Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(5): e2217272120, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36689663

RESUMO

Regenerative abilities and their evolution in the different animal lineages have fascinated generations of biologists. While some taxa are capable of restoring entire individuals from small body fragments, others can regrow only specific structures or lack structural regeneration completely. In contrast to many other protostomes, including the segmented annelids, molting animals (Ecdysozoa) are commonly considered incapable of primary body axis regeneration, which has been hypothesized to be linked to the evolution of their protective cuticular exoskeleton. This holds also for the extraordinarily diverse, segmented arthropods. Contradicting this long-standing paradigm, we here show that immatures of the sea spider Pycnogonum litorale reestablish the posterior body pole after transverse amputation and can regrow almost complete segments and the terminal body region, including the hindgut, anus, and musculature. Depending on the amputation level, normal phenotypes or hypomeric six-legged forms develop. Remarkably, also the hypomeric animals regain reproductive functionality by ectopic formation of gonoducts and gonopores. The discovery of such complex regenerative patterns in an extant arthropod challenges the hitherto widely assumed evolutionary loss of axial regeneration during ecdysozoan evolution. Rather, the branching of sea spiders at the base of Chelicerata and their likely ancestral anamorphic development suggests that the arthropod stem species may have featured similar regenerative capabilities. Accordingly, our results provide an incentive for renewed comparative regeneration studies across ecdysozoans, with the aim to resolve whether this trait was potentially even inherited from the protostome ancestor.


Assuntos
Anelídeos , Artrópodes , Animais , Muda , Filogenia , Artrópodes/genética , Regeneração
2.
Bioessays ; 45(3): e2200167, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36693795

RESUMO

Paleoneuranatomy is an emerging subfield of paleontological research with great potential for the study of evolution. However, the interpretation of fossilized nervous tissues is a difficult task and presently lacks a rigorous methodology. We critically review here cases of neural tissue preservation reported in Cambrian arthropods, following a set of fundamental paleontological criteria for their recognition. These criteria are based on a variety of taphonomic parameters and account for morphoanatomical complexity. Application of these criteria shows that firm evidence for fossilized nervous tissues is less abundant and detailed than previously reported, and we synthesize here evidence that has stronger support. We argue that the vascular system, and in particular its lacunae, may be central to the understanding of many of the fossilized peri-intestinal features known across Cambrian arthropods. In conclusion, our results suggest the need for caution in the interpretation of evidence for fossilized neural tissue, which will increase the accuracy of evolutionary scenarios. Also see the video abstract here: https://youtu.be/2_JlQepRTb0.


Assuntos
Artrópodes , Tecido Nervoso , Animais , Evolução Biológica , Fósseis , Artrópodes/anatomia & histologia , Artrópodes/fisiologia , Paleontologia
3.
BMC Biol ; 22(1): 135, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867210

RESUMO

BACKGROUND: Evolution of novelty is a central theme in evolutionary biology, yet studying the origins of traits with an apparently discontinuous origin remains a major challenge. Venom systems are a well-suited model for the study of this phenomenon because they capture several aspects of novelty across multiple levels of biological complexity. However, while there is some knowledge on the evolution of individual toxins, not much is known about the evolution of venom systems as a whole. One way of shedding light on the evolution of new traits is to investigate less specialised serial homologues, i.e. repeated traits in an organism that share a developmental origin. This approach can be particularly informative in animals with repetitive body segments, such as centipedes. RESULTS: Here, we investigate morphological and biochemical aspects of the defensive telopodal glandular organs borne on the posterior legs of venomous stone centipedes (Lithobiomorpha), using a multimethod approach, including behavioural observations, comparative morphology, proteomics, comparative transcriptomics and molecular phylogenetics. We show that the anterior venom system and posterior telopodal defence system are functionally convergent serial homologues, where one (telopodal defence) represents a model for the putative early evolutionary state of the other (venom). Venom glands and telopodal glandular organs appear to have evolved from the same type of epidermal gland (four-cell recto-canal type) and while the telopodal defensive secretion shares a great degree of compositional overlap with centipede venoms in general, these similarities arose predominantly through convergent recruitment of distantly related toxin-like components. Both systems are composed of elements predisposed to functional innovation across levels of biological complexity that range from proteins to glands, demonstrating clear parallels between molecular and morphological traits in the properties that facilitate the evolution of novelty. CONCLUSIONS: The evolution of the lithobiomorph telopodal defence system provides indirect empirical support for the plausibility of the hypothesised evolutionary origin of the centipede venom system, which occurred through functional innovation and gradual specialisation of existing epidermal glands. Our results thus exemplify how continuous transformation and functional innovation can drive the apparent discontinuous emergence of novelties on higher levels of biological complexity.


Assuntos
Artrópodes , Animais , Artrópodes/fisiologia , Venenos de Artrópodes/química , Evolução Biológica , Transcriptoma , Filogenia
4.
Mol Biol Evol ; 40(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36798978

RESUMO

Despite an abundance of gene expression surveys, comparatively little is known about Hox gene function in Chelicerata. Previous investigations of paralogs of labial (lab) and Deformed (Dfd) in a spider have shown that these play a role in tissue maintenance of the pedipalp segment (lab-1) and in patterning the first walking leg identity (Dfd-1), respectively. However, extrapolations of these data across chelicerates are hindered by the existence of duplicated Hox genes in arachnopulmonates (e.g., spiders and scorpions), which have resulted from an ancient whole genome duplication (WGD) event. Here, we investigated the function of the single-copy ortholog of lab in the harvestman Phalangium opilio, an exemplar of a lineage that was not subject to this WGD. Embryonic RNA interference against lab resulted in two classes of phenotypes: homeotic transformations of pedipalps to chelicerae, as well as reduction and fusion of the pedipalp and leg 1 segments. To test for combinatorial function, we performed a double knockdown of lab and Dfd, which resulted in a homeotic transformation of both pedipalps and the first walking legs into cheliceral identity, whereas the second walking leg is transformed into a pedipalpal identity. Taken together, these results elucidate a model for the Hox logic of head segments in Chelicerata. To substantiate the validity of this model, we performed expression surveys for lab and Dfd paralogs in scorpions and horseshoe crabs. We show that repetition of morphologically similar appendages is correlated with uniform expression levels of the Hox genes lab and Dfd, irrespective of the number of gene copies.


Assuntos
Aracnídeos , Aranhas , Animais , Aranhas/genética , Genes Homeobox , Escorpiões/genética , Fenótipo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
5.
Dev Genes Evol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980376

RESUMO

Folsomia candida is a tiny soil-living arthropod belonging to the Collembola, which is an outgroup to Insecta. It resembles insects as having a pair of antennae and three pairs of thorax legs, while it also possesses three abdominal appendages: a ventral tube located in the first abdominal segment (A1), a retinaculum in A3, and a furca in A4. Collembolan Ubx and AbdA specify abdominal appendages, but they are unable to repress appendage marker gene Dll. The genetic basis of collembolan appendage formation and the mechanisms by which Ubx and AbdA regulate Dll transcription and appendage development remains unknown. In this study, we analysed the developmental transcriptomes of F. candida and identified candidate appendage formation genes, including Ubx (FcUbx). The expression data revealed the dominance of Dll over Ubx during the embryonic 3.5 and 4.5 days, suggesting that Ubx is deficient in suppressing Dll at early appendage formation stages. Furthermore, via electrophoretic mobility shift assays and dual luciferase assays, we found that the binding and repression capacity of FcUbx on Drosophila Dll resembles those of the longest isoform of Drosophila Ubx (DmUbx_Ib), while the regulatory mechanism of the C-terminus of FcUbx on Dll repression is similar to that of the crustacean Artemia franciscana Ubx (AfUbx), demonstrating that the function of collembolan Ubx is intermediate between that of Insecta and Crustacea. In summary, our study provides novel insights into collembolan appendage formation and sheds light on the functional evolution of Ubx. Additionally, we propose a model that collembolan Ubx regulates abdominal segments in a context-specific manner.

6.
Biol Lett ; 20(5): 20240015, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38807548

RESUMO

Autotomy refers to self-amputation where the loss of a limb or organ is generally said to be (1) in response to stressful external stimuli; (2) voluntary and nervously mediated; (3) supported by adaptive features that increase efficiency and simultaneously mediate the cost; and (4) morphologically delineated by a predictable breakage plane. It is estimated that this phenomenon has evolved independently nine different times across the animal kingdom, appearing in many different taxa, including vertebrate and invertebrate as well as aquatic and terrestrial animals. Marine invertebrates use this behaviour in a diversity of manners that have yet to be globally reviewed and critically examined. Here, published data from marine invertebrate taxa were used to explore instances of injury as an evolutionary driver of autotomy. Findings suggest that phyla (e.g. Echinodermata and Arthropoda) possibly experiencing high rates of injury (tissue damage or loss) are more likely to be able to perform autotomy. Additionally, this review looks at various morphological, physiological and environmental conditions that have either driven the evolution or maintained the behaviour of autotomy in marine invertebrates. Finally, the use of autotomic abilities in the development of more sustainable and less ecologically invasive fisheries is explored.


Assuntos
Organismos Aquáticos , Evolução Biológica , Invertebrados , Animais , Invertebrados/fisiologia , Invertebrados/anatomia & histologia , Organismos Aquáticos/fisiologia , Regeneração , Pesqueiros
7.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34862323

RESUMO

In less than 25 y, the field of animal genome science has transformed from a discipline seeking its first glimpses into genome sequences across the Tree of Life to a global enterprise with ambitions to sequence genomes for all of Earth's eukaryotic diversity [H. A. Lewin et al., Proc. Natl. Acad. Sci. U.S.A. 115, 4325-4333 (2018)]. As the field rapidly moves forward, it is important to take stock of the progress that has been made to best inform the discipline's future. In this Perspective, we provide a contemporary, quantitative overview of animal genome sequencing. We identified the best available genome assemblies in GenBank, the world's most extensive genetic database, for 3,278 unique animal species across 24 phyla. We assessed taxonomic representation, assembly quality, and annotation status for major clades. We show that while tremendous taxonomic progress has occurred, stark disparities in genomic representation exist, highlighted by a systemic overrepresentation of vertebrates and underrepresentation of arthropods. In terms of assembly quality, long-read sequencing has dramatically improved contiguity, whereas gene annotations are available for just 34.3% of taxa. Furthermore, we show that animal genome science has diversified in recent years with an ever-expanding pool of researchers participating. However, the field still appears to be dominated by institutions in the Global North, which have been listed as the submitting institution for 77% of all assemblies. We conclude by offering recommendations for improving genomic resource availability and research value while also broadening global representation.


Assuntos
Artrópodes/genética , Bases de Dados Genéticas , Genoma/genética , Genômica , Vertebrados/genética , Animais , Cordados/genética , Sequenciamento de Nucleotídeos em Larga Escala , Invertebrados/genética , Análise de Sequência de DNA
8.
Dev Dyn ; 252(1): 172-185, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35112412

RESUMO

BACKGROUND: Development of the nervous system and the correct connection of nerve cells require coordinated axonal pathfinding through an extracellular matrix. Outgrowing axons exhibit directional growth toward or away from external guidance cues such as Netrin. Guidance cues can be detected by growth cones that are located at the end of growing axons through membrane-bound receptors such as Uncoordianted-5 and Frazzled. Binding of Netrin causes reformation of the cytoskeleton and growth of the axon toward (or away from) the source of Netrin production. RESULTS: Here, we investigate the embryonic mRNA expression patterns of netrin genes and their potential receptors, uncoordinated-5 and frazzled in arthropod species that cover all main branches of Arthropoda, that is, Pancrustacea, Myriapoda, and Chelicerata. We also studied the expression patterns in a closely related outgroup species, the onychophoran Euperipatoides kanangrensis, and provide data on expression profiles of these genes in larval tissues of the fly Drosophila melanogaster including the brain and the imaginal disks. CONCLUSION: Our data reveal conserved and diverged aspects of neuronal guidance in Drosophila with respect to the other investigated species and suggest a conserved function in nervous system patterning of the developing appendages.


Assuntos
Artrópodes , Proteínas de Drosophila , Animais , Netrinas/genética , Netrinas/metabolismo , Drosophila melanogaster/genética , Artrópodes/genética , Artrópodes/metabolismo , Orientação de Axônios , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Axônios/metabolismo , Receptores de Netrina/metabolismo
9.
Dev Biol ; 492: 187-199, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36272560

RESUMO

Across eumetazoans, the ability to perceive and respond to visual stimuli is largely mediated by opsins, a family of proteins belonging to the G protein-coupled receptor (GPCR) superclass. Lineage-specific gains and losses led to a striking diversity in the numbers, types, and spectral sensitivities conferred by visual opsin gene expression. Here, we review the diversity of visual opsins and differences in opsin gene expression from well-studied protostome, invertebrate deuterostome, and cnidarian groups. We discuss the functional significance of opsin expression differences and spectral tuning among lineages. In some cases, opsin evolution has been linked to the detection of relevant visual signals, including sexually selected color traits and host plant features. In other instances, variation in opsins has not been directly linked to functional or ecological differences. Overall, the array of opsin expression patterns and sensitivities across invertebrate lineages highlight the diversity of opsins in the eumetazoan ancestor and the labile nature of opsins over evolutionary time.


Assuntos
Cnidários , Opsinas , Animais , Opsinas/genética , Cnidários/genética , Evolução Molecular , Filogenia , Invertebrados , Opsinas de Bastonetes/genética
10.
Proc Natl Acad Sci U S A ; 117(16): 8966-8972, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32253305

RESUMO

Identifying marine or freshwater fossils that belong to the stem groups of the major terrestrial arthropod radiations is a longstanding challenge. Molecular dating and fossils of their pancrustacean sister group predict that myriapods originated in the Cambrian, much earlier than their oldest known fossils, but uncertainty about stem group Myriapoda confounds efforts to resolve the timing of the group's terrestrialization. Among a small set of candidates for membership in the stem group of Myriapoda, the Cambrian to Triassic euthycarcinoids have repeatedly been singled out. The only known Devonian euthycarcinoid, Heterocrania rhyniensis from the Rhynie and Windyfield cherts hot spring complex in Scotland, reveals details of head structures that constrain the evolutionary position of euthycarcinoids. The head capsule houses an anterior cuticular tentorium, a feature uniquely shared by myriapods and hexapods. Confocal microscopy recovers myriapod-like characters of the preoral chamber, such as a prominent hypopharynx supported by tentorial bars and superlinguae between the mandibles and hypopharynx, reinforcing an alliance between euthycarcinoids and myriapods recovered in recent phylogenetic analysis. The Cambrian occurrence of the earliest euthycarcinoids supplies the oldest compelling evidence for an aquatic stem group for either Myriapoda or Hexapoda, previously a lacuna in the body fossil record of these otherwise terrestrial lineages until the Silurian and Devonian, respectively. The trace fossil record of euthycarcinoids in the Cambrian and Ordovician reveals amphibious locomotion in tidal environments and fills a gap between molecular estimates for myriapod origins in the Cambrian and a post-Ordovician crown group fossil record.


Assuntos
Artrópodes/fisiologia , Evolução Molecular , Fósseis , Especiação Genética , Distribuição Animal , Animais , Água Doce , Filogenia , Água do Mar , Fatores de Tempo
11.
Proc Biol Sci ; 289(1989): 20221765, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36541173

RESUMO

Arthropods are characterized by having an exoskeleton, paired jointed appendages and segmented body. The number and shape of those segments vary dramatically and unravelling the evolution of segmentation is fundamental to our understanding of arthropod diversification. Because trilobites added segments to the body post-hatching which were expressed and preserved in biomineralized exoskeletal sclerites, their fossil record provides an excellent system for understanding the early evolution of segmentation in arthropods. Over the last 200 years, palaeontologists have hypothesized trends in segment number and allocation in the trilobite body, but they have never been rigorously tested. We tabulated the number of segments in the post-cephalic body for over 1500 species, selected to maximize taxonomic, geographical and temporal representation. Analysis reveals long-term shifts in segment number and allocation over the 250-million-year evolutionary history of the clade. For most of the Palaeozoic, the median number of segments in the body did not change. Instead, the total range decreased over time and there was long-term increase in the proportion of segments allocated to the fused terminal sclerite relative to the articulated thoracic region. There was also increased conservation of thoracic segment number within families. Neither taxonomic turnover nor trends in functionally relevant defensive behaviour sufficiently explain these patterns.


Assuntos
Artrópodes , Evolução Biológica , Humanos , Animais , Fósseis
12.
Genomics ; 113(6): 4163-4172, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748900

RESUMO

This analysis presents five genome assemblies of four Notostraca taxa. Notostraca origin dates to the Permian/Upper Devonian and the extant forms show a striking morphological similarity to fossil taxa. The comparison of sequenced genomes with other Branchiopoda genomes shows that, despite the morphological stasis, Notostraca share a dynamic genome evolution with high turnover for gene families' expansion/contraction and a transposable elements content comparable to other branchiopods. While Notostraca substitutions rate appears similar or lower in comparison to other branchiopods, a subset of genes shows a faster evolutionary pace, highlighting the difficulty of generalizing about genomic stasis versus dynamism. Moreover, we found that the variation of Triops cancriformis transposable elements content appeared linked to reproductive strategies, in line with theoretical expectations. Overall, besides providing new genomic resources for the study of these organisms, which appear relevant for their ecology and evolution, we also confirmed the decoupling of morphological and molecular evolution.


Assuntos
Crustáceos , Evolução Molecular , Animais , Crustáceos/genética , Genômica , Larva , Filogenia
13.
BMC Genomics ; 22(1): 562, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34289811

RESUMO

BACKGROUND: Arthropoda, the most numerous and diverse metazoan phylum, has species in many habitats where they encounter various microorganisms and, as a result, mechanisms for pathogen recognition and elimination have evolved. The Toll pathway, involved in the innate immune system, was first described as part of the developmental pathway for dorsal-ventral differentiation in Drosophila. Its later discovery in vertebrates suggested that this system was extremely conserved. However, there is variation in presence/absence, copy number and sequence divergence in various genes along the pathway. As most studies have only focused on Diptera, for a comprehensive and accurate homology-based approach it is important to understand gene function in a number of different species and, in a group as diverse as insects, the use of species belonging to different taxonomic groups is essential. RESULTS: We evaluated the diversity of Toll pathway gene families in 39 Arthropod genomes, encompassing 13 different Insect Orders. Through computational methods, we shed some light into the evolution and functional annotation of protein families involved in the Toll pathway innate immune response. Our data indicates that: 1) intracellular proteins of the Toll pathway show mostly species-specific expansions; 2) the different Toll subfamilies seem to have distinct evolutionary backgrounds; 3) patterns of gene expansion observed in the Toll phylogenetic tree indicate that homology based methods of functional inference might not be accurate for some subfamilies; 4) Spatzle subfamilies are highly divergent and also pose a problem for homology based inference; 5) Spatzle subfamilies should not be analyzed together in the same phylogenetic framework; 6) network analyses seem to be a good first step in inferring functional groups in these cases. We specifically show that understanding Drosophila's Toll functions might not indicate the same function in other species. CONCLUSIONS: Our results show the importance of using species representing the different orders to better understand insect gene content, origin and evolution. More specifically, in intracellular Toll pathway gene families the presence of orthologues has important implications for homology based functional inference. Also, the different evolutionary backgrounds of Toll gene subfamilies should be taken into consideration when functional studies are performed, especially for TOLL9, TOLL, TOLL2_7, and the new TOLL10 clade. The presence of Diptera specific clades or the ones lacking Diptera species show the importance of overcoming the Diptera bias when performing functional characterization of Toll pathways.


Assuntos
Fator 88 de Diferenciação Mieloide , Receptores Toll-Like , Animais , Evolução Molecular , Fator 88 de Diferenciação Mieloide/genética , Filogenia , Transdução de Sinais , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
14.
Mol Genet Genomics ; 296(3): 513-526, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33625598

RESUMO

Repetitive DNAs comprise large portion of eukaryote genomes. In genome projects, the assembly of repetitive DNAs is challenging due to the similarity between repeats, which generate ambiguities for alignment. Fluorescence in situ hybridization (FISH) is a powerful technique for the physical mapping of various sequences on chromosomes. This technique is thus very helpful in chromosome-based genome assemblies, providing information on the fine architecture of genomes and their evolution. However, various protocols are currently used for FISH mapping, most of which are relatively laborious and expensive, or work properly only with a specific type of probes or sequences, and there is a need for a universal and affordable FISH protocol. Here we tested a FISH protocol for mapping of different DNA repeats, such as multigene families (rDNAs, U snDNAs, histone genes), satellite DNAs, microsatellites, transposable elements, DOP-PCR products, and telomeric motif (TTAGG)n, on the chromosomes of various insects and other arthropods. Different cell types and stages obtained from diverse tissues were used. The FISH procedure proved high quality and reliable results in all experiments performed. We obtained data on the chromosomal distribution of DNA repeats in representatives of insects and other arthropods. Thus, our results allow us to conclude that the protocol is universal and requires only time adjustment for chromosome/DNA denaturation. The use of this FISH protocol will facilitate studies focused on understanding the evolution and role of repetitive DNA in arthropod genomes.


Assuntos
Artrópodes/genética , Mapeamento Cromossômico/métodos , DNA/genética , Hibridização in Situ Fluorescente/métodos , Insetos/genética , Sequências Repetitivas de Ácido Nucleico/genética , Animais , Evolução Molecular , Fluorescência , Família Multigênica/genética , Telômero/genética
15.
Cell Tissue Res ; 384(3): 703-720, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33835258

RESUMO

Arthropods are the most diversified animals on Earth. The morphology of the digestive system has been widely studied in insects; however, crustaceans have received comparatively little attention. This study describes the hindgut tract of the common spider crab Maja brachydactyla Balss, 1922, in larvae and adults using dissection, light and electron microscopical analyses. The hindgut tract maintains a similar general shape in larvae and adults. Major differences among stages are found in the morphology of epithelial cells and microspines, the thickness of the cuticle and connective-like tissue, and the presence of rosette glands (only in adults). Here, we provide the description of the sub-cellular structure of the folds, epithelium (conformed by tendon cells), musculature, and microspines of the hindgut of larvae and adults of M. brachydactyla. The morphological features of the hindgut of M. brachydactyla are compared with those of other arthropods (Insecta, Myriapoda and Arachnida). Our results suggest that the morphology of the hindgut is associated mainly with transport of faeces. In adults, the hindgut may also exert an osmoregulatory function, as described in other arthropods. At difference from holometabolous insets, the hindgut of M. brachydactyla (Decapoda) does not undergo a true metamorphic change during development, but major changes observed between larval and adult stages might respond to the different body size between life stages.


Assuntos
Braquiúros/ultraestrutura , Sistema Digestório/ultraestrutura , Larva/ultraestrutura , Animais
16.
J Anat ; 239(5): 1182-1195, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34131910

RESUMO

Chelicerata, the second largest subphylum of Arthropoda, includes invertebrates with a wide range of body size. Pseudoscorpions are among small or miniature chelicerates which exhibit several morphological, anatomical, and developmental features related to miniaturization, e.g., replacement of book lungs by tracheae, unpaired gonads, and matrotrophic development of the embryos outside the female body, in the brood sac. In this paper, we show the ovary structure of two pseudoscorpion species, Cheiridium museorum and Apocheiridium ferum (Cheiridiidae). Both cheiridiids are one of the smallest pseudoscorpions. The results of our observations conducted in light, transmission electron, and confocal microscopy demonstrate that the ovary of C. museorum and A. ferum, displays a significant structural difference that is unusual for chelicerates. The difference concerns the spatially restricted position of the germarium. We show that such ovary architecture results in a significantly reduced number of growing oocytes and in consequence a reduced number of deposited eggs. A centrally located germarium implies also a modified pattern of ovary development during oocyte growth due to long distance migration of the germline and the accompanying somatic cells. Herein, we postulate that such an ovary structure is related to the pseudoscorpion's small body size and it is a step towards miniaturization in the smaller pseudoscorpions species.


Assuntos
Aracnídeos , Ovário , Animais , Tamanho Corporal , Feminino , Miniaturização , Oogênese
17.
Oecologia ; 195(4): 873-885, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33792777

RESUMO

Trait-environment interactions have contributed to the remarkable plant radiations in the Cape Floristic Region (CFR) of southern Africa. Whether such interactions have also resulted in the diversification of the invertebrate fauna, independently of direct associations with plants is, however, not clear. One candidate where this may be the case is the unusually diverse Collembola genus Seira. Including 89 species in the CFR, many of which are localised habitat specialists, this genus includes many species inhabiting the warm, dry fynbos shrubland-a habitat atypical of usually desiccation-sensitive Collembola. Here, we investigate whether desiccation tolerance may have contributed to the considerable diversity of Seira in the CFR. First, we demonstrate, by measuring vapour pressure deficits (VPD) of the species' microhabitats (fynbos shrubland and moister Afrotemperate Forests), that the fynbos shrublands are dry environments (mean ± S.E. maximum VPD 5.2 ± 0.1 kPa) compared with the Afrotemperate Forest patches (0.3 ± 0.02 kPa) during the summer activity period of Seira. Then we show that Seira species living in these shrublands are more desiccation tolerant (mean ± S.E. survival time at 76% relative humidity: 74.3 ± 3.3 h) than their congeners in the cooler, moister Afrotemperate Forests (34.3 ± 2.8 h), and compared with Collembola species globally (3.7 ± 0.2 h). These results, and a previous demonstration of pronounced thermal tolerance in the fynbos shrubland species, suggest that the diversity of Seira in the CFR is at least partly due to pronounced desiccation and thermal tolerance, which has enabled species in the genus to exploit the hot and dry habitats of the CFR.


Assuntos
Artrópodes , Dessecação , Animais , Ecossistema , Filogenia , Plantas
18.
Gen Comp Endocrinol ; 303: 113708, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33388363

RESUMO

Peptides are the largest and most diverse class of molecules modulating physiology and behavior. Previously, we predicted a peptidome for the western tarnished plant bug, Lygus hesperus, using transcriptomic data produced from whole individuals. A potential limitation of that analysis was the masking of underrepresented genes, in particular tissue-specific transcripts. Here, we reassessed the L. hesperus peptidome using a more comprehensive dataset comprised of the previous transcriptomic data as well as tissue-specific reads produced from heads and accessory glands. This augmented assembly significantly improves coverage depth providing confirmatory transcripts for essentially all of the previously identified families and new transcripts encoding a number of new peptide precursors corresponding to 14 peptide families. Several families not targeted in our initial study were identified in the expanded assembly, including agatoxin-like peptide, CNMamide, neuropeptide-like precursor 1, and periviscerokinin. To increase confidence in the in silico data, open reading frames of a subset of the newly identified transcripts were amplified using RT-PCR and sequence validated. Further PCR-based profiling of the putative L. hesperus agatoxin-like peptide precursor revealed evidence of alternative splicing with near ubiquitous expression across L. hesperus development, suggesting the peptide serves functional roles beyond that of a toxin. The peptides predicted here, in combination with those identified in our earlier study, expand the L. hesperus peptidome to 42 family members and provide an improved platform for initiating molecular and physiological investigations into peptidergic functionality in this non-model agricultural pest.


Assuntos
Heterópteros , Transcriptoma , Animais , Clonagem Molecular , Heterópteros/genética , Plantas , Reação em Cadeia da Polimerase , Transcriptoma/genética
19.
Proc Natl Acad Sci U S A ; 115(21): 5323-5331, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29784780

RESUMO

Euarthropoda is one of the best-preserved fossil animal groups and has been the most diverse animal phylum for over 500 million years. Fossil Konservat-Lagerstätten, such as Burgess Shale-type deposits (BSTs), show the evolution of the euarthropod stem lineage during the Cambrian from 518 million years ago (Ma). The stem lineage includes nonbiomineralized groups, such as Radiodonta (e.g., Anomalocaris) that provide insight into the step-by-step construction of euarthropod morphology, including the exoskeleton, biramous limbs, segmentation, and cephalic structures. Trilobites are crown group euarthropods that appear in the fossil record at 521 Ma, before the stem lineage fossils, implying a ghost lineage that needs to be constrained. These constraints come from the trace fossil record, which show the first evidence for total group Euarthropoda (e.g., Cruziana, Rusophycus) at around 537 Ma. A deep Precambrian root to the euarthropod evolutionary lineage is disproven by a comparison of Ediacaran and Cambrian lagerstätten. BSTs from the latest Ediacaran Period (e.g., Miaohe biota, 550 Ma) are abundantly fossiliferous with algae but completely lack animals, which are also missing from other Ediacaran windows, such as phosphate deposits (e.g., Doushantuo, 560 Ma). This constrains the appearance of the euarthropod stem lineage to no older than 550 Ma. While each of the major types of fossil evidence (BSTs, trace fossils, and biomineralized preservation) have their limitations and are incomplete in different ways, when taken together they allow a coherent picture to emerge of the origin and subsequent radiation of total group Euarthropoda during the Cambrian.


Assuntos
Artrópodes/classificação , Evolução Biológica , Fósseis , Animais , Artrópodes/anatomia & histologia , Biota , Filogenia
20.
Proc Natl Acad Sci U S A ; 115(15): E3491-E3500, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581309

RESUMO

The jointed appendages of arthropods have facilitated the spectacular diversity and success of this phylum. Key to the regulation of appendage outgrowth is the Krüppel-like factor (KLF)/specificity protein (Sp) family of zinc finger transcription factors. In the fruit fly, Drosophila melanogaster, the Sp6-9 homolog is activated by Wnt-1/wingless (wg) and establishes ventral appendage (leg) fate. Subsequently, Sp6-9 maintains expression of the axial patterning gene Distal-less (Dll), which promotes limb outgrowth. Intriguingly, in spiders, Dll has been reported to have a derived role as a segmentation gap gene, but the evolutionary origin and regulation of this function are not understood because functional investigations of the appendage-patterning regulatory network are restricted to insects. We tested the evolutionary conservation of the ancestral appendage-patterning network of arthropods with a functional approach in the spider. RNAi-mediated knockdown of the spider Sp6-9 ortholog resulted in diminution or loss of Dll expression and truncation of appendages, as well as loss of the two body segments specified by the early Dll function. In reciprocal experiments, Dll is shown not to be required for Sp6-9 expression. Knockdown of arrow (Wnt-1 coreceptor) disrupted segmentation and appendage development but did not affect the early Sp6-9 expression domain. Ectopic appendages generated in the spider "abdomen" by knockdown of the Hox gene Antennapedia-1 (Antp-1) expressed Sp6-9 comparably to wild-type walking legs. Our results support (i) the evolutionary conservation of an appendage-patterning regulatory network that includes canonical Wnt signaling, Sp6-9, and Dll and (ii) the cooption of the Sp6-9/Dll regulatory cassette in arachnid head segmentation.


Assuntos
Padronização Corporal/genética , Aranhas/genética , Proteína Wnt1/genética , Animais , Aracnídeos/genética , Evolução Biológica , Evolução Molecular , Extremidades/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fenótipo , Interferência de RNA , Aranhas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA