebral
8.
Angiogenesis ; 26(3): 463-475, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36973482

RESUMO

APJ has been extensively described in the pathophysiology of angiogenesis and cell proliferation. The prognostic value of APJ overexpression in many diseases is now established. This study aimed to design a PET radiotracer that specifically binds to APJ. Apelin-F13A-NODAGA (AP747) was synthesized and radiolabeled with gallium-68 ([68Ga]Ga-AP747). Radiolabeling purity was excellent (> 95%) and stable up to 2 h. Affinity constant of [67Ga]Ga-AP747 was measured on APJ-overexpressing colon adenocarcinoma cells and was in nanomolar range. Specificity of [68Ga]Ga-AP747 for APJ was evaluated in vitro by autoradiography and in vivo by small animal PET/CT in both colon adenocarcinoma mouse model and Matrigel plug mouse model. Dynamic of [68Ga]Ga-AP747 PET/CT biodistributions was realized on healthy mice and pigs for two hours, and quantification of signal in organs showed a suitable pharmacokinetic profile for PET imaging, largely excreted by urinary route. Matrigel mice and hindlimb ischemic mice were submitted to a 21-day longitudinal follow-up with [68Ga]Ga-AP747 and [68Ga]Ga-RGD2 small animal PET/CT. [68Ga]Ga-AP747 PET signal in Matrigel was significantly more intense than that of [68Ga]Ga-RGD2. Revascularization of the ischemic hind limb was followed by LASER Doppler. In the hindlimb, [68Ga]Ga-AP747 PET signal was more than twice higher than that of [68Ga]Ga-RGD2 on day 7, and significantly superior over the 21-day follow-up. A significant, positive correlation was found between the [68Ga]Ga-AP747 PET signal on day 7 and late hindlimb perfusion on day 21. We developed a new PET radiotracer that specifically binds to APJ, [68Ga]Ga-AP747 that showed more efficient imaging properties than the most clinically advanced tracer of angiogenesis, [68Ga]Ga-RGD2.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Animais , Camundongos , Suínos , Apelina , Receptores de Apelina , Radioisótopos de Gálio , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Imagem Molecular/métodos , Oligopeptídeos
9.
Biochem Biophys Res Commun ; 647: 72-79, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36731336

RESUMO

Apelin (APL), an endogenous ligand for APJ, has been reported to be upregulated in a murine model of acute colitis induced by sodium dextran sulfate, as well as inflammatory bowel diseases (IBD) in humans. However, the mechanisms and functions of APL/APJ axis in the pathogenesis of IBD are unclear. We herein analyzed CD4+ T cells to determine the functions of APL in a murine model of chronic colitis induced in Rag deficient mice (Rag-/-). In colonic tissues of wild-type mice (WT), we found that APL was expressed especially in the lamina propria lymphocytes, where CD4+ T cells are dominant, rather than the epithelial cells. Unexpectedly, the APL expression was rather downregulated in the colonic tissue of the chronic colitis group compared to the control groups (Rag-/- before colitis induction and WT). The APL expression was downregulated when naïve T cells were differentiated into effecter T cells. A lack of APL resulted in decreased naïve T cells and increased effecter T cells in secondary lymphoid organs. A synthetic APL peptide, [Pyr1]-APL-13, increased IL-10 and decreased IFN-γ productions by effecter T cells. Administration of [Pyr1]-APL-13 improved survival rate in association with lessened colitis severity and decreased pro-inflammatory cytokine production. This is the first report showing immunological function of APL specifically on T cells, and these results indicate that APL/APJ axis may be a novel therapeutic target for IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Camundongos , Humanos , Animais , Linfócitos T/metabolismo , Apelina/metabolismo , Modelos Animais de Doenças , Colite/patologia , Doenças Inflamatórias Intestinais/metabolismo , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Linfócitos T CD4-Positivos
10.
Biochem Biophys Res Commun ; 665: 202-207, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37167808

RESUMO

Apelin and APJ receptor play an important role in the regulating cardiovascular function; however, conflicting results have been reported regarding the effect of apelin on cardiovascular regulation. In this study, blood pressure and heart rate were measured by femoral arterial catheterization; and cardiac contractility was recorded by left ventricular catheterization through the right carotid artery in rats before and after intravenous administration of [pyr1]-apelin-13. The results show that intravenous administration of apelin-13 caused a dramatic reduction in BP but did not significantly alter heart rate and contractility. To study the mechanism of the apelin-induced depressor response, isometric tension was measured in isolated mesenteric arteries using a myograph approach. Surprisingly, treatment of the arteries with [pyr1]-apelin-13 did not cause relaxation of mesenteric arteries preconstricted with norepinephrine; however, treatment with plasma collected from rats that received intravenous administration of [pyr1]-apelin-13 caused pronounced relaxation of isolated arteries. Incubation with the guanylyl cyclase inhibitor, ODQ, blocked NO-induced relaxation, but did not significantly alter the relaxation response to the plasma from apelin-treated rats. Taken together, these findings demonstrate that intravenous injection of apelin causes a significant depressor response that is mediated by a NO-independent mechanism involving an unidentified substance released into the bloodstream leading to vasodilation.


Assuntos
Vasodilatação , Ratos , Animais , Apelina , Pressão Sanguínea , Receptores de Apelina , Administração Intravenosa
11.
Mol Biol Rep ; 50(2): 1639-1653, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36378421

RESUMO

Apelin, an endogenous ligand for the G protein-coupled receptor APJ, is extensively expressed in various systems, especially the nervous system. This article reviews the role of apelin/APJ system in neurological diseases. In detail, apelin/APJ system can relieve acute brain injury including subarachnoid hemorrhage, traumatic brain injury, and ischemic stroke. Also, apelin/APJ system has therapeutic effects on chronic neurodegenerative disease models, involving the regulation of neurotrophic factors, neuroendocrine, oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy. In addition, through different routes of administration, apelin/APJ system has a biphasic effect on depression, epilepsy, and pain. However, apelin/APJ system exacerbates the proliferation and invasion of glioblastoma. Thus, apelin/APJ system is expected to be a therapeutic target for the treatment of nervous system diseases.


Assuntos
Lesões Encefálicas , Doenças Neurodegenerativas , Humanos , Apelina/metabolismo , Receptores de Apelina/metabolismo , Estresse Oxidativo , Receptores Acoplados a Proteínas G/metabolismo
12.
J Appl Toxicol ; 43(4): 557-576, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36227756

RESUMO

Preclinical and clinical findings suggest sexual dimorphism in cardiotoxicity induced by a chemotherapeutic drug, doxorubicin (DOX). However, molecular alterations leading to sex-related differential vulnerability of heart to DOX toxicity are not fully explored. In the present study, RNA sequencing in hearts of B6C3F1 mice indicated more differentially expressed genes in males than females (224 vs. 19; ≥1.5-fold, False Discovery Rate [FDR] < 0.05) at 1 week after receiving 24 mg/kg total cumulative DOX dose that induced cardiac lesions only in males. Pathway analysis further revealed probable inactivation of cardiac apelin fibroblast signaling pathway (p = 0.00004) only in DOX-treated male mice that showed ≥1.25-fold downregulation in the transcript and protein levels of the apelin receptor, APJ. In hearts of DOX-treated females, the transcript levels of apelin (1.24-fold) and APJ (1.47-fold) were significantly (p < 0.05) increased compared to saline-treated controls. Sex-related differential DOX effect was also observed on molecular targets downstream of the apelin-APJ pathway in cardiac fibroblasts and cardiomyocytes. In cardiac fibroblasts, upregulation of Tgf-ß2, Ctgf, Sphk1, Serpine1, and Timp1 (fibrosis; FDR < 0.05) in DOX-treated males and upregulation of only Tgf-ß2 and Timp1 (p < 0.05) in females suggested a greater DOX toxicity in hearts of males than females. Additionally, Ryr2 and Serca2 (calcium handling; FDR < 0.05) were downregulated in conjunction with 1.35-fold upregulation of Casp12 (sarcoplasmic reticulum-mediated apoptosis; FDR < 0.05) in DOX-treated male mice. Drug effect on the transcript level of these genes was less severe in female hearts. Collectively, these data suggest a likely role of the apelin-APJ axis in sex-related differential DOX-induced cardiotoxicity in our mouse model.


Assuntos
Cardiotoxicidade , Fator de Crescimento Transformador beta2 , Animais , Feminino , Masculino , Camundongos , Apelina/genética , Apelina/metabolismo , Apelina/farmacologia , Doxorrubicina/toxicidade , Miócitos Cardíacos , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/farmacologia
13.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902176

RESUMO

Apelin is an endogenous ligand for the G protein-coupled receptor APJ and has multiple biological activities in human tissues and organs, including the heart, blood vessels, adipose tissue, central nervous system, lungs, kidneys, and liver. This article reviews the crucial role of apelin in regulating oxidative stress-related processes by promoting prooxidant or antioxidant mechanisms. Following the binding of APJ to different active apelin isoforms and the interaction with several G proteins according to cell types, the apelin/APJ system is able to modulate different intracellular signaling pathways and biological functions, such as vascular tone, platelet aggregation and leukocytes adhesion, myocardial activity, ischemia/reperfusion injury, insulin resistance, inflammation, and cell proliferation and invasion. As a consequence of these multifaceted properties, the role of the apelinergic axis in the pathogenesis of degenerative and proliferative conditions (e.g., Alzheimer's and Parkinson's diseases, osteoporosis, and cancer) is currently investigated. In this view, the dual effect of the apelin/APJ system in the regulation of oxidative stress needs to be more extensively clarified, in order to identify new potential strategies and tools able to selectively modulate this axis according to the tissue-specific profile.


Assuntos
Receptores de Apelina , Apelina , Estresse Oxidativo , Humanos , Apelina/metabolismo , Receptores de Apelina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
14.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175743

RESUMO

The apelinergic system is a highly conserved pleiotropic system. It comprises the apelin receptor apelin peptide jejunum (APJ) and its two peptide ligands, Elabela/Toddler (ELA) and apelin, which have different spatiotemporal localizations. This system has been implicated in the regulation of the adipoinsular axis, in cardiovascular and central nervous systems, in carcinogenesis, and in pregnancy in humans. During pregnancy, the apelinergic system is essential for embryo cardiogenesis and vasculogenesis and for placental development and function. It may also play a role in the initiation of labor. The apelinergic system seems to be involved in the development of placenta-related pregnancy complications, such as preeclampsia (PE) and intrauterine growth restriction, but an improvement in PE-like symptoms and birth weight has been described in murine models after the exogenous administration of apelin or ELA. Although the expression of ELA, apelin, and APJ is altered in human PE placenta, data related to their circulating levels are inconsistent. This article reviews current knowledge about the roles of the apelinergic system in pregnancy and its pathophysiological roles in placenta-related complications in pregnancy. We also discuss the challenges in translating the actors of the apelinergic system into a marker or target for therapeutic interventions in obstetrics.


Assuntos
Hormônios Peptídicos , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Camundongos , Animais , Apelina/metabolismo , Placenta/metabolismo , Hormônios Peptídicos/metabolismo , Placentação , Pré-Eclâmpsia/metabolismo
15.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902162

RESUMO

This study aimed to explore effects of Fusobacterium nucleatum with or without apelin on periodontal ligament (PDL) cells to better understand pathomechanistic links between periodontitis and obesity. First, the actions of F. nucleatum on COX2, CCL2, and MMP1 expressions were assessed. Subsequently, PDL cells were incubated with F. nucleatum in the presence and absence of apelin to study the modulatory effects of this adipokine on molecules related to inflammation and hard and soft tissue turnover. Regulation of apelin and its receptor (APJ) by F. nucleatum was also studied. F. nucleatum resulted in elevated COX2, CCL2, and MMP1 expressions in a dose- and time-dependent manner. Combination of F. nucleatum and apelin led to the highest (p < 0.05) expression levels of COX2, CCL2, CXCL8, TNF-α, and MMP1 at 48 h. The effects of F. nucleatum and/or apelin on CCL2 and MMP1 were MEK1/2- and partially NF-κB-dependent. The combined effects of F. nucleatum and apelin on CCL2 and MMP1 were also observed at protein level. Moreover, F. nucleatum downregulated (p < 0.05) the apelin and APJ expressions. In conclusion, obesity could contribute to periodontitis through apelin. The local production of apelin/APJ in PDL cells also suggests a role of these molecules in the pathogenesis of periodontitis.


Assuntos
Fusobacterium nucleatum , Periodontite , Humanos , Fusobacterium nucleatum/fisiologia , Metaloproteinase 1 da Matriz/metabolismo , Ligamento Periodontal/metabolismo , Apelina/metabolismo , Ciclo-Oxigenase 2/metabolismo , Periodontite/metabolismo , Obesidade/metabolismo
16.
J Cell Physiol ; 237(10): 3734-3751, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35933701

RESUMO

Cancer is a disease that seriously endangers human health and is mainly characterized by a high metastasis rate, a high recurrence rate, and a high mortality rate. The treatment of cancer has always been an important research direction of scientific research. A number of studies have shown that the apelin/APJ system is involved in the development and poor prognosis of a variety of cancers, such as lung cancer, liver cancer, cholangiocarcinoma, breast cancer, glioblastoma, prostate cancer, ovarian cancer, and so on. Accumulating evidence has also shown that the apelin/APJ system acts as a biomarker and predictor of postoperative effects in multiple cancers, which can also affect the tumor microenvironment and the efficacy of cancer immunotherapy. Considering that the apelin/APJ system may be a potential target for cancer treatment, it is of great significance for the study of new cancer treatment targets. To better understand the role of the apelin/APJ system on the occurrence and development of cancer, this article reviews the role of the apelin/APJ system in the occurrence and development of various cancers, angiogenesis, tumor stem cells, tumor microenvironment, drug resistance, poor prognosis, and the research progress of related anticancer drugs.


Assuntos
Neoplasias Pulmonares , Neovascularização Patológica , Apelina/genética , Receptores de Apelina , Biomarcadores , Humanos , Masculino , Receptores Acoplados a Proteínas G , Microambiente Tumoral
17.
Curr Issues Mol Biol ; 44(7): 3146-3155, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35877441

RESUMO

Expression of the apelin receptor, APJ, in skeletal muscle (SM) is known to decrease with age, but the underlying mechanism remains unclear. Increased tumor necrosis factor (TNF)-α levels are observed in SM with age and are associated with muscle atrophy. To investigate the possible interconnection between TNF-α elevation and APJ reduction with aging, we investigated the effect of TNF-α on APJ expression in cells derived from the quadriceps femoris of C57BL/6J mice. Expression of Tnfa and Apj in the quadriceps femoris was compared between 4- (young) and 24-month-old (old) C57BL/6J mice (n = 10 each) using qPCR. Additionally, APJ-positive cells and TNF-α protein were analyzed by flow cytometry and Western blotting, respectively. Further, quadricep-derived cells were exposed to 0 (control) or 25 ng/mL TNF-α, and the effect on Apj expression was examined by qRT-PCR. Apj expression and the ratio of APJ-positive cells among quadricep cells were significantly lower in old compared to young mice. In contrast, levels of Tnfa mRNA and TNF-α protein were significantly elevated in old compared to young mice. Exposing young and old derived quadricep cells to TNF-α for 8 and 24 h caused Apj levels to significantly decrease. TNF-α suppresses APJ expression in muscle cells in vitro. The increase in TNF-α observed in SM with age may induce a decrease in APJ expression.

18.
Angiogenesis ; 25(2): 151-154, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34617195

RESUMO

Microvascular dysfunction accompanied by a dramatic alteration of stable capillary structure is a major hallmark of numerous age-related diseases. In skin, although the role of angiogenesis during dermal reconstitution is well documented, the functional relevance of the extracellular matrix (ECM) stiffness to vascular remodeling and its molecular mechanisms was poorly understood. Here, we developed an ex vivo 3-dimensional angiogenic model using human fat, revealing that "appropriate" stiffness induces vascular maturation associated with upregulated APJ expression, whereas the overexpression of APJ promotes the formation of large vessels even in the absence of the "appropriate" stiffness. Taken together, APJ could be a novel mechanotransducer that accelerates the maturation of cutaneous blood vessels, leading to the prevention of human skin aging.


Assuntos
Matriz Extracelular , Pele , Vasos Sanguíneos , Capilares , Matriz Extracelular/metabolismo , Humanos , Neovascularização Patológica/metabolismo , Pele/irrigação sanguínea
19.
Bioorg Med Chem Lett ; 73: 128882, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35817293

RESUMO

Agonism of the apelin receptor (APJ) has demonstrated beneficial effects in models of heart failure. We have previously disclosed compounds such as 4, which showed good APJ agonist activity but were metabolized to the mono-demethylated, non-interconverting atropisomer metabolites. Herein, we detail the design and optimization of a novel series of N-linked APJ agonists with good potency, metabolic stability, and rat pharmacokinetic profile, which are unable to undergo the same metabolic mono-demethylation cleavage.


Assuntos
Piridinas , Receptores Acoplados a Proteínas G , Animais , Apelina , Receptores de Apelina/agonistas , Ratos , Receptores Acoplados a Proteínas G/agonistas
20.
Bioorg Med Chem ; 66: 116789, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35594649

RESUMO

The apelin receptor (APJ) is a target for cardiovascular indications. Previously, we had identified a novel pyrazole-based agonist 1 ((S)-N-(1-(cyclobutylamino)-1-oxo-5-(piperidin-1-yl)pentan-3-yl)-1-cyclopentyl-5-(2,6-dimethoxyphenyl)-1H-pyrazole-3-carboxamide hydrochloride) of this GPCR. Systematic modification of 1 was performed to produce compounds with improved potency and ADME properties. Orally bioavailable compound 47 with favorable agonist potency (Ca2+EC50 = 24 nM, cAMPi EC50 = 6.5 nM) and pharmacokinetic properties (clearance ∼20 mL/min/kg in rats) was identified. This compound has vastly reduced brain penetration and is devoid of significant off-target liability. In summary, a potent and selective APJ agonist suitable for in vivo studies of APJ in peripheral tissues after oral administration has been identified.


Assuntos
Receptores de Apelina , Pirazóis , Animais , Receptores de Apelina/agonistas , Pirazóis/farmacocinética , Pirazóis/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA