Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Handb Exp Pharmacol ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38554166

RESUMO

Parasitic diseases including malaria, leishmaniasis, and trypanosomiasis have received significant attention due to their severe health implications, especially in developing countries. Marine natural products from a vast and diverse range of marine organisms such as sponges, corals, molluscs, and algae have been found to produce unique bioactive compounds that exhibit promising potent properties, including antiparasitic, anti-Plasmodial, anti-Leishmanial, and anti-Trypanosomal activities, providing hope for the development of effective treatments. Furthermore, various techniques and methodologies have been used to investigate the mechanisms of these antiparasitic compounds. Continued efforts in the discovery and development of marine natural products hold significant promise for the future of novel treatments against parasitic diseases.

2.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164094

RESUMO

The first stage of the drug discovery process involves the identification of small compounds with biological activity. Iboga alkaloids are monoterpene indole alkaloids (MIAs) containing a fused isoquinuclidine-tetrahydroazepine ring. Both the natural products and the iboga-inspired synthetic analogs have shown a wide variety of biological activities. Herein, we describe the chemoenzymatic preparation of a small library of novel N-indolylethyl-substituted isoquinuclidines as iboga-inspired compounds, using toluene as a starting material and an imine Diels-Alder reaction as the key step in the synthesis. The new iboga series was investigated for its potential to promote the release of glial cell line-derived neurotrophic factor (GDNF) by C6 glioma cells, and to inhibit the growth of infective trypanosomes. GDNF is a neurotrophic factor widely recognized by its crucial role in development, survival, maintenance, and protection of dopaminergic neuronal circuitries affected in several neurological and psychiatric pathologies. Four compounds of the series showed promising activity as GDNF releasers, and a leading structure (compound 11) was identified for further studies. The same four compounds impaired the growth of bloodstream Trypanosoma brucei brucei (EC50 1-8 µM) and two of them (compounds 6 and 14) showed a good selectivity index.


Assuntos
Alcaloides , Antiprotozoários , Fator Neurotrófico Derivado de Linhagem de Célula Glial/biossíntese , Tabernaemontana/química , Trypanosoma brucei brucei/crescimento & desenvolvimento , Tripanossomíase Africana/tratamento farmacológico , Alcaloides/síntese química , Alcaloides/química , Alcaloides/farmacologia , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Antiprotozoários/farmacologia , Linhagem Celular Tumoral , Camundongos , Ratos , Tripanossomíase Africana/metabolismo , Tripanossomíase Africana/patologia
3.
Bioorg Chem ; 89: 102996, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31132603

RESUMO

Chagas' disease is a parasitic infection caused by Trypanosoma cruzi that is still treated by old and toxic drugs. In the search for novel alternatives, natural sources are an important source for new drug prototypes against T. cruzi to further structural exploitation. A set of natural-based compounds (LINS03) was designed, showing promising antitrypanosoma activity and low cytotoxicity to host cells. In this paper, nine novel LINS03 derivatives were evaluated against T. cruzi trypomastigotes and amastigotes. The selectivity was assessed through cytotoxicity assays using NCTC mammalian cells and calculating the CC50/IC50 ratio. The results showed that compounds 2d and 4c are noteworthy, due their high activity against amastigotes (IC50 13.9 and 5.8 µM) and low cytotoxicity (CC50 107.7 µM and >200 µM, respectively). These compounds did not showed alteration on plasma membrane permeability in a Sytox green model. SAR analysis suggested an ideal balance between hydrosolubility and lipophilicity is necessary to improve the activity, and that insertion of a meta-substituent is detrimental to the activity of the amine derivatives but not to the neutral derivatives, suggesting different mechanisms of actions. The results presented herein are valuable for designing novel compounds with improved activity and selectivity to be applied in future studies.


Assuntos
Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química
4.
Biomolecules ; 13(4)2023 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-37189347

RESUMO

Trypanosomiases are a group of tropical diseases that have devastating health and socio-economic effects worldwide. In humans, these diseases are caused by the pathogenic kinetoplastids Trypanosoma brucei, causing African trypanosomiasis or sleeping sickness, and Trypanosoma cruzi, causing American trypanosomiasis or Chagas disease. Currently, these diseases lack effective treatment. This is attributed to the high toxicity and limited trypanocidal activity of registered drugs, as well as resistance development and difficulties in their administration. All this has prompted the search for new compounds that can serve as the basis for the development of treatment of these diseases. Antimicrobial peptides (AMPs) are small peptides synthesized by both prokaryotes and (unicellular and multicellular) eukaryotes, where they fulfill functions related to competition strategy with other organisms and immune defense. These AMPs can bind and induce perturbation in cell membranes, leading to permeation of molecules, alteration of morphology, disruption of cellular homeostasis, and activation of cell death. These peptides have activity against various pathogenic microorganisms, including parasitic protists. Therefore, they are being considered for new therapeutic strategies to treat some parasitic diseases. In this review, we analyze AMPs as therapeutic alternatives for the treatment of trypanosomiases, emphasizing their possible application as possible candidates for the development of future natural anti-trypanosome drugs.


Assuntos
Doença de Chagas , Tripanossomicidas , Tripanossomíase Africana , Tripanossomíase , Animais , Humanos , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Tripanossomicidas/química , Peptídeos Antimicrobianos , Tripanossomíase/tratamento farmacológico , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Doença de Chagas/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico
5.
Int J Biol Macromol ; 230: 123272, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36649864

RESUMO

Nanotechnology is a crucial technology in recent years has resulted in new and creative applications of nanomedicine. Polymeric nanoparticles have increasing demands in pharmaceutical applications and require high reproducibility, homogeneity, and control over their properties. Work explores the use of cashew phthalate gum (PCG) as a particle-forming polymer. PCG exhibited a pH-sensitive behavior due to the of acid groups on its chains, and control drug release. We report the development of nanoparticles carrying benznidazole. Formulations were characterized by DLS, encapsulation efficiency, drug loading, FTIR, pH-responsive behavior, release, and in vitro kinetics. Interaction between polymer and drug was an evaluated by molecular dynamics. Morphology was observed by SEM, and in vitro cytotoxicity by MTT assay. Trypanocidal effect for epimastigote and trypomastigote forms was also evaluated. NPs responded to the slightly basic pH, triggering the release of BNZ. In acidic medium, they presented small size, spherical shape, and good stability. It was indicated NP with enhanced biological activity, reduced cytotoxicity, high anti T. cruzi performance, and pH-sensitive release. This work investigated properties related to the development and enhancement of nanoparticles. PCG has specific physicochemical properties that make it a promising alternative to drug delivery, however, there are still challenges to be overcome.


Assuntos
Anacardium , Nanopartículas , Trypanosoma cruzi , Reprodutibilidade dos Testes , Nanopartículas/química , Liberação Controlada de Fármacos , Polímeros/farmacologia , Concentração de Íons de Hidrogênio , Portadores de Fármacos/farmacologia
6.
Nanomaterials (Basel) ; 12(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35745396

RESUMO

The brown seaweed Spatoglossum schröederi synthesizes three bioactive fucoidans, the most abundant of which is fucan A. This fucoidan was extracted and its identity was confirmed by chemical analysis, Fourier-transform infrared spectroscopy (FTIR), and agarose gel electrophoresis. Thereafter, silver nanoparticles containing fucan A (AgFuc) were produced using an environmentally friendly synthesis method. AgFuc synthesis was analyzed via UV-vis spectroscopy and FTIR, which confirmed the presence of both silver and fucan A in the AgFuc product. Dynamic light scattering (DLS), X-ray diffraction, scanning electron microscopy, and atomic force microscopy revealed that the AgFuc particles were ~180.0 nm in size and spherical in shape. DLS further demonstrated that AgFuc was stable for five months. Coupled plasma optical emission spectrometry showed that the AgFuc particles contained 5% silver and 95% sugar. AgFuc was shown to be more effective in inhibiting the ability of parasites to reduce MTT than fucan A or silver, regardless of treatment time. In addition, AgFuc induced the death of ~60% of parasites by necrosis and ~17% by apoptosis. Therefore, AgFuc induces damage to the parasites' mitochondria, which suggests that it is an anti-Trypanosoma cruzi agent. This is the first study to analyze silver nanoparticles containing fucan as an anti-Trypanosoma cruzi agent. Our data indicate that AgFuc nanoparticles have potential therapeutic applications, which should be determined via preclinical in vitro and in vivo studies.

7.
Infect Dis Poverty ; 10(1): 9, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482912

RESUMO

BACKGROUND: Malaria and neglected communicable protozoa parasitic diseases, such as leishmaniasis, and trypanosomiasis, are among the otherwise called diseases for neglected communities, which are habitual in underprivileged populations in developing tropical and subtropical regions of Africa, Asia, and the Americas. Some of the currently available therapeutic drugs have some limitations such as toxicity and questionable efficacy and long treatment period, which have encouraged resistance. These have prompted many researchers to focus on finding new drugs that are safe, effective, and affordable from marine environments. The aim of this review was to show the diversity, structural scaffolds, in-vitro or in-vivo efficacy, and recent progress made in the discovery/isolation of marine natural products (MNPs) with potent bioactivity against malaria, leishmaniasis, and trypanosomiasis. MAIN TEXT: We searched PubMed and Google scholar using Boolean Operators (AND, OR, and NOT) and the combination of related terms for articles on marine natural products (MNPs) discovery published only in English language from January 2016 to June 2020. Twenty nine articles reported the isolation, identification and antiparasitic activity of the isolated compounds from marine environment. A total of 125 compounds were reported to have been isolated, out of which 45 were newly isolated compounds. These compounds were all isolated from bacteria, a fungus, sponges, algae, a bryozoan, cnidarians and soft corals. In recent years, great progress is being made on anti-malarial drug discovery from marine organisms with the isolation of these potent compounds. Comparably, some of these promising antikinetoplastid MNPs have potency better or similar to conventional drugs and could be developed as both antileishmanial and antitrypanosomal drugs. However, very few of these MNPs have a pharmaceutical destiny due to lack of the following: sustainable production of the bioactive compounds, standard efficient screening methods, knowledge of the mechanism of action, partnerships between researchers and pharmaceutical industries. CONCLUSIONS: It is crystal clear that marine organisms are a rich source of antiparasitic compounds, such as alkaloids, terpenoids, peptides, polyketides, terpene, coumarins, steroids, fatty acid derivatives, and lactones. The current and future technological innovation in natural products drug discovery will bolster the drug armamentarium for malaria and neglected tropical diseases.


Assuntos
Organismos Aquáticos/química , Produtos Biológicos/farmacologia , Leishmania/efeitos dos fármacos , Plasmodium/efeitos dos fármacos , Trypanosoma/efeitos dos fármacos , Animais , Organismos Aquáticos/classificação , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Descoberta de Drogas , Humanos , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Malária/tratamento farmacológico , Malária/parasitologia , Doenças Negligenciadas/tratamento farmacológico , Doenças Negligenciadas/parasitologia , Tripanossomíase/tratamento farmacológico , Tripanossomíase/parasitologia
8.
Front Pharmacol ; 11: 594174, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343365

RESUMO

Artemisia copa Phil. (Asteraceae) (known as copa-copa) is a native species of Chile used as an infusion in traditional medicine by Atacameños people in the Altiplano, highlands of northern Chile. In this research, we have investigated for the first time the cholinesterase inhibition potential against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and the chemical profiling of the infusions prepared from the aerial parts of A. copa by high resolution spectrometry. In addition, total phenolic, total flavonoid content, antioxidant (DPPH, FRAP, and ORAC) and antiprozoal activity were tested. Artemisia copa showed good inhibitory activity against AChE and BChE (3.92 ± 0.08 µg/ml and 44.13 ± 0.10 µg/ml). The infusion displayed a total phenolics content of 155.6 ± 2.9 mg of gallic acid equivalents/g and total flavonoid content of 5.5 ± 0.2 mg quercetin equivalents/g. Additionally, trypanocidal activity against Trypanosoma cruzi was found (LD50 of 131.8 µg/ml). Forty-seven metabolites were detected in the infusion of A. copa including several phenolic acids and flavonoids which were rapidly identified using ultrahigh performance liquid chromatography orbitrap mass spectrometry analysis (UHPLC-Orbitrap-MS) for chemical profiling. The major compounds identified in the infusions were studied by molecular docking against AChE and BChE. The UHPLC-MS fingerprints generated can be also used for the authentication of these endemic species. These findings reveal that A. copa infusions can be used as beverages with protective effects.

9.
EXCLI J ; 19: 323-333, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32327956

RESUMO

In a search for new antitrypanosomal agents in the Brazilian flora, the ethanol extract of the xylopodium from Aiouea trinervis (Lauraceae) exhibited in vitro activity against the epimastigote forms of Trypanosoma cruzi, the etiological agent of Chagas disease. Bioassay-guided chromatographic fractionation of the ethanol extract afforded three butanolides, isoobtusilactone A (1), epilitsenolide C2 (2), and epilitsenolide C1 (3). Butanolides 1 and 3 were more active against T. cruzi epimastigotes than the reference drug benznidazole (by 8.9-fold and 3.2-fold, respectively), while 2 proved inactive. Compounds 1 and 3 showed low cytotoxicity in mammalian Vero cells (CC50> 156 µmol L-1) and high selectivity index (SI) values for epimastigotes (SI = 56.8 and 28.6, respectively), and 1 was more selective than benznidazole (SI = 46.5). Butanolide 1 at 24 µmol L-1 also led to cell cycle alterations in epimastigote forms, and inhibited the growth of amastigote cells in more than 70 %. In silico ADMET properties of 1 were also analyzed and predicted favorable drug-like characteristics. This butanolide also complied with Lipinski's rule of five and was not predicted as interference compound (PAINS). This is the first report on the isolation of these bioactive butanolides under the guidance of in vitro trypanocidal activity against T. cruzi.

10.
Front Immunol ; 11: 128, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153562

RESUMO

There are several unmet needs in modern immunology. Among them, vaccines against parasitic diseases and chronic infections lead. Trypanosoma cruzi, the causative agent of Chagas disease, is an excellent example of a silent parasitic invasion that affects millions of people worldwide due to its progression into the symptomatic chronic phase of infection. In search for novel vaccine candidates, we have previously introduced Traspain, an engineered trivalent immunogen that was designed to address some of the known mechanisms of T. cruzi immune evasion. Here, we analyzed its performance in different DNA prime/protein boost protocols and characterized the systemic immune response associated with diverse levels of protection. Formulations that include a STING agonist, like c-di-AMP in the boost doses, were able to prime a Th1/Th17 immune response. Moreover, comparison between them showed that vaccines that were able to prime polyfunctional cell-mediated immunity at the CD4 and CD8 compartment enhanced protection levels in the murine model. These findings contribute to a better knowledge of the desired vaccine-elicited immunity against T. cruzi and promote the definition of a vaccine correlate of protection against the infection.


Assuntos
Imunidade/imunologia , Vacinas Protozoárias/imunologia , Trypanosoma cruzi/imunologia , Vacinação/métodos , Animais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Feminino , Imunização Secundária , Masculino , Camundongos , Modelos Animais , Resultado do Tratamento
11.
J Pharm Biomed Anal ; 164: 475-480, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30472581

RESUMO

A new high performance liquid chromatography (HPLC) method has been established for quantitative and qualitative analysis of three tetracyclic iridoids: ML-2-3 (1), molucidin (2), and ML-F52 (3), which are responsible for anti-trypanosomal and anti-leishmanial activities of Morinda lucida Bentham leaves. Separation of 1-3 from dried 80% aqueous (aq.) ethanol extract was achieved on a reversed-phase cholester column packed with cholesteryl-bonded silica using an acetonitrile-0.1% aq. formic acid mobile phase system. Ultraviolet-visible (UV-VIS) spectroscopy was employed for detection of compounds, and their contents were determined by measuring absorbance at 254 nm. Depending on the above system, several factors potentially affecting the concentration of tetracyclic iridoids were evaluated resulting in several variation on plant organs, seasonality, variation between individual trees, and branch positions within the trees. Moreover, we developed a simple, quick, and effective method for tetracyclic iridoid isolation from M. lucida leaves that consisted of extraction by sonication into 80% aq. ethanol, basic hydrolysis, acid neutralization, liquid-liquid extraction into an organic solvent, and reverse phase open column chromatography. Employing this method, we have succeeded to obtain 1 as a colorless crystal yielding of 0.23%, which was 28 times higher than that of previous isolation method. Setting up methodology in this paper may be important for future in vitro and in vivo studies of tetracyclic iridoids and moreover for their applications in new drug design and development.


Assuntos
Fracionamento Químico/métodos , Iridoides/farmacologia , Morinda/química , Extratos Vegetais/farmacologia , Tripanossomicidas/farmacologia , Fracionamento Químico/instrumentação , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Desenho de Fármacos , Iridoides/análise , Iridoides/química , Iridoides/isolamento & purificação , Extratos Vegetais/análise , Extratos Vegetais/química , Folhas de Planta/química , Pesquisa Qualitativa , Solventes/química , Tripanossomicidas/análise , Tripanossomicidas/química , Tripanossomicidas/isolamento & purificação , Trypanosoma/efeitos dos fármacos
12.
Phytomedicine ; 54: 302-307, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30668381

RESUMO

BACKGROUND: From a previous screening of Brazilian biodiversity for antitrypanosomal activity, the n-hexane extract from twigs of Nectandra oppositifolia (Lauraceae) demonstrated in vitro activity against Trypanosoma cruzi. PURPOSE: To perform the isolation and chemical characterization of bioactive compounds from n-hexane extract from twigs of N. oppositifolia and evaluate their therapeutical potential as well as to elucidate their mechanism of action against T. cruzi. METHODS/STUDY DESIGN: Bioactivity-guided fractionation of the n-hexane extract from twigs of N. oppositifolia afforded three related butenolides: isolinderanolide D (1), isolinderanolide E (2) and secosubamolide A (3). These compounds were evaluated in vitro against T. cruzi (trypomastigote and amastigote forms) and against NCTC (L929) cells for mammalian cytotoxicity. Additionally, phenotypic analyzes of compounds-treated parasites were performed: alterations in the plasma membrane permeability, plasma membrane electric potential (ΔΨp), mitochondrial membrane potential (ΔΨm) and induction of ROS. RESULTS: Compounds 1-3 were effective against T. cruzi, with IC50 values of 12.9, 29.9 and 12.5 µM for trypomastigotes and 25.3, 10.1 and 12.3 µM for intracellular amastigotes. Furthermore, it was observed alteration in the mitochondrial membrane potential (ΔΨm) of parasites treated with butenolides 1-3. These compounds caused no alteration to the parasite plasma membrane, and the deregulation of the mitochondria might be an early event to cell death. In addition, in silico studies showed that all butenolides were predicted to be non-mutagenic, non-carcinogenic, non hERG blockers, with acceptable human intestinal absorption, low inhibitory promiscuity with the main five CYP isoforms, and with high metabolic stability. Otherwise, tested butenolides showed unfavorable blood-brain barrier penetration (BBB+). CONCLUSION: Our results demonstrated the anti-T. cruzi effects of compounds 1-3 isolated from N. oppositifolia and indicated that the lethal effect of these compounds in trypomastigotes of T. cruzi could be associated to the alteration in the mitochondrial membrane potential (ΔΨm).


Assuntos
4-Butirolactona/análogos & derivados , Lauraceae/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , 4-Butirolactona/isolamento & purificação , 4-Butirolactona/farmacologia , 4-Butirolactona/uso terapêutico , Animais , Brasil , Membrana Celular/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Humanos
13.
Eur J Pharm Sci ; 122: 31-41, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29935351

RESUMO

Chagas' disease and leishmaniasis are parasitic infections enrolled among the neglected tropical diseases, which urge for new treatments. In the search for new chemical entities as prototypes, gibbilimbols A/B have shown antiparasitic activity against Trypanosoma cruzi and Leishmania infantum, and then a set of analogues (LINS03 series) of this natural product were synthesized and evaluated in vitro against the parasites. In the present paper we reported five new compounds with activity against these protozoan parasites, and quite low cytotoxicity. Moreover, the interference of plasma membrane permeability of these analogues were also evaluated. We found that [(4-methoxyphenyl)methyl]octylamine (4) was noteworthy due to its high activity against the amastigote form of both parasites (IC50 1.3-5.8 µM) and good selectivity index. In order to unveil the SAR for this chemotype, we also presented a group efficiency analysis and PCA and HCA study, which indicated that the methoxyl provides good activity with lower cytotoxicity to mammalian cells. The results from SAR analyses suggest different mechanisms of action between the neutral and basic compounds. In summary, the analogues represent important activity against these parasites and must be prototypes for further exploitation.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Leishmania infantum/efeitos dos fármacos , Fenóis/química , Fenóis/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Leishmania infantum/crescimento & desenvolvimento , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Camundongos Endogâmicos BALB C , Relação Estrutura-Atividade , Trypanosoma cruzi/crescimento & desenvolvimento
14.
Food Chem ; 186: 185-91, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25976809

RESUMO

The aim of this study was to evaluate the chemical profile and antioxidant, antimicrobial and antiparasitic activities of the hydroalcoholic extract of the leaves of Ziziphus joazeiro Mart. (HELZJ). The antioxidant DPPH and FRAP assays and chemical profile were determined by colorimetric methods and HPLC/DAD. The antiparasitic, antibiotic and antibiotic-modifying activity were evaluated by microdilution assays. The HPLC-DAD assay showed the presence of mostly tannins and flavonoids, such as caffeic acid and quercetin. The levels of polyphenols and flavonoids were 183.136 mg/g extract and 7.37 mg/g extract, respectively. DPPH and FRAP showed low antioxidant activity for the extract. The antibacterial and antifungal activities were not of clinical relevance, showing MIC>1024 µg/mL. However, synergism was observed between HELZJ and the antibiotics amikacin and gentamicin, which resulted in decreased bacterial drug resistance. EHFZJ showed low toxicity in fibroblasts in vitro, while antiparasitic results against Trypnosoma cruzi, Leishmania braziliensis and Leishmania infantum were not clinically relevant. Thus, our results indicate that Z. joazeiro Mart. (HELZJ) could be a source of plant-derived natural products that could lead to the development of promising new antibiotic compounds for infectious diseases.


Assuntos
Enterobacter aerogenes/efeitos dos fármacos , Extratos Vegetais/análise , Ziziphus/química , Anti-Infecciosos/análise , Anti-Infecciosos/farmacologia , Antioxidantes/análise , Antioxidantes/farmacologia , Antiparasitários/análise , Antiparasitários/farmacologia , Cromatografia Líquida de Alta Pressão , Colorimetria , Flavonoides/análise , Flavonoides/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Polifenóis/análise , Polifenóis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Taninos/análise , Taninos/farmacologia , Trypanosoma cruzi/efeitos dos fármacos
15.
Eur J Med Chem ; 82: 418-25, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24929292

RESUMO

Hybrid bioisoster derivatives from N-acylhydrazones and furoxan groups were designed with the objective of obtaining at least a dual mechanism of action: cruzain inhibition and nitric oxide (NO) releasing activity. Fifteen designed compounds were synthesized varying the substitution in N-acylhydrazone and in furoxan group as well. They had its anti-Trypanosoma cruzi activity in amastigotes forms, NO releasing potential and inhibitory cruzain activity evaluated. The two most active compounds (6, 14) both in the parasite amastigotes and in the enzyme contain the nitro group in para position of the aromatic ring. The permeability screening in Caco-2 cell and cytotoxicity assay in human cells were performed for those most active compounds and both showed to be less cytotoxic than the reference drug, benznidazole. Compound 6 was the most promising, since besides activity it showed good permeability and selectivity index, higher than the reference drug. Thereby the compound 6 was considered as a possible candidate for additional studies.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Hidrazonas/farmacologia , Oxidiazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA