Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 414(10): 3197-3204, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34350496

RESUMO

C-Reactive protein (CRP) is a biomarker of inflammatory responses and an index for assessing the risk of cardiovascular disease and estimating prognosis. In this study, we constructed a surface-enhanced Raman spectroscopy (SERS) biosensor composed of a multifunctional DNA three-way junction (DNA 3WJ), porous gold nanoplates (pAuNPs), and an Au-Te nanoworm structure for detection of CRP. The pAuNP and Au-Te nanostructures were synthesized by galvanic replacement reactions, and the morphology was confirmed by transmission electron microscopy, scanning electron microscopy, and dynamic light scattering (DLS). To generate the SERS signal, the Au-Te nanostructure was immobilized on an indium-tin oxide substrate, and the thiol-modified CRP aptamer was then self-assembled onto the modified substrate for CRP recognition. To amplify the SERS signal and identify the Raman tag, the multifunctional DNA 3WJ was conjugated with the pAuNPs, and each fragment of 3WJ was functionalized to biotin (pAuNP conjugation), methylene blue (Raman reporter), and CRP aptamer (target binding). The results were confirmed by gel electrophoresis. For conjugation between pAuNPs and DNA 3WJ, avidin was encapsulated in pAuNPs, and the conjugation structure was confirmed by DLS. The fabricated SERS biosensor showed detection limits of 2.23 pM in phosphate-buffered saline and 3.11 pM in diluted human serum. Overall, the proposed biosensor may have potential applications as a SERS biosensor platform.


Assuntos
Ouro , Nanopartículas Metálicas , Proteína C-Reativa , DNA/química , Ouro/química , Humanos , Nanopartículas Metálicas/química , Porosidade , Análise Espectral Raman/métodos
2.
Materials (Basel) ; 13(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708092

RESUMO

In the present study, we propose a novel biosensor platform using a gold-tellurium (Au-Te) nanoworm structure through surface-enhanced Raman spectroscopy (SERS). Au-Tenanoworm was synthesized by spontaneous galvanic replacement of sacrificial Te nanorods templated with Au (III) cations under ambient conditions. The fabricated Au-Te nanoworm exhibited an interconnected structure of small spherical nanoparticles and was found to be effective at enhancing Raman scattering. The Au-Te nanoworm-immobilized substrate exhibited the ability to detect thyroxine using an aptamer-tagged DNA three-way junction (3WJ) and glycoprotein 120 (GP120) human immunodeficiency virus (HIV) using an antibody. The modified substrates were investigated by scanning electron microscopy and atomic force microscopy (AFM). The optimal Au-Te nanoworm concentration and immobilization time for the thyroxine biosensor platform were further determined by SERS experimentation. Thus, the present study showed that the Au-Te nanoworm structure could be applied to various biosensor platforms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA