Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Traffic ; 24(3): 131-145, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35579216

RESUMO

Lipid phosphoinositides are master signaling molecules in eukaryotic cells and key markers of organelle identity. Because of these important roles, the kinases and phosphatases that generate phosphoinositides must be tightly regulated. Viruses can manipulate this regulation, with the Type III phosphatidylinositol 4-kinases (PI4KA and PI4KB) being hijacked by many RNA viruses to mediate their intracellular replication through the formation of phosphatidylinositol 4-phosphate (PI4P)-enriched replication organelles (ROs). Different viruses have evolved unique approaches toward activating PI4K enzymes to form ROs, through both direct binding of PI4Ks and modulation of PI4K accessory proteins. This review will focus on PI4KA and PI4KB and discuss their roles in signaling, functions in membrane trafficking and manipulation by viruses. Our focus will be the molecular basis for how PI4KA and PI4KB are activated by both protein-binding partners and post-translational modifications, with an emphasis on understanding the different molecular mechanisms viruses have evolved to usurp PI4Ks. We will also discuss the chemical tools available to study the role of PI4Ks in viral infection.


Assuntos
1-Fosfatidilinositol 4-Quinase , Fosfatidilinositóis , Espécies Reativas de Oxigênio , 1-Fosfatidilinositol 4-Quinase/metabolismo , Ligação Proteica , Replicação Viral/fisiologia
2.
FASEB J ; 38(13): e23772, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38963337

RESUMO

Ovarian cancer is one of the most common gynecologic malignancies that has a poor prognosis. THUMPD3-AS1 is an oncogenic long noncoding RNA (lncRNA) in several cancers. Moreover, miR-320d is downregulated and inhibited proliferation in ovarian cancer cells, whereas ARF1 was upregulated and promoted the malignant progression in epithelial ovarian cancer. Nevertheless, the role of THUMPD3-AS1 in ovarian cancer and the underlying mechanism has yet to be elucidated. Human normal ovarian epithelial cells (IOSE80) and ovarian cancer cell lines (CAVO3, A2780, SKOV3, OVCAR3, and HEY) were adopted for in vitro experiments. The functional roles of THUMPD3-AS1 in cell viability and apoptosis were determined using CCK-8, flow cytometry, and TUNEL assays. Western blot was performed to assess the protein levels of ARF1, Bax, Bcl-2, and caspase 3, whereas RT-qPCR was applied to measure ARF1 mRNA, THUMPD3-AS1, and miR-320d levels. The targeting relationship between miR-320d and THUMPD3-AS1 or ARF1 was validated with dual luciferase assay. THUMPD3-AS1 and ARF1 were highly expressed in ovarian cancer cells, whereas miR-320d level was lowly expressed. THUMPD3-AS1 knockdown was able to repress cell viability and accelerate apoptosis of OVCAR3 and SKOV3 cells. Also, THUMPD3-AS1 acted as a sponge of miR-320d, preventing the degradation of ARF1. MiR-320d downregulation reversed the tumor suppressive function induced by THUMPD3-AS1 depletion. Additionally, miR-320d overexpression inhibited ovarian cancer cell viability and accelerated apoptosis, which was overturned by overexpression of ARF1. THUMPD3-AS1 inhibited ovarian cancer cell apoptosis by modulation of miR-320d/ARF1 axis. The discoveries might provide a prospective target for ovarian cancer treatment.


Assuntos
Fator 1 de Ribosilação do ADP , Apoptose , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Feminino , Humanos , Fator 1 de Ribosilação do ADP/metabolismo , Fator 1 de Ribosilação do ADP/genética , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Antissenso/genética
3.
EMBO J ; 39(20): e105117, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32840906

RESUMO

Heterotetrameric adapter (AP) complexes cooperate with the small GTPase Arf1 or lipids in cargo selection, vesicle formation, and budding at endomembranes in eukaryotic cells. While most AP complexes also require clathrin as the outer vesicle shell, formation of AP-3-coated vesicles involved in Golgi-to-vacuole transport in yeast has been postulated to depend on Vps41, a subunit of the vacuolar HOPS tethering complex. HOPS has also been identified as the tether of AP-3 vesicles on vacuoles. To unravel this conundrum of a dual Vps41 function, we anchored Vps41 stably to the mitochondrial outer membrane. By monitoring AP-3 recruitment, we now show that Vps41 can tether AP-3 vesicles to mitochondria, yet AP-3 vesicles can form in the absence of Vps41 or clathrin. By proximity labeling and mass spectrometry, we identify the Arf1 GTPase-activating protein (GAP) Age2 at the AP-3 coat and show that tethering, but not fusion at the vacuole can occur without complete uncoating. We conclude that AP-3 vesicles retain their coat after budding and that their complete uncoating occurs only after tethering at the vacuole.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Vesículas Citoplasmáticas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Fatores de Ribosilação do ADP/genética , Transporte Biológico Ativo/genética , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Vesículas Citoplasmáticas/ultraestrutura , Proteínas Ativadoras de GTPase/genética , Deleção de Genes , Complexo de Golgi/metabolismo , Espectrometria de Massas , Fusão de Membrana , Microscopia Eletrônica , Membranas Mitocondriais/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Vacúolos/ultraestrutura , Proteínas de Transporte Vesicular/genética
4.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34382637

RESUMO

Lipoprotein lipase (LPL) is a secreted triglyceride lipase involved in the clearance of very-low-density lipoproteins and chylomicrons from circulation. LPL is expressed primarily in adipose and muscle tissues and transported to the capillary lumen. LPL secretion is regulated by insulin in adipose tissue; however, few studies have examined the regulatory and trafficking steps involved in secretion. Here, we describe the intracellular localization and insulin-dependent trafficking of LPL in 3T3-L1 adipocytes. We compared LPL trafficking to the better characterized trafficking pathways taken by leptin and GLUT4 (also known as SLC2A4). We show that the LPL trafficking pathway shares some characteristics of these other pathways, but that LPL subcellular localization and trafficking are distinct from those of GLUT4 and leptin. LPL secretion occurs slowly in response to insulin and rapidly in response to the Ca2+ ionophore ionomycin. This regulated trafficking is dependent on Golgi protein kinase D and the ADP-ribosylation factor GTPase ARF1. Together, these data give support to a new trafficking pathway for soluble cargo that is active in adipocytes.


Assuntos
Adipócitos , Lipase Lipoproteica , Lipossomos , Células 3T3-L1 , Tecido Adiposo , Animais , Insulina , Lipase Lipoproteica/genética , Camundongos
5.
Plant Biotechnol J ; 21(3): 591-605, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36478140

RESUMO

MicroRNAs (miRNAs) play crucial roles in plant development and secondary metabolism through different modes of sequence-specific interaction with their targets. Artemisinin biosynthesis is extensively regulated by phytohormones. However, the function of phytohormone-responsive miRNAs in artemisinin biosynthesis remains enigmatic. Thus, we combined the analysis of transcriptomics, small RNAs, and the degradome to generate a comprehensive resource for identifying key miRNA-target circuits involved in the phytohormone-induced process of artemisinin biosynthesis in Artemisia annua. In total, 151 conserved and 52 novel miRNAs and their 4132 targets were determined. Based on the differential expression analysis, miR160 was selected as a potential miRNA involved in artemisinin synthesis. Overexpressing MIR160 significantly impaired glandular trichome formation and suppressed artemisinin biosynthesis in A. annua, while repressing its expression resulted in the opposite effect, indicating that miR160 negatively regulates glandular trichome development and artemisinin biosynthesis. RNA ligase-mediated 5' RACE and transient transformation assays showed that miR160 mediates the RNA cleavage of Auxin Response Factor 1 (ARF1) in A. annua. Furthermore, ARF1 was shown to increase artemisinin synthesis by activating AaDBR2 expression. Taken together, our results reveal the intrinsic link between the miR160-ARF1 module and artemisinin biosynthesis, and may expedite the innovation of metabolic engineering approaches for high and stable production of artemisinin in the future.


Assuntos
Artemisia annua , Artemisininas , MicroRNAs , Reguladores de Crescimento de Plantas/metabolismo , Tricomas/metabolismo , Artemisia annua/genética , Artemisia annua/metabolismo , Ácidos Indolacéticos/metabolismo , MicroRNAs/metabolismo , Artemisininas/metabolismo , Artemisininas/farmacologia , Proteínas de Plantas/genética
6.
J Virol ; 96(6): e0219321, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35044210

RESUMO

Classical swine fever virus (CSFV), a positive-sense, enveloped RNA virus that belongs to the Flaviviridae family, hijacks cell host proteins for its own replication. We previously demonstrated that Golgi-specific brefeldin A (BFA) resistance factor 1 (GBF1), a regulator of intracellular transport, mediates CSFV infection. However, the molecular mechanism by which this protein regulates CSFV proliferation remains unelucidated. In this study, we constructed a series of plasmids expressing GBF1 truncation mutants to investigate their behavior during CSFV infection and found that GBF1 truncation mutants containing the Sec7 domain could rescue CSFV replication in BFA- and GCA (golgicide A)-treated swine umbilical vein endothelial cells (SUVECs), demonstrating that the effect of GBF1 on CSFV infection depended on the activity of guanine nucleotide exchange factor (GEF). Additionally, it was found that ADP ribosylation factors (ARFs), which are known to be activated by the Sec7 domain of GBF1, also regulated CSFV proliferation. Furthermore, we demonstrated that ARF1 is more important for CSFV infection than other ARF members with Sec7 domain dependence. Subsequent experiments established the function of coatomer protein I (COP I), a downstream effector of ARF1 which is also required for CSFV infection by mediating CSFV invasion. Mechanistically, inhibition of COP I function impaired CSFV invasion by inhibiting cholesterol transport to the plasma membrane and regulating virion transport from early to late endosomes. Collectively, our results suggest that ARF1, with domain-dependent GBF1 Sec7, activates COP I to facilitate CSFV entry into SUVECs. IMPORTANCE Classical swine fever (CSF), a highly contact-infectious disease caused by classical swine fever virus (CSFV) infecting domestic pigs or wild boars, has caused huge economic losses to the pig industry. Our previous studies have revealed that GBF1 and class I and II ARFs are required for CSFV proliferation. However, a direct functional link between GBF1, ARF1, and COP I and the mechanism of the GBF1-ARF1-COP I complex in CSFV infection are still poorly understood. Here, our data support a model in which COP I supports CSFV entry into SUVECs in two different ways, depending on the GBF1-ARF1 function. On the one hand, the GBF1-ARF1-COP I complex mediates cholesterol trafficking to the plasma membrane to support CSFV entry. On the other hand, the GBF1-ARF1-COP I complex mediates CSFV transport from early to late endosomes during the entry steps.


Assuntos
Fatores de Ribosilação do ADP , Vírus da Febre Suína Clássica , Peste Suína Clássica , Proteína Coatomer , Fatores de Troca do Nucleotídeo Guanina , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Animais , Colesterol , Peste Suína Clássica/fisiopatologia , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/fisiologia , Proteína Coatomer/genética , Proteína Coatomer/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Suínos , Internalização do Vírus , Replicação Viral/genética
7.
J Virol ; 96(4): e0200521, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34878889

RESUMO

Birnaviruses are members of the Birnaviridae family, responsible for major economic losses to poultry and aquaculture. The family is composed of nonenveloped viruses with a segmented double-stranded RNA (dsRNA) genome. Infectious bursal disease virus (IBDV), the prototypic family member, is the etiological agent of Gumboro disease, a highly contagious immunosuppressive disease in the poultry industry worldwide. We previously demonstrated that IBDV hijacks the endocytic pathway for establishing the viral replication complexes on endosomes associated with the Golgi complex (GC). Here, we report that IBDV reorganizes the GC to localize the endosome-associated replication complexes without affecting its secretory functionality. By analyzing crucial proteins involved in the secretory pathway, we showed the essential requirement of Rab1b for viral replication. Rab1b comprises a key regulator of GC transport and we demonstrate that transfecting the negative mutant Rab1b N121I or knocking down Rab1b expression by RNA interference significantly reduces the yield of infectious viral progeny. Furthermore, we showed that the Rab1b downstream effector Golgi-specific BFA resistance factor 1 (GBF1), which activates the small GTPase ADP ribosylation factor 1 (ARF1), is required for IBDV replication, since inhibiting its activity by treatment with brefeldin A (BFA) or golgicide A (GCA) significantly reduces the yield of infectious viral progeny. Finally, we show that ARF1 dominant negative mutant T31N overexpression hampered IBDV infection. Taken together, these results demonstrate that IBDV requires the function of the Rab1b-GBF1-ARF1 axis to promote its replication, making a substantial contribution to the field of birnavirus-host cell interactions. IMPORTANCE Birnaviruses are unconventional members of the dsRNA viruses, with the lack of a transcriptionally active core being the main differential feature. This structural trait, among others that resemble those of the plus single-stranded (+ssRNA) viruses features, suggests that birnaviruses might follow a different replication program from that conducted by prototypical dsRNA members and the hypothesis that birnaviruses could be evolutionary links between +ssRNA and dsRNA viruses has been argued. Here, we present original data showing that IBDV-induced GC reorganization and the cross talk between IBDV and the Rab1b-GBF1-ARF1 mediate the intracellular trafficking pathway. The replication of several +ssRNA viruses depends on the cellular protein GBF1, but its role in the replication process is not clear. Thus, our findings make a substantial contribution to the field of birnavirus-host cell interactions and provide further evidence supporting the proposed evolutionary connection role of birnaviruses, an aspect which we consider especially relevant for researchers working in the virology field.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Vírus da Doença Infecciosa da Bursa/fisiologia , Via Secretória/fisiologia , Replicação Viral/fisiologia , Proteínas rab1 de Ligação ao GTP/metabolismo , Fator 1 de Ribosilação do ADP/genética , Animais , Brefeldina A/farmacologia , Linhagem Celular , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Interações Hospedeiro-Patógeno , Piridinas/farmacologia , Quinolinas/farmacologia , Via Secretória/efeitos dos fármacos , Compartimentos de Replicação Viral/metabolismo , Replicação Viral/efeitos dos fármacos , Proteínas rab1 de Ligação ao GTP/genética
8.
Cell Commun Signal ; 21(1): 156, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370099

RESUMO

BACKGROUND: Golgi apparatus (GA) is assembled as a crescent-like ribbon in mammalian cells under immunofluorescence microscope without knowing the shaping mechanisms. It is estimated that roughly 1/5 of the genes encoding kinases or phosphatases in human genome participate in the assembly of Golgi ribbon, reflecting protein modifications play major roles in building Golgi ribbon. METHODS: To explore how Golgi ribbon is shaped as a crescent-like structure under the guidance of protein modifications, we identified a protein complex containing the scaffold proteins Ajuba, two known GA regulators including the protein kinase Aurora-A and the protein arginine methyltransferase PRMT5, and the common substrate of Aurora-A and PRMT5, HURP. Mutual modifications and activation of PRMT5 and Aurora-A in the complex leads to methylation and in turn phosphorylation of HURP, thereby producing HURP p725. The HURP p725 localizes to GA vicinity and its distribution pattern looks like GA morphology. Correlation study of the HURP p725 statuses and GA structure, site-directed mutagenesis and knockdown-rescue experiments were employed to identify the modified HURP as a key regulator assembling GA as a crescent ribbon. RESULTS: The cells containing no or extended distribution of HURP p725 have dispersed GA membranes or longer GA. Knockdown of HURP fragmentized GA and HURP wild type could, while its phosphorylation deficiency mutant 725A could not, restore crescent Golgi ribbon in HURP depleted cells, collectively indicating a crescent GA-constructing activity of HURP p725. HURP p725 is transported, by GA membrane-associated ARF1, Dynein and its cargo adaptor Golgin-160, to cell center where HURP p725 forms crescent fibers, binds and stabilizes Golgi assembly factors (GAFs) including TRIP11, GRASP65 and GM130, thereby dictating the formation of crescent Golgi ribbon at nuclear periphery. CONCLUSIONS: The Ajuba/PRMT5/Aurora-A complex integrates the signals of protein methylation and phosphorylation to HURP, and the HURP p725 organizes GA by stabilizing and recruiting GAFs to its crescent-like structure, therefore shaping GA as a crescent ribbon. Therefore, the HURP p725 fiber serves a template to construct GA according to its shape. Video Abstract.


Assuntos
Núcleo Celular , Complexo de Golgi , Animais , Humanos , Complexo de Golgi/metabolismo , Fosforilação , Núcleo Celular/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Mamíferos/metabolismo
9.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069311

RESUMO

Although recent research progress on the abundant C-to-U RNA editing events in plant chloroplasts and mitochondria has uncovered many recognition factors and their molecular mechanisms, the intrinsic regulation of RNA editing within plants remains largely unknown. This study aimed to establish a regulatory relationship in Arabidopsis between the plant hormone auxin and chloroplast RNA editing. We first analyzed auxin response elements (AuxREs) present within promoters of chloroplast editing factors reported to date. We found that each has more than one AuxRE, suggesting a potential regulatory role of auxin in their expression. Further investigation unveiled that the depletion of auxin synthesis gene YUC2 reduces the expression of several editing factors. However, in yuc2 mutants, only the expression of CRR4, DYW1, ISE2, and ECD1 editing factors and the editing efficiency of their corresponding editing sites, ndhD-2 and rps14-149, were simultaneously suppressed. In addition, exogenous IAA and the overexpression of YUC2 enhanced the expression of these editing factors and the editing efficiency at the ndhD-2 and rps14-149 sites. These results suggested a direct effect of auxin upon the editing of the ndhD-2 and rps14-149 sites through the modulation of the expression of the editing factors. We further demonstrated that ARF1, a downstream transcription factor in the auxin-signaling pathway, could directly bind to and inactivate the promoters of CRR4, DYW1, and ISE2 in a dual-luciferase reporter system, thereby inhibiting their expression. Moreover, the overexpression of ARF1 in Arabidopsis significantly reduced the expression of the three editing factors and the editing efficiency at the ndhD-2 and rps14-149 sites. These data suggest that YUC2-mediated auxin biosynthesis governs the RNA-editing process through the ARF1-dependent signal transduction pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas Ribossômicas/metabolismo , Edição de RNA , RNA de Cloroplastos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
J Biol Chem ; 296: 100805, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34022220

RESUMO

After activation of G protein-coupled receptors, G protein ßγ dimers may translocate from the plasma membrane to the Golgi apparatus (GA). We recently report that this translocation activates extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) via PI3Kγ; however, how Gßγ-PI3Kγ activates the ERK1/2 pathway is unclear. Here, we demonstrate that chemokine receptor CXCR4 activates ADP-ribosylation factor 1 (ARF1), a small GTPase important for vesicle-mediated membrane trafficking. This activation is blocked by CRISPR-Cas9-mediated knockout of the GA-translocating Gγ9 subunit. Inducible targeting of different Gßγ dimers to the GA can directly activate ARF1. CXCR4 activation and constitutive Gßγ recruitment to the GA also enhance ARF1 translocation to the GA. We further demonstrate that pharmacological inhibition and CRISPR-Cas9-mediated knockout of PI3Kγ markedly inhibit CXCR4-mediated and Gßγ translocation-mediated ARF1 activation. We also show that depletion of ARF1 by siRNA and CRISPR-Cas9 and inhibition of GA-localized ARF1 activation abolish ERK1/2 activation by CXCR4 and Gßγ translocation to the GA and suppress prostate cancer PC3 cell migration and invasion. Collectively, our data reveal a novel function for Gßγ translocation to the GA to activate ARF1 and identify GA-localized ARF1 as an effector acting downstream of Gßγ-PI3Kγ to spatiotemporally regulate G protein-coupled receptor signaling to mitogen-activated protein kinases.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Complexo de Golgi/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fator 1 de Ribosilação do ADP/análise , Subunidades beta da Proteína de Ligação ao GTP/análise , Células HEK293 , Humanos , Proteínas Quinases Ativadas por Mitógeno/análise , Células PC-3 , Multimerização Proteica , Transporte Proteico , Receptores Acoplados a Proteínas G/análise , Transdução de Sinais
11.
J Virol ; 95(14): e0053121, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33952644

RESUMO

Mouse mammary tumor virus (MMTV) encodes a Rem precursor protein that specifies both regulatory and accessory functions. Rem is cleaved at the endoplasmic reticulum (ER) membrane into a functional N-terminal signal peptide (SP) and the C terminus (Rem-CT). Rem-CT lacks a membrane-spanning domain and a known ER retention signal, and yet it was not detectably secreted into cell supernatants. Inhibition of intracellular trafficking by the drug brefeldin A (BFA), which interferes with the ER-to-Golgi secretory pathway, resulted in dramatically reduced intracellular Rem-CT levels that were not rescued by proteasomal or lysosomal inhibitors. A Rem mutant lacking glycosylation was cleaved into SP and Rem-CT but was insensitive to BFA, suggesting that unglycosylated Rem-CT does not reach this BFA-dependent compartment. Treatment with endoglycosidase H indicated that Rem-CT does not traffic through the Golgi apparatus. Analysis of wild-type Rem-CT and its glycosylation mutant by confocal microscopy revealed that both were primarily localized to the ER lumen. A small fraction of wild-type Rem-CT, but not the unglycosylated mutant, was colocalized with Rab5-positive (Rab5+) early endosomes. The expression of a dominant-negative (DN) form of ADP ribosylation factor 1 (Arf1) (containing a mutation of threonine to asparagine at position 31 [T31N]) mimicked the effects of BFA by reducing Rem-CT levels and increased Rem-CT association with early and late endosomes. Inhibition of the AAA ATPase p97/VCP rescued Rem-CT in the presence of BFA or DN Arf1 and prevented localization to Rab5+ endosomes. Thus, Rem-CT uses an unconventional p97-mediated scheme for trafficking to early endosomes. IMPORTANCE Mouse mammary tumor virus is a complex retrovirus that encodes a regulatory/accessory protein, Rem. Rem is a precursor protein that is processed at the endoplasmic reticulum (ER) membrane by signal peptidase. The N-terminal SP uses the p97/VCP ATPase to elude ER-associated degradation to traffic to the nucleus and serve a human immunodeficiency virus Rev-like function. In contrast, the function of the C-terminal glycosylated cleavage product (Rem-CT) is unknown. Since localization is critical for protein function, we used mutants, inhibitors, and confocal microscopy to localize Rem-CT. Surprisingly, Rem-CT, which lacks a transmembrane domain or an ER retention signal, was detected primarily within the ER and required glycosylation and the p97 ATPase for early endosome trafficking without passage through the Golgi apparatus. Thus, Rem-CT uses a novel intracellular trafficking pathway, potentially impacting host antiviral immunity.


Assuntos
Adenosina Trifosfatases/metabolismo , Retículo Endoplasmático/metabolismo , Vírus do Tumor Mamário do Camundongo/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Transporte Biológico/efeitos dos fármacos , Brefeldina A/farmacologia , Endossomos/metabolismo , Células HEK293 , Humanos , Microscopia Confocal , Proteínas Nucleares/antagonistas & inibidores , Precursores de Proteínas/metabolismo , Proteínas do Envelope Viral/metabolismo
12.
Microb Pathog ; 168: 105614, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35662672

RESUMO

Haemonchus contortus (H. contortus) ADP-ribosylation factor 1 (Hc-ARF1) and Hepatocellular carcinoma-associated antigen 59 (Hc-HCA59) are recognized to largely regulate the immune responses of host cells. However, studies about the protective efficacy of the two molecules are poorly unknown. In this research, combinations of recombinant Hc-HCA59 (rHc-HCA59) and Hc-ARF1 (rHc-ARF1) proteins were amalgamated with poly (lactic-co-glycolic acid) (PLGA) nanoparticles adjuvant in order to investigate their protection potential against H. contortus in goats. The results demonstrated that the levels of IgG, IgA, IgE, and IL-4 were noticeably enhanced in the rHc-HCA59 and rHc-ARF1 (rHc-HCA59+rHc-ARF1) group before H. contortus third-stage larvae (L3) challenge. After the L3 challenge, the levels of IL-17, IL-9, and TGF-ß were considerably upregulated in the rHc-HCA59+rHc-ARF1 group. In the meantime, the abomasal worm burdens and the fecal eggs were reduced by 63.2% and 69.4% respectively in the rHc-HCA59+rHc-ARF1 group. According to the studies, PLGA nanoparticles immobilized with rHc-HCA59 and rHc-ARF1 proteins conferred partial protection and were expected to be a potential candidate for developing nano vaccines to combat goat haemonchosis.


Assuntos
Carcinoma Hepatocelular , Doenças das Cabras , Hemoncose , Haemonchus , Neoplasias Hepáticas , Infecções por Nematoides , Fator 1 de Ribosilação do ADP , Animais , Antígenos Glicosídicos Associados a Tumores , Carcinoma Hepatocelular/prevenção & controle , Glicolatos , Glicóis , Cabras , Hemoncose/prevenção & controle , Hemoncose/veterinária , Neoplasias Hepáticas/prevenção & controle
13.
Pharmacol Res ; 185: 106513, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36252772

RESUMO

cytohesin-2 is a guanine nucleotide exchange factor to activate ARF1 and ARF6, which are involved in various biological processes, including signal transduction, cell differentiation, cell structure organization, and survival. Nevertheless, there is a lack of evidence revealing the role of cytohesin-2 in osteoclast differentiation and in the development of osteoporosis. In this study, we find cytohesin-2 and ARF1 positively regulate osteoclast differentiation and function. Blocking the cytohesin-2 /ARF1 axis with SecinH3 or by genetic silencing of cytohesin-2 inhibits osteoclast formation and function in vitro. In vivo treatment with SecinH3 ameliorates ovariectomy-induced osteoporosis. Mechanistically, RNA-sequencing combined with molecular biological methodologies reveal that the regulatory function of cythohesin-2/ARF1 axis in osteoclast differentiation is mainly dependent on activating the JNK pathway. Further, in addition to the common viewpoint that JNK is activated by IRE1 via its kinase activity, we found that JNK can act upstream and regulate the endoribonuclease activity of IRE1 to promote XBP1 splicing. Both SecinH3 and silencing of cytohesin-2 inhibit JNK activation and IRE1 endoribonuclease activity, leading to the suppression of osteoclast differentiation. Taken together, our findings add new insights into the regulation between JNK and IRE1, and reveal that inhibiting the cytohesin-2/ARF1/JNK/IRE1 axis might represent a potential new strategy for the treatment of post-menopause osteoporosis.


Assuntos
Fatores de Ribosilação do ADP , Osteoporose , Humanos , Fatores de Ribosilação do ADP/fisiologia , Osteoclastos/metabolismo , Fator 6 de Ribosilação do ADP , Osteoporose/tratamento farmacológico , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases
14.
EMBO Rep ; 21(9): e49898, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32648345

RESUMO

Nutrient sensing by the mTOR complex 1 (mTORC1) requires its translocation to the lysosomal membrane. Upon amino acids removal, mTORC1 becomes cytosolic and inactive, yet its precise subcellular localization and the mechanism of inhibition remain elusive. Here, we identified Aster-C as a negative regulator of mTORC1 signaling. Aster-C earmarked a special rough ER subdomain where it sequestered mTOR together with the GATOR2 complex to prevent mTORC1 activation during nutrient starvation. Amino acids stimulated rapid disassociation of mTORC1 from Aster-C concurrently with assembly of COP I vesicles which escorted mTORC1 to the lysosomal membrane. Consequently, ablation of Aster-C led to spontaneous activation of mTORC1 and dissociation of TSC2 from lysosomes, whereas inhibition of COP I vesicle biogenesis or actin dynamics prevented mTORC1 activation. Together, these findings identified Aster-C as a missing link between lysosomal trafficking and mTORC1 activation by revealing an unexpected role of COP I vesicles in mTORC1 signaling.


Assuntos
Complexo I de Proteína do Envoltório , Lisossomos , Complexo I de Proteína do Envoltório/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transporte Proteico , Transdução de Sinais
15.
BMC Biol ; 19(1): 194, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493279

RESUMO

BACKGROUND: KDEL receptor helps establish cellular equilibrium in the early secretory pathway by recycling leaked ER-chaperones to the ER during secretion of newly synthesized proteins. Studies have also shown that KDEL receptor may function as a signaling protein that orchestrates membrane flux through the secretory pathway. We have recently shown that KDEL receptor is also a cell surface receptor, which undergoes highly complex itinerary between trans-Golgi network and the plasma membranes via clathrin-mediated transport carriers. Ironically, however, it is still largely unknown how KDEL receptor is distributed to the Golgi at steady state, since its initial discovery in late 1980s. RESULTS: We used a proximity-based in vivo tagging strategy to further dissect mechanisms of KDEL receptor trafficking. Our new results reveal that ACBD3 may be a key protein that regulates KDEL receptor trafficking via modulation of Arf1-dependent tubule formation. We demonstrate that ACBD3 directly interact with KDEL receptor and form a functionally distinct protein complex in ArfGAPs-independent manner. Depletion of ACBD3 results in re-localization of KDEL receptor to the ER by inducing accelerated retrograde trafficking of KDEL receptor. Importantly, this is caused by specifically altering KDEL receptor interaction with Protein Kinase A and Arf1/ArfGAP1, eventually leading to increased Arf1-GTP-dependent tubular carrier formation at the Golgi. CONCLUSIONS: These results suggest that ACBD3 may function as a negative regulator of PKA activity on KDEL receptor, thereby restricting its retrograde trafficking in the absence of KDEL ligand binding. Since ACBD3 was originally identified as PAP7, a PBR/PKA-interacting protein at the Golgi/mitochondria, we propose that Golgi-localization of KDEL receptor is likely to be controlled by its interaction with ACBD3/PKA complex at steady state, providing a novel insight for establishment of cellular homeostasis in the early secretory pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Complexo de Golgi , Receptores de Peptídeos , Membrana Celular , Proteínas Quinases Dependentes de AMP Cíclico
16.
Traffic ; 20(10): 741-751, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31313456

RESUMO

Heterotetrameric clathrin adaptor protein complexes (APs) orchestrate the formation of coated vesicles for transport among organelles of the cell periphery. AP1 binds membranes enriched for phosphatidylinositol 4-phosphate, such as the trans Golgi network, while AP2 associates with phosphatidylinositol 4,5-bisphosphate of the plasma membrane. At their respective membranes, AP1 and AP2 bind the cytoplasmic tails of transmembrane protein cargo and clathrin triskelions, thereby coupling cargo recruitment to coat polymerization. Structural, biochemical and genetic studies have revealed that APs undergo conformational rearrangements and reversible phosphorylation to cycle between different activity states. While membrane, cargo and clathrin have been demonstrated to promote AP activation, growing evidence supports that membrane-associated proteins such as Arf1 and FCHo also stimulate this transition. APs may be returned to the inactive state via a regulated process involving phosphorylation and a protein called NECAP. Finally, because antiviral mechanisms often rely on appropriate trafficking of membrane proteins, viruses have evolved novel strategies to evade host defenses by influencing the conformation of APs. This review will cover recent advances in our understanding of the molecular inputs that stimulate AP1 and AP2 to adopt structurally and functionally distinct configurations.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Sítio Alostérico , Complexo 1 de Proteínas Adaptadoras/química , Complexo 2 de Proteínas Adaptadoras/química , Regulação Alostérica , Animais , Clatrina/química , Clatrina/metabolismo , Humanos
17.
J Biol Chem ; 295(10): 2890-2899, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32019866

RESUMO

Nutrient sensing by cells is crucial, and when this sensing mechanism is disturbed, human disease can occur. mTOR complex 1 (mTORC1) senses amino acids to control cell growth, metabolism, and autophagy. Leucine, arginine, and methionine signal to mTORC1 through the well-characterized Rag GTPase signaling pathway. In contrast, glutamine activates mTORC1 through a Rag GTPase-independent mechanism that requires ADP-ribosylation factor 1 (Arf1). Here, using several biochemical and genetic approaches, we show that eight amino acids filter through the Rag GTPase pathway. Like glutamine, asparagine signals to mTORC1 through Arf1 in the absence of the Rag GTPases. Both the Rag-dependent and Rag-independent pathways required the lysosome and lysosomal function for mTORC1 activation. Our results show that mTORC1 is differentially regulated by amino acids through two distinct pathways.


Assuntos
Asparagina/metabolismo , Glutamina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fator 1 de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aminoácidos/química , Aminoácidos/farmacologia , Animais , Asparagina/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Meios de Cultura/química , Meios de Cultura/farmacologia , Glutamina/química , Células HEK293 , Humanos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Fosforilação , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia
18.
Arch Biochem Biophys ; 709: 108967, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34157295

RESUMO

Circular dorsal ruffles (CDRs) are a kind of special ring-shaped membrane structure rich in F-actin, it is highly involved in the invasion-metastasis of tumor. Shear stress is one of the biophysical elements that affects the fate of tumor cells. However, how shear stress contributes to the CDRs formation is still unclear. In this study, we found that shear stress stimulated the formation of CDRs and promoted the migration of human breast MDA-MB-231 carcinoma cells. Integrin-linked kinase (ILK) mediated the recruiting of ADP-ribosylation factors (ARAP1/Arf1) to CDRs. Meanwhile, the transfection of ARAP1 or Arf1 mutant decreased the number of cells with CDRs, the CDRs areas and perimeters, thus blocked the cancer cell migration. This indicated that the ARAP1/Arf1 were necessary for the CDRs formation and cancer cell migration. Further study revealed that shear stress could stimulate the formation of intracellular macropinocytosis (MPS) thus promoted the ARAP1/Arf1 transportation to early endosome to regulate cancer cell migration after the depolymerization of CDRs. Our study elucidates that the CDRs formation is essential in shear stress-induced breast cancer cell migration, which provides a new research target for exploring the cytoskeletal mechanisms of breast cancer malignance.


Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Movimento Celular/fisiologia , Extensões da Superfície Celular/metabolismo , Neoplasias/metabolismo , Fator 1 de Ribosilação do ADP/metabolismo , Citoesqueleto de Actina/química , Actinas/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/ultraestrutura , Extensões da Superfície Celular/química , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Neoplasias/patologia , Pinocitose/fisiologia , Polimerização , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Mecânico
19.
Pharmacol Res ; 169: 105656, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33964470

RESUMO

Non-small cell lung cancer (NSCLC) is one of the most frequently diagnosed cancers and the leading causes of cancer death worldwide. Therefore, new therapeutic agents are urgently needed to improve patient outcomes. Plumbagin (PLB), a natural sesquiterpene present in many Chinese herbal medicines, has been reported for its anti-cancer activity in various cancer cells. In this study, the effects and underlying mechanisms of PLB on the tumorigenesis of NSCLC were investigated. PLB dose-dependently inhibited the growth of NSCLC cell lines. PLB promoted ROS production, activated the endoplasmic reticulum (ER) stress pathway, and induced cell apoptosis, accompanied by the decreased expression level of ADP-ribosylation factor 1 (ARF1) in NSCLC cancer cells, and those effects of PLB could be reversed by the pretreatment with N-acetyl-L-cysteine (NAC). More importantly, the calcium chelator (BM) significantly reversed PLB-induced cell apoptosis. Furthermore, PLB significantly inhibited the growth of both H1975 xenograft and LLC1 tumors and exhibited antitumor activity by enhancing the number and the effector function of CD8+ T cells in KRASLA2 mice model and the LLC1 xenograft. Our findings suggest that PLB exerts potent antitumor activity against NSCLC in vitro and in vivo through ARF1 downregulation and induction of antitumor immune response, indicating that PLB is a new novel therapeutic candidate for the treatment of patients with NSCLC.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Antineoplásicos Fitogênicos/uso terapêutico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Naftoquinonas/uso terapêutico , Animais , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Feminino , Ativação Linfocitária/efeitos dos fármacos , Camundongos Nus , Naftoquinonas/farmacologia , Transplante de Neoplasias
20.
Int J Mol Sci ; 22(1)2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401608

RESUMO

Golgi trafficking depends on the small GTPase Arf1 which, upon activation, drives the assembly of different coats onto budding vesicles. Two related types of guanine nucleotide exchange factors (GEFs) activate Arf1 at different Golgi sites. In yeast, Gea1 in the cis-Golgi and Gea2 in the medial-Golgi activate Arf1 to form COPI-coated vesicles for retrograde cargo sorting, whereas Sec7 generates clathrin/adaptor-coated vesicles at the trans-Golgi network (TGN) for forward cargo transport. A central question is how the same activated Arf1 protein manages to assemble different coats depending on the donor Golgi compartment. A previous study has postulated that the interaction between Gea1 and COPI would channel Arf1 activation for COPI vesicle budding. Here, we found that the p24 complex, a major COPI vesicle cargo, promotes the binding of Gea1 with COPI by increasing the COPI association to the membrane independently of Arf1 activation. Furthermore, the p24 complex also facilitates the interaction of Arf1 with its COPI effector. Therefore, our study supports a mechanism by which the p24 complex contributes to program Arf1 activation by Gea1 for selective COPI coat assembly at the cis-Golgi compartment.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fator 1 de Ribosilação do ADP/genética , Complexo I de Proteína do Envoltório/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA