Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(26): 5766-5783.e25, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38134874

RESUMO

The enhanced cognitive abilities characterizing the human species result from specialized features of neurons and circuits. Here, we report that the hominid-specific gene LRRC37B encodes a receptor expressed in human cortical pyramidal neurons (CPNs) and selectively localized to the axon initial segment (AIS), the subcellular compartment triggering action potentials. Ectopic expression of LRRC37B in mouse CPNs in vivo leads to reduced intrinsic excitability, a distinctive feature of some classes of human CPNs. Molecularly, LRRC37B binds to the secreted ligand FGF13A and to the voltage-gated sodium channel (Nav) ß-subunit SCN1B. LRRC37B concentrates inhibitory effects of FGF13A on Nav channel function, thereby reducing excitability, specifically at the AIS level. Electrophysiological recordings in adult human cortical slices reveal lower neuronal excitability in human CPNs expressing LRRC37B. LRRC37B thus acts as a species-specific modifier of human neuron excitability, linking human genome and cell evolution, with important implications for human brain function and diseases.


Assuntos
Neurônios , Células Piramidais , Canais de Sódio Disparados por Voltagem , Animais , Humanos , Camundongos , Potenciais de Ação/fisiologia , Axônios/metabolismo , Neurônios/metabolismo , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(31): e2310120121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39058579

RESUMO

The axon initial segment (AIS) is a critical compartment in neurons. It converts postsynaptic input into action potentials that subsequently trigger information transfer to target neurons. This process relies on the presence of several voltage-gated sodium (NaV) and potassium (KV) channels that accumulate in high densities at the AIS. TRAAK is a mechanosensitive leak potassium channel that was recently localized to the nodes of Ranvier. Here, we uncover that TRAAK is also present in AISs of hippocampal and cortical neurons in the adult rat brain as well as in AISs of cultured rat hippocampal neurons. We show that the AIS localization is driven by a C-terminal ankyrin G-binding sequence that organizes TRAAK in a 190 nm spaced periodic pattern that codistributes with periodically organized ankyrin G. We furthermore uncover that while the identified ankyrin G-binding motif is analogous to known ankyrin G-binding motifs in NaV1 and KV7.2/KV7.3 channels, it was acquired by convergent evolution. Our findings identify TRAAK as an AIS ion channel that convergently acquired an ankyrin G-binding motif and expand the role of ankyrin G to include the nanoscale organization of ion channels at the AIS.


Assuntos
Anquirinas , Segmento Inicial do Axônio , Hipocampo , Células Piramidais , Animais , Anquirinas/metabolismo , Ratos , Células Piramidais/metabolismo , Segmento Inicial do Axônio/metabolismo , Hipocampo/metabolismo , Hipocampo/citologia , Axônios/metabolismo , Motivos de Aminoácidos , Canais de Potássio/metabolismo , Ligação Proteica
3.
J Cell Sci ; 137(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38525600

RESUMO

In neurons, the microtubule (MT) cytoskeleton forms the basis for long-distance protein transport from the cell body into and out of dendrites and axons. To maintain neuronal polarity, the axon initial segment (AIS) serves as a physical barrier, separating the axon from the somatodendritic compartment and acting as a filter for axonal cargo. Selective trafficking is further instructed by axonal enrichment of MT post-translational modifications, which affect MT dynamics and the activity of motor proteins. Here, we compared two knockout mouse lines lacking the respective enzymes for MT tyrosination and detyrosination, and found that both knockouts led to a shortening of the AIS. Neurons from both lines also showed an increased immobile fraction of endolysosomes present in the axon, whereas mobile organelles displayed shortened run distances in the retrograde direction. Overall, our results highlight the importance of maintaining the balance of tyrosinated and detyrosinated MTs for proper AIS length and axonal transport processes.


Assuntos
Transporte Axonal , Lisossomos , Camundongos Knockout , Microtúbulos , Tirosina , Animais , Microtúbulos/metabolismo , Tirosina/metabolismo , Lisossomos/metabolismo , Camundongos , Axônios/metabolismo , Endossomos/metabolismo , Neurônios/metabolismo
4.
J Neurosci ; 44(7)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38123997

RESUMO

Neurons typically generate action potentials at their axon initial segment based on the integration of synaptic inputs. In many neurons, the axon extends from the soma, equally weighting dendritic inputs. A notable exception is found in a subset of hippocampal pyramidal cells where the axon emerges from a basal dendrite. This structure allows these axon-carrying dendrites (AcDs) a privileged input route. We found that in male mice, such cells in the CA1 region receive stronger excitatory input from the contralateral CA3, compared with those with somatic axon origins. This is supported by a higher count of putative synapses from contralateral CA3 on the AcD. These findings, combined with prior observations of their distinct role in sharp-wave ripple firing, suggest a key role of this neuron subset in coordinating bi-hemispheric hippocampal activity during memory-centric oscillations.


Assuntos
Hipocampo , Células Piramidais , Masculino , Camundongos , Animais , Células Piramidais/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Dendritos/fisiologia , Potenciais de Ação/fisiologia , Sinapses/fisiologia , Região CA1 Hipocampal/fisiologia
5.
J Cell Sci ; 136(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37288813

RESUMO

The axon initial segment (AIS) is a highly specialized neuronal compartment that regulates the generation of action potentials and maintenance of neuronal polarity. Live imaging of the AIS is challenging due to the limited number of suitable labeling methods. To overcome this limitation, we established a novel approach for live labeling of the AIS using unnatural amino acids (UAAs) and click chemistry. The small size of UAAs and the possibility of introducing them virtually anywhere into target proteins make this method particularly suitable for labeling of complex and spatially restricted proteins. Using this approach, we labeled two large AIS components, the 186 kDa isoform of neurofascin (NF186; encoded by Nfasc) and the 260 kDa voltage-gated Na+ channel (NaV1.6, encoded by Scn8a) in primary neurons and performed conventional and super-resolution microscopy. We also studied the localization of epilepsy-causing NaV1.6 variants with a loss-of-function effect. Finally, to improve the efficiency of UAA incorporation, we developed adeno-associated viral (AAV) vectors for click labeling in neurons, an achievement that could be transferred to more complex systems such as organotypic slice cultures, organoids, and animal models.


Assuntos
Segmento Inicial do Axônio , Química Click , Animais , Potenciais de Ação/fisiologia , Aminoácidos/metabolismo , Segmento Inicial do Axônio/metabolismo , Neurônios , Camundongos , Ratos
6.
Development ; 149(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35224626

RESUMO

Pax6 is a well-known regulator of early neuroepithelial progenitor development. Its constitutive loss has a particularly strong effect on the developing prethalamus, causing it to become extremely hypoplastic. To overcome this difficulty in studying the long-term consequences of Pax6 loss for prethalamic development, we used conditional mutagenesis to delete Pax6 at the onset of neurogenesis and studied the developmental potential of the mutant prethalamic neurons in vitro. We found that Pax6 loss affected their rates of neurite elongation, the location and length of their axon initial segments, and their electrophysiological properties. Our results broaden our understanding of the long-term consequences of Pax6 deletion in the developing mouse forebrain, suggesting that it can have cell-autonomous effects on the structural and functional development of some neurons.


Assuntos
Proteínas de Homeodomínio , Fatores de Transcrição Box Pareados , Animais , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Camundongos , Neurônios/metabolismo , Fator de Transcrição PAX6/genética , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(11): e2114476119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35263225

RESUMO

SignificanceChandelier cells (ChCs) are a unique type of GABAergic interneuron that form axo-axonic synapses exclusively on the axon initial segment (AIS) of neocortical pyramidal neurons (PyNs), allowing them to exert powerful yet precise control over PyN firing and population output. The importance of proper ChC function is further underscored by the association of ChC connectivity defects with various neurological conditions. Despite this, the cellular mechanisms governing ChC axo-axonic synapse formation remain poorly understood. Here, we identify microglia as key regulators of ChC axonal morphogenesis and AIS synaptogenesis, and show that disease-induced aberrant microglial activation perturbs proper ChC synaptic development/connectivity in the neocortex. In doing so, such findings highlight the therapeutic potential of manipulating microglia to ensure proper brain wiring.


Assuntos
Segmento Inicial do Axônio , Neurônios GABAérgicos , Microglia , Células Piramidais , Sinapses , Animais , Segmento Inicial do Axônio/fisiologia , Neurônios GABAérgicos/fisiologia , Neurônios GABAérgicos/ultraestrutura , Camundongos , Microglia/fisiologia , Células Piramidais/fisiologia , Células Piramidais/ultraestrutura , Sinapses/fisiologia
8.
J Neurosci ; 43(37): 6357-6368, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37596053

RESUMO

Neurons are remarkably polarized structures: dendrites spread and branch to receive synaptic inputs while a single axon extends and transmits action potentials (APs) to downstream targets. Neuronal polarity is maintained by the axon initial segment (AIS), a region between the soma and axon proper that is also the site of action potential (AP) generation. This polarization between dendrites and axons extends to inhibitory neurotransmission. In adulthood, the neurotransmitter GABA hyperpolarizes dendrites but instead depolarizes axons. These differences in function collide at the AIS. Multiple studies have shown that GABAergic signaling in this region can share properties of either the mature axon or mature dendrite, and that these properties evolve over a protracted period encompassing periadolescent development. Here, we explored how developmental changes in GABAergic signaling affect AP initiation. We show that GABA at the axon initial segment inhibits action potential initiation in layer (L)2/3 pyramidal neurons in prefrontal cortex from mice of either sex across GABA reversal potentials observed in periadolescence. These actions occur largely through current shunts generated by GABAA receptors and changes in voltage-gated channel properties that affected the number of channels that could be recruited for AP electrogenesis. These results suggest that GABAergic neurons targeting the axon initial segment provide an inhibitory "veto" across the range of GABA polarity observed in normal adolescent development, regardless of GABAergic synapse reversal potential.Significance Statement GABA receptors are a major class of neurotransmitter receptors in the brain. Typically, GABA receptors inhibit neurons by allowing influx of negatively charged chloride ions into the cell. However, there are cases where local chloride concentrations promote chloride efflux through GABA receptors. Such conditions exist early in development in neocortical pyramidal cell axon initial segments (AISs), where action potentials (APs) initiate. Here, we examined how chloride efflux in early development interacts with mechanisms that support action potential initiation. We find that this efflux, despite moving membrane potential closer to action potential threshold, is nevertheless inhibitory. Thus, GABA at the axon initial segment is likely to be inhibitory for action potential initiation independent of whether chloride flows out or into neurons via these receptors.


Assuntos
Segmento Inicial do Axônio , Animais , Camundongos , Potenciais de Ação , Cloretos , Neurônios GABAérgicos , Receptores de GABA-A , Ácido gama-Aminobutírico
9.
J Neurosci ; 43(3): 359-372, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36639893

RESUMO

The structural plasticity of the axon initial segment (AIS) contributes to the homeostatic control of activity and optimizes the function of neural circuits; however, the underlying mechanisms are not fully understood. In this study, we prepared a slice culture containing nucleus magnocellularis from chickens of both sexes that reproduces most features of AIS plasticity in vivo, regarding its effects on characteristics of AIS and cell-type specificity, and revealed that microtubule reorganization via activation of CDK5 underlies plasticity. Treating the culture with a high-K+ medium shortened the AIS and reduced sodium current and membrane excitability, specifically in neurons tuned to high-frequency sound, creating a tonotopic difference in AIS length in the nucleus. Pharmacological analyses revealed that this AIS shortening was driven by multiple Ca2+ pathways and subsequent signaling molecules that converge on CDK5 via the activation of ERK1/2. AIS shortening was suppressed by overexpression of dominant-negative CDK5, whereas it was facilitated by the overexpression of p35, an activator of CDK5. Notably, p35(T138A), a phosphorylation-inactive mutant of p35, did not shorten the AIS. Moreover, microtubule stabilizers occluded AIS shortening during the p35 overexpression, indicating that CDK5/p35 mediated AIS shortening by promoting disassembly of microtubules at distal AIS. This study highlights the importance of microtubule reorganization and regulation of CDK5 activity in structural AIS plasticity and the tuning of AIS characteristics in neurons.SIGNIFICANCE STATEMENT The structural plasticity of AIS has a strong impact on the output of neurons and plays a fundamental role in the physiology and pathology of the brain. However, the mechanisms linking neuronal activity to structural changes in AIS are not well understood. In this study, we prepared an organotypic culture of avian auditory brainstem, reproducing most AIS plasticity features in vivo, and we revealed that activity-dependent AIS shortening occurs through the disassembly of microtubules at distal AIS via activation of CDK5/p35 signals. This study emphasizes the importance of microtubule reorganization and regulation of CDK5 activity in structural AIS plasticity and tonotopic differentiation of AIS structures in the brainstem auditory circuit.


Assuntos
Segmento Inicial do Axônio , Quinase 5 Dependente de Ciclina , Animais , Feminino , Masculino , Segmento Inicial do Axônio/metabolismo , Galinhas , Quinase 5 Dependente de Ciclina/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Fosforilação
10.
J Physiol ; 602(9): 2107-2126, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38568869

RESUMO

We are studying the mechanisms of H-reflex operant conditioning, a simple form of learning. Modelling studies in the literature and our previous data suggested that changes in the axon initial segment (AIS) might contribute. To explore this, we used blinded quantitative histological and immunohistochemical methods to study in adult rats the impact of H-reflex conditioning on the AIS of the spinal motoneuron that produces the reflex. Successful, but not unsuccessful, H-reflex up-conditioning was associated with greater AIS length and distance from soma; greater length correlated with greater H-reflex increase. Modelling studies in the literature suggest that these increases may increase motoneuron excitability, supporting the hypothesis that they may contribute to H-reflex increase. Up-conditioning did not affect AIS ankyrin G (AnkG) immunoreactivity (IR), p-p38 protein kinase IR, or GABAergic terminals. Successful, but not unsuccessful, H-reflex down-conditioning was associated with more GABAergic terminals on the AIS, weaker AnkG-IR, and stronger p-p38-IR. More GABAergic terminals and weaker AnkG-IR correlated with greater H-reflex decrease. These changes might potentially contribute to the positive shift in motoneuron firing threshold underlying H-reflex decrease; they are consistent with modelling suggesting that sodium channel change may be responsible. H-reflex down-conditioning did not affect AIS dimensions. This evidence that AIS plasticity is associated with and might contribute to H-reflex conditioning adds to evidence that motor learning involves both spinal and brain plasticity, and both neuronal and synaptic plasticity. AIS properties of spinal motoneurons are likely to reflect the combined influence of all the motor skills that share these motoneurons. KEY POINTS: Neuronal action potentials normally begin in the axon initial segment (AIS). AIS plasticity affects neuronal excitability in development and disease. Whether it does so in learning is unknown. Operant conditioning of a spinal reflex, a simple learning model, changes the rat spinal motoneuron AIS. Successful, but not unsuccessful, H-reflex up-conditioning is associated with greater AIS length and distance from soma. Successful, but not unsuccessful, down-conditioning is associated with more AIS GABAergic terminals, less ankyrin G, and more p-p38 protein kinase. The associations between AIS plasticity and successful H-reflex conditioning are consistent with those between AIS plasticity and functional changes in development and disease, and with those predicted by modelling studies in the literature. Motor learning changes neurons and synapses in spinal cord and brain. Because spinal motoneurons are the final common pathway for behaviour, their AIS properties probably reflect the combined impact of all the behaviours that use these motoneurons.


Assuntos
Segmento Inicial do Axônio , Reflexo H , Neurônios Motores , Ratos Sprague-Dawley , Animais , Neurônios Motores/fisiologia , Ratos , Masculino , Reflexo H/fisiologia , Segmento Inicial do Axônio/fisiologia , Aprendizagem/fisiologia , Medula Espinal/fisiologia , Medula Espinal/citologia , Axônios/fisiologia , Plasticidade Neuronal/fisiologia , Condicionamento Operante/fisiologia , Anquirinas/metabolismo
11.
Cereb Cortex ; 33(7): 3882-3909, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36058205

RESUMO

Perisomatic GABAergic innervation in the cerebral cortex is carried out mostly by basket and chandelier cells, which differentially participate in the control of pyramidal cell action potential output and synchronization. These cells establish multiple synapses with the cell body (and proximal dendrites) and the axon initial segment (AIS) of pyramidal neurons, respectively. Using multiple immunofluorescence, confocal microscopy and 3D quantification techniques, we have estimated the number and density of GABAergic boutons on the cell body and AIS of pyramidal neurons located through cortical layers of the human and mouse neocortex. The results revealed, in both species, that there is clear variability across layers regarding the density and number of perisomatic GABAergic boutons. We found a positive linear correlation between the surface area of the soma, or the AIS, and the number of GABAergic terminals in apposition to these 2 neuronal domains. Furthermore, the density of perisomatic GABAergic boutons was higher in the human cortex than in the mouse. These results suggest a selectivity for the GABAergic innervation of the cell body and AIS that might be related to the different functional attributes of the microcircuits in which neurons from different layers are involved in both human and mouse.


Assuntos
Segmento Inicial do Axônio , Neocórtex , Humanos , Camundongos , Animais , Corpo Celular , Neurônios/fisiologia , Células Piramidais/metabolismo , Axônios/fisiologia , Sinapses/fisiologia
12.
J Neurosci ; 42(43): 8054-8065, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36096668

RESUMO

The axon initial segment (AIS) generates action potentials and maintains neuronal polarity by regulating the differential trafficking and distribution of proteins, transport vesicles, and organelles. Injury and disease can disrupt the AIS, and the subsequent loss of clustered ion channels and polarity mechanisms may alter neuronal excitability and function. However, the impact of AIS disruption on axon regeneration after injury is unknown. We generated male and female mice with AIS-deficient multipolar motor neurons by deleting AnkyrinG, the master scaffolding protein required for AIS assembly and maintenance. We found that after nerve crush, neuromuscular junction reinnervation was significantly delayed in AIS-deficient motor neurons compared with control mice. In contrast, loss of AnkyrinG from pseudo-unipolar sensory neurons did not impair axon regeneration into the intraepidermal nerve fiber layer. Even after AIS-deficient motor neurons reinnervated the neuromuscular junction, they failed to functionally recover because of reduced synaptic vesicle protein 2 at presynaptic terminals. In addition, mRNA trafficking was disrupted in AIS-deficient axons. Our results show that, after nerve injury, an intact AIS is essential for efficient regeneration and functional recovery of axons in multipolar motor neurons. Our results also suggest that loss of polarity in AIS-deficient motor neurons impairs the delivery of axonal proteins, mRNAs, and other cargoes necessary for regeneration. Thus, therapeutic strategies for axon regeneration must consider preservation or reassembly of the AIS.SIGNIFICANCE STATEMENT Disruption of the axon initial segment is a common event after nervous system injury. For multipolar motor neurons, we show that axon initial segments are essential for axon regeneration and functional recovery after injury. Our results may help explain injuries where axon regeneration fails, and suggest strategies to promote more efficient axon regeneration.


Assuntos
Segmento Inicial do Axônio , Axônios , Masculino , Feminino , Camundongos , Animais , Axônios/fisiologia , Segmento Inicial do Axônio/metabolismo , Anquirinas/metabolismo , Regeneração Nervosa , Sinapses/metabolismo , Canais Iônicos/metabolismo , Neurônios Motores/metabolismo , RNA Mensageiro/metabolismo
13.
J Neurosci ; 42(8): 1491-1509, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35022219

RESUMO

The axon initial segment (AIS), nodes of Ranvier, and the oligodendrocyte-derived myelin sheath have significant influence on the firing patterns of neurons and the faithful, coordinated transmission of action potentials (APs) to downstream brain regions. In the olfactory bulb (OB), olfactory discrimination tasks lead to adaptive changes in cell firing patterns, and the output signals must reliably travel large distances to other brain regions along highly myelinated tracts. Whether myelinated axons adapt to facilitate olfactory sensory processing is unknown. Here, we investigate the morphology and physiology of mitral cell (MC) axons in the olfactory system of adult male and female mice and show that unilateral sensory deprivation causes system-wide adaptations in axonal morphology and myelin thickness. MC spiking patterns and APs also adapted to sensory deprivation. Strikingly, myelination and MC physiology were altered on both the deprived and nondeprived sides, indicating system level adaptations to reduced sensory input. Our work demonstrates a previously unstudied mechanism of plasticity in the olfactory system.SIGNIFICANCE STATEMENT Successful transmission of information from the olfactory bulb (OB) to piriform cortex through the lateral olfactory tract (LOT) relies on synchronized arrival of action potentials (APs). The coincident arrival of APs is dependent on reliable generation of APs in the axon initial segment (AIS) and fast conduction mediated by axon myelination. Here, we studied changes in mitral cell (MC) firing and AIS structure as well as changes in myelination of the LOT on unilateral olfactory deprivation in the adult mouse. Strikingly, myelination and MC physiology were altered on both the deprived and nondeprived sides, indicating system level adaptations to reduced sensory input. Our work demonstrates a previously unstudied mechanism of plasticity in the olfactory system.


Assuntos
Axônios , Privação Sensorial , Animais , Axônios/fisiologia , Feminino , Masculino , Camundongos , Bainha de Mielina/fisiologia , Bulbo Olfatório/fisiologia , Privação Sensorial/fisiologia , Olfato/fisiologia
14.
Dev Biol ; 486: 56-70, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35341730

RESUMO

Many neurons in bilaterian animals are polarized with functionally distinct axons and dendrites. Microtubule polarity, microtubule stability, and the axon initial segment (AIS) have all been shown to influence polarized transport in neurons. Each of these cytoskeletal cues could act independently to control axon and dendrite identity, or there could be a hierarchy in which one acts upstream of the others. Here we test the hypothesis that microtubule polarity acts as a master regulator of neuronal polarity by using a Drosophila genetic background in which some dendrites have normal minus-end-out microtubule polarity and others have the axonal plus-end-out polarity. In these mosaic dendrite arbors, we found that ribosomes, which are more abundant in dendrites than axons, were reduced in plus-end-out dendrites, while an axonal cargo was increased. In addition, we determined that microtubule stability was different in plus-end-out and minus-end-out dendrites, with plus-end-out ones having more stable microtubules like axons. Similarly, we found that ectopic diffusion barriers, like those at the AIS, formed at the base of dendrites with plus-end-out regions. Thus, changes in microtubule polarity were sufficient to rearrange other cytoskeletal features associated with neuronal polarization. However, overall neuron shape was maintained with only subtle changes in branching in mosaic arbors. We conclude that microtubule polarity can act upstream of many aspects of intracellular neuronal polarization, but shape is relatively resilient to changes in microtubule polarity in vivo.


Assuntos
Polaridade Celular , Dendritos , Animais , Axônios/fisiologia , Polaridade Celular/fisiologia , Dendritos/fisiologia , Drosophila , Microtúbulos/fisiologia , Neurônios/fisiologia
15.
J Physiol ; 601(10): 1957-1979, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36946031

RESUMO

In neocortical layer-5 pyramidal neurons, the action potential (AP) is generated in the axon initial segment (AIS) when the membrane potential (Vm ) reaches the threshold for activation of the voltage-gated Na+ channels (VGNCs) Nav 1.2 and Nav 1.6. Yet, whereas these VGNCs are known to differ in spatial distribution along the AIS and in biophysical properties, our understanding of the functional differences between the two channels remains elusive. Here, using ultrafast Na+ , Vm and Ca2+ imaging in combination with partial block of Nav 1.2 by the peptide G1 G4 -huwentoxin-IV, we demonstrate an exclusive role of Nav 1.2 in shaping the generating AP. Precisely, we show that selective block of ∼30% of Nav 1.2 widens the AP in the distal part of the AIS and we demonstrate that this effect is due to a loss of activation of BK Ca2+ -activated K+ channels (CAKCs). Indeed, Ca2+ influx via Nav 1.2 activates BK CAKCs, determining the amplitude and the early phase of repolarization of the AP in the AIS. By using control experiments using 4,9-anhydrotetrodotoxin, a moderately selective inhibitor of Nav 1.6, we concluded that the Ca2+ influx shaping the early phase of the AP is exclusive of Nav 1.2. Hence, we mimicked this result with a neuron model in which the role of the different ion channels tested reproduced the experimental evidence. The exclusive role of Nav 1.2 reported here is important for understanding the physiology and pathology of neuronal excitability. KEY POINTS: We optically analysed the action potential generated in the axon initial segment of mouse layer-5 neocortical pyramidal neurons and its associated Na+ and Ca2+ currents using ultrafast imaging techniques. We found that partial selective block of the voltage-gated Na+ channel Nav 1.2, produced by a recently developed peptide, widens the shape of the action potential in the distal part of the axon initial segment. We demonstrate that this effect is due to a reduction of the Ca2+ influx through Nav 1.2 that activates BK Ca2+ -activated K+ channels. To validate our conclusions, we generated a neuron model that reproduces the ensemble of our experimental results. The present results indicate a specific role of Nav 1.2 in the axon initial segment for shaping of the action potential during its generation.


Assuntos
Segmento Inicial do Axônio , Camundongos , Animais , Segmento Inicial do Axônio/fisiologia , Potenciais de Ação/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta , Células Piramidais/fisiologia , Peptídeos/farmacologia
16.
J Biol Chem ; 298(9): 102272, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35850303

RESUMO

The axon initial segment (AIS) has characteristically dense clustering of voltage-gated sodium channels (Nav), cell adhesion molecule Neurofascin 186 (Nfasc), and neuronal scaffold protein Ankyrin-G (AnkG) in neurons, which facilitates generation of an action potential and maintenance of axonal polarity. However, the mechanisms underlying AIS assembly, maintenance, and plasticity remain poorly understood. Here, we report the high-resolution crystal structure of the AnkG ankyrin repeat (ANK repeat) domain in complex with its binding site in the Nfasc cytoplasmic tail that shows, in conjunction with binding affinity assays with serial truncation variants, the molecular basis of AnkG-Nfasc binding. We confirm AnkG interacts with the FIGQY motif in Nfasc, and we identify another region required for their high affinity binding. Our structural analysis revealed that ANK repeats form 4 hydrophobic or hydrophilic layers in the AnkG inner groove that coordinate interactions with essential Nfasc residues, including F1202, E1204, and Y1212. Moreover, we show disruption of the AnkG-Nfasc complex abolishes Nfasc enrichment at the AIS in cultured mouse hippocampal neurons. Finally, our structural and biochemical analysis indicated that L1 syndrome-associated mutations in L1CAM, a member of the L1 immunoglobulin family proteins including Nfasc, L1CAM, NrCAM, and CHL1, compromise binding with ankyrins. Taken together, these results define the mechanisms underlying AnkG-Nfasc complex formation and show that AnkG-dependent clustering of Nfasc is required for AIS integrity.


Assuntos
Repetição de Anquirina , Anquirinas , Segmento Inicial do Axônio , Moléculas de Adesão Celular , Fatores de Crescimento Neural , Animais , Anquirinas/química , Segmento Inicial do Axônio/química , Sítios de Ligação , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Cristalografia por Raios X , Camundongos , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/genética , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Domínios Proteicos
17.
J Pharmacol Sci ; 153(3): 175-182, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770159

RESUMO

We previously found that pituitary adenylate cyclase-activating polypeptide (PACAP)-deficient (PACAP-/-) mice exhibit dendritic spine morphology impairment and neurodevelopmental disorder (NDD)-like behaviors such as hyperactivity, increased novelty-seeking behavior, and deficient pre-pulse inhibition. Recent studies have indicated that rodent models of NDDs (e.g., attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder) show abnormalities in the axon initial segment (AIS). Here, we revealed that PACAP-/- mice exhibited a longer AIS length in layer 2/3 pyramidal neurons of the primary somatosensory barrel field compared with wild-type control mice. Further, we previously showed that a single injection of atomoxetine, an ADHD drug, improved hyperactivity in PACAP-/- mice. In this study, we found that repeated treatments of atomoxetine significantly improved AIS abnormality along with hyperactivity in PACAP-/- mice. These results suggest that AIS abnormalities are associated with NDDs-like behaviors in PACAP-/- mice. Thus, improvement in AIS abnormalities will be a novel drug therapy for NDDs.

18.
Brain ; 145(5): 1632-1640, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35661858

RESUMO

The axon initial segment is a specialized compartment of the proximal axon of CNS neurons where action potentials are initiated. However, it remains unknown whether this domain is assembled in sensory dorsal root ganglion neurons, in which spikes are initiated in the peripheral terminals. Here we investigate whether sensory neurons have an axon initial segment and if it contributes to spontaneous activity in neuropathic pain. Our results demonstrate that myelinated dorsal root ganglion neurons assemble an axon initial segment in the proximal region of their stem axon, enriched in the voltage-gated sodium channels Nav1.1 and Nav1.7. Using correlative immunofluorescence and calcium imaging, we demonstrate that the Nav1.7 channels at the axon initial segment are associated with spontaneous activity. Computer simulations further indicate that the axon initial segment plays a key role in the initiation of spontaneous discharges by lowering their voltage threshold. Finally, using a Cre-based mouse model for time-controlled axon initial segment disassembly, we demonstrate that this compartment is a major source of spontaneous discharges causing mechanical allodynia in neuropathic pain. Thus, an axon initial segment domain is present in sensory neurons and facilitates their spontaneous activity. This study provides a new insight in the cellular mechanisms that cause pathological pain and identifies a new potential target for chronic pain management.


Assuntos
Segmento Inicial do Axônio , Neuralgia , Animais , Gânglios Espinais/patologia , Humanos , Hiperalgesia/patologia , Camundongos , Neuralgia/patologia , Células Receptoras Sensoriais
19.
Cell Mol Life Sci ; 79(2): 120, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119496

RESUMO

Loss of neuronal polarity and missorting of the axonal microtubule-associated-protein TAU are hallmarks of Alzheimer's disease (AD) and related tauopathies. Impairment of mitochondrial function is causative for various mitochondriopathies, but the role of mitochondria in tauopathies and in axonal TAU-sorting is unclear. The axon-initial-segment (AIS) is vital for maintaining neuronal polarity, action potential generation, and-here important-TAU-sorting. Here, we investigate the role of mitochondria in the AIS for maintenance of TAU cellular polarity. Using not only global and local mitochondria impairment via inhibitors of the respiratory chain and a locally activatable protonophore/uncoupler, but also live-cell-imaging and photoconversion methods, we specifically tracked and selectively impaired mitochondria in the AIS in primary mouse and human iPSC-derived forebrain/cortical neurons, and assessed somatic presence of TAU. Global application of mitochondrial toxins efficiently induced tauopathy-like TAU-missorting, indicating involvement of mitochondria in TAU-polarity. Mitochondria show a biased distribution within the AIS, with a proximal cluster and relative absence in the central AIS. The mitochondria of this cluster are largely immobile and only sparsely participate in axonal mitochondria-trafficking. Locally constricted impairment of the AIS-mitochondria-cluster leads to detectable increases of somatic TAU, reminiscent of AD-like TAU-missorting. Mechanistically, mitochondrial impairment sufficient to induce TAU-missorting results in decreases of calcium oscillation but increases in baseline calcium, yet chelating intracellular calcium did not prevent mitochondrial impairment-induced TAU-missorting. Stabilizing microtubules via taxol prevented TAU-missorting, hinting towards a role for impaired microtubule dynamics in mitochondrial-dysfunction-induced TAU-missorting. We provide evidence that the mitochondrial distribution within the proximal axon is biased towards the proximal AIS and that proper function of this newly described mitochondrial cluster may be essential for the maintenance of TAU polarity. Mitochondrial impairment may be an upstream event in and therapeutic target for AD/tauopathy.


Assuntos
Axônios/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Cálcio/metabolismo , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Microtúbulos/metabolismo , Mitocôndrias/patologia , Neurônios/citologia , Transporte Proteico/efeitos dos fármacos , Rotenona/farmacologia
20.
Proc Natl Acad Sci U S A ; 117(6): 3254-3260, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32001507

RESUMO

The giant Mauthner (M) cell is the largest neuron known in the vertebrate brain. It has enabled major breakthroughs in neuroscience but its ultimate function remains surprisingly unclear: An actual survival value of M cell-mediated escapes has never been supported experimentally and ablating the cell repeatedly failed to eliminate all rapid escapes, suggesting that escapes can equally well be driven by smaller neurons. Here we applied techniques to simultaneously measure escape performance and the state of the giant M axon over an extended period following ablation of its soma. We discovered that the axon survives remarkably long and remains still fully capable of driving rapid escape behavior. By unilaterally removing one of the two M axons and comparing escapes in the same individual that could or could not recruit an M axon, we show that the giant M axon is essential for rapid escapes and that its loss means that rapid escapes are also lost forever. This allowed us to directly test the survival value of the M cell-mediated escapes and to show that the absence of this giant neuron directly affects survival in encounters with a natural predator. These findings not only offer a surprising solution to an old puzzle but demonstrate that even complex brains can trust vital functions to individual neurons. Our findings suggest that mechanisms must have evolved in parallel with the unique significance of these neurons to keep their axons alive and connected.


Assuntos
Reação de Fuga/fisiologia , Sistema Nervoso/crescimento & desenvolvimento , Neurônios/citologia , Neurônios/fisiologia , Animais , Axônios/fisiologia , Embrião não Mamífero/fisiologia , Larva/fisiologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA