Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 37(15-16): 703-723, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37673459

RESUMO

Rapid advances in genomics have opened unprecedented possibilities to explore the mutational landscapes in malignant diseases, such as B-cell acute lymphoblastic leukemia (B-ALL). This disease is manifested as a severe defect in the production of normal blood cells due to the uncontrolled expansion of transformed B-lymphocyte progenitors in the bone marrow. Even though classical genetics identified translocations of transcription factor-coding genes in B-ALL, the extent of the targeting of regulatory networks in malignant transformation was not evident until the emergence of large-scale genomic analyses. There is now evidence that many B-ALL cases present with mutations in genes that encode transcription factors with critical roles in normal B-lymphocyte development. These include PAX5, IKZF1, EBF1, and TCF3, all of which are targeted by translocations or, more commonly, partial inactivation in cases of B-ALL. Even though there is support for the notion that germline polymorphisms in the PAX5 and IKZF1 genes predispose for B-ALL, the majority of leukemias present with somatic mutations in transcription factor-encoding genes. These genetic aberrations are often found in combination with mutations in genes that encode components of the pre-B-cell receptor or the IL-7/TSLP signaling pathways, all of which are important for early B-cell development. This review provides an overview of our current understanding of the molecular interplay that occurs between transcription factors and signaling events during normal and malignant B-lymphocyte development.


Assuntos
Leucemia , Fatores de Transcrição , Humanos , Regulação da Expressão Gênica , Mutação , Translocação Genética , Linfócitos B
2.
Genes Dev ; 34(21-22): 1503-1519, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004416

RESUMO

EBF1 and PAX5 mutations are associated with the development of B progenitor acute lymphoblastic leukemia (B-ALL) in humans. To understand the molecular networks driving leukemia in the Ebf1+/-Pax5+/- (dHet) mouse model for B-ALL, we interrogated the transcriptional profiles and chromatin status of leukemic cells, preleukemic dHet pro-B, and wild-type pro-B cells with the corresponding EBF1 and Pax5 cistromes. In dHet B-ALL cells, many EBF1 and Pax5 target genes encoding pre-BCR signaling components and transcription factors were down-regulated, whereas Myc and genes downstream from IL-7 signaling or associated with the folate pathway were up-regulated. We show that blockade of IL-7 signaling in vivo and methotrexate treatment of leukemic cells in vitro attenuate the expansion of leukemic cells. Single-cell RNA-sequencing revealed heterogeneity of leukemic cells and identified a subset of wild-type pro-B cells with reduced Ebf1 and enhanced Myc expression that show hallmarks of dHet B-ALL cells. Thus, EBF1 and Pax5 may safeguard early stage B cells from transformation to B-ALL by limiting IL-7 signaling, folate metabolism and Myc expression.


Assuntos
Ácido Fólico/metabolismo , Interleucina-7/fisiologia , Fator de Transcrição PAX5/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatologia , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais/genética , Transativadores/metabolismo , Animais , Carbono/metabolismo , Sobrevivência Celular/genética , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Camundongos , Fator de Transcrição PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Células Precursoras de Linfócitos B/patologia , Ligação Proteica , Análise de Célula Única , Transativadores/genética
3.
J Biol Chem ; 300(8): 107578, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39029626

RESUMO

Lenalidomide, a thalidomide derivative, is prescribed as maintenance therapy for multiple myeloma (MM). Patients with MM receiving lenalidomide were found to develop a distinct therapy-related B cell acute lymphoblastic leukemia (B-ALL). However, the molecular mechanism by which lenalidomide drives B-ALL is unknown. We show that thalidomide treatment of B cell lines increased CD34 expression and fibronectin adhesion. This resembled the effects of Ikzf1 loss of function mutations in B-ALL. IKZF1 is a transcription factor that can act as both a transcriptional activator and a repressor depending upon the target loci. In our experiments, thalidomide-induced degradation of IKZF1 increased the expression of its transcriptional repression targets Itga5 and CD34 explaining the increased adhesion and stemness. Strikingly, withdrawal of thalidomide lead to the mis-localization of IKZF1 to the cytoplasm. Moreover, chromatin immunoprecipitation data showed a long-term effect of thalidomide treatment on IKZF1 target loci. This included decreased chromatin occupancy at early B cell factor 1 (EBF1) and Spi1 (PU.1). Consequently, B-cell lineage specifying transcription factors including Pax5, Spi1 and EBF1 were downregulated even after 7 days of thalidomide withdrawal. Our study thus provides a molecular mechanism of thalidomide-induced B-ALL whereby thalidomide alters the chromatin occupancy of IKZF1 at key B-cell lineage transcription factors leading to a persistent block in B-cell differentiation.


Assuntos
Fator de Transcrição Ikaros , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Talidomida , Humanos , Fator de Transcrição Ikaros/metabolismo , Fator de Transcrição Ikaros/genética , Talidomida/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Linhagem Celular Tumoral , Lenalidomida/farmacologia , Transativadores/metabolismo , Transativadores/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Proteínas Proto-Oncogênicas
4.
Br J Haematol ; 204(1): 229-239, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871900

RESUMO

Therapeutic management and prognostication for patients with B-acute lymphoblastic leukaemia (B-ALL) require appropriate disease subclassification. BCR::ABL1-like B-ALL is unique in that it is defined by a gene expression profile similar to BCR::ABL1+ B-ALL rather than a unifying recurrent translocation. Current molecular/cytogenetic techniques to identify this subtype are expensive, not widely accessible, have long turnaround times and/or require an adequate liquid biopsy. We have studied a total of 118 B-ALL cases from three institutions in two laboratories to identify surrogates for BCR::ABL1+/like B-ALL. We report that immunoglobulin joining chain (IGJ) and spermatogenesis associated serine-rich 2-like (SPATS2L) immunohistochemistry (IHC) sensitively and specifically identify BCR::ABL1+/like B-ALL. IGJ IHC positivity has a sensitivity of 83%, a specificity of 95%, a positive predictive value (PPV) of 89% and a negative predictive value (NPV) of 90%. SPATS2L staining has similar sensitivity and NPV but lower specificity (85%) and PPV (70%). The presence of either IGJ or SPATS2L staining augments the sensitivity (93%) and NPV (95%). While these findings would need to be validated in larger studies, they suggest that IGJ and/or SPATS2L IHC may be utilized in identifying BCR::ABL1-like B-ALL or in selecting B-ALL cases for confirmatory molecular/genetic testing, particularly in resource-limited settings.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Masculino , Humanos , Imuno-Histoquímica , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Translocação Genética
5.
J Transl Med ; 22(1): 482, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773607

RESUMO

BACKGROUND: Cellular immunotherapy, represented by the chimeric antigen receptor T cell (CAR-T), has exhibited high response rates, durable remission, and safety in vitro and in clinical trials. Unfortunately, anti-CD19 CAR-T (CART-19) treatment alone is prone to relapse and has a particularly poor prognosis in relapsed/refractory (r/r) B-ALL patients. To date, addressing or reducing relapse remains one of the research priorities to achieve broad clinical application. METHODS: We manufactured second generation CART-19 cells and validated their efficacy and safety in vitro and in vivo. Through co-culture of Nalm-6 cells with short-term cultured CART-19 cells, CD19-negative Nalm-6 cells were detected by flow cytometry, and further investigation of the relapsed cells and their resistance mechanisms was evaluated in vitro. RESULTS: In this study, we demonstrated that CART-19 cells had enhanced and specific antileukemic activities, and the survival of B-ALL mouse models after CART-19 treatment was significantly prolonged. We then shortened the culture time and applied the serum-free culture to expand CAR-T cells, followed by co-culturing CART-19 cells with Nalm-6 cells. Surprisingly, we observed the proliferation of CD19-negative Nalm-6 cells around 28 days. Identification of potential resistance mechanisms showed that the relapsed cells express truncated CD19 proteins with decreased levels and, more importantly, CAR expression was detected on the relapsed cell surface, which may ultimately keep them antigen-negative. Furthermore, it was validated that CART-22 and tandem CART-22/19 cells could effectively kill the relapsed cells, but neither could completely eradicate them. CONCLUSIONS: We successfully generated CART-19 cells and obtained a CD19-negative refractory relapsed B-ALL cell line, providing new insights into the underlying mechanisms of resistance and a new in vitro model for the treatment of r/r B-ALL patients with low antigen density.


Assuntos
Antígenos CD19 , Receptores de Antígenos Quiméricos , Antígenos CD19/metabolismo , Antígenos CD19/imunologia , Animais , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos , Resistencia a Medicamentos Antineoplásicos , Camundongos , Técnicas de Cocultura , Ensaios Antitumorais Modelo de Xenoenxerto , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia
6.
Invest New Drugs ; 42(3): 299-308, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38662275

RESUMO

Blinatumomab is efficacious in patients with B-cell acute lymphoblastic leukemia (B-ALL), yet limited real-world data exists in this context. This retrospective study provided real-world data on the treatment pattern, effectiveness, and safety of blinatumomab in Chinese patients with newly diagnosed (ND) and relapsed/refractory (R/R) B-ALL. Patients with B-ALL who received at least one dose of blinatumomab in frontline or R/R settings between August 2021 and June 2023 were included. The primary outcome was the treatment pattern of blinatumomab. Key secondary outcomes included complete remission (CR)/CR with incomplete blood cell recovery (CRi) rate, minimal residual disease (MRD) negativity, median event-free survival (EFS), and safety. The study included 96 patients with B-ALL; 53 (55.2%) patients were in the ND group and 43 (44.8%) patients were in the R/R group. The median treatment duration was one cycle (range: 1-5). Most patients underwent chemotherapies, allo-HSCT, or experimental CAR-T following blinatumomab. The ND patients using blinatumomab induction therapy achieved 100% CR/CRi rate; 87.2% achieved MRD negativity within two cycles of blinatumomab. In R/R re-induction patients, the CR/CRi rate was 50%; MRD negativity rate was 64.2%. In R/R patients using blinatumomab for consolidation, MRD negativity rate was 90.9%. The median EFS was not reached in both ND and R/R patients; 1-year EFS rate was 90.8% (95% CI: 67%, 97%) and 55.1% (95% CI: 30%, 74%), respectively. Grade ≥ 3 adverse events were observed in 12.5% patients. Blinatumomab was found to be effective with a tolerable safety profile in real world setting.


Assuntos
Anticorpos Biespecíficos , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Anticorpos Biespecíficos/efeitos adversos , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Biespecíficos/administração & dosagem , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Estudos Retrospectivos , Adolescente , Adulto Jovem , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Idoso , Criança , Antineoplásicos/uso terapêutico , Antineoplásicos/efeitos adversos , Antineoplásicos/administração & dosagem , China , Resultado do Tratamento , Neoplasia Residual , Pré-Escolar , Indução de Remissão , População do Leste Asiático
7.
BMC Cancer ; 24(1): 1255, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390455

RESUMO

BACKGROUND: Acute lymphoblastic leukemia (ALL) is the most common childhood cancer, and B-cell ALL (B-ALL) is the most common subtype. The understanding of ALL has advanced significantly in recent years due to genomic sequencing, which has made it possible to identify genetic variants and detect the association between "single nucleotide polymorphisms" (SNP) and certain diseases. METHODS: We evaluated 126 patients diagnosed with B-ALL in hospitals in Rio de Janeiro. We described the frequency of polymorphisms in the IKZF1, CDKN2A/2B genes, the contribution of these genetic variants in pediatric ALL, and compared them with the general population of Rio de Janeiro. RESULTS: We demonstrated that the SNPs rs3731217, rs4132601, and rs11978267 were more frequent in patients with B-ALL. CONCLUSIONS: These findings contribute to a more complete understanding of B-ALL. They can guide future studies, bringing new perspectives on personalized therapies with reduced side effects and optimization efficacy of B-ALL treatment in children.


Assuntos
Inibidor de Quinase Dependente de Ciclina p15 , Inibidor p16 de Quinase Dependente de Ciclina , Fator de Transcrição Ikaros , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Fator de Transcrição Ikaros/genética , Masculino , Criança , Feminino , Brasil/epidemiologia , Pré-Escolar , Inibidor p16 de Quinase Dependente de Ciclina/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/epidemiologia , Inibidor de Quinase Dependente de Ciclina p15/genética , Adolescente , Lactente , Prevalência , Predisposição Genética para Doença , Frequência do Gene
8.
Ann Hematol ; 103(9): 3385-3398, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38148344

RESUMO

The E2A-PBX1 gene fusion is a common translocation in B-cell acute lymphoblastic leukaemia. Patients harbouring the E2A-PBX1 fusion gene typically exhibit an intermediate prognosis. Furthermore, minimal residual disease has unsatisfactory prognostic value in E2A-PBX1 B-cell acute lymphoblastic leukaemia. However, the mechanism of E2A-PBX1 in the occurrence and progression of B-cell acute lymphoblastic leukaemia is not well understood. Here, we mainly review the roles of E2A and PBX1 in the differentiation and development of B lymphocytes, the mechanism of E2A-PBX1 gene fusion in B-cell acute lymphoblastic leukaemia, and the potential therapeutic approaches.


Assuntos
Proteínas de Fusão Oncogênica , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Linfócitos B/patologia , Linfócitos B/metabolismo , Prognóstico , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Diferenciação Celular , Proteínas de Homeodomínio
9.
Eur J Haematol ; 112(1): 122-136, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37706583

RESUMO

OBJECTIVES: Measurable residual disease (MRD) is the most relevant predictor of disease-free survival in B-cell acute lymphoblastic leukemia (B-ALL). We aimed to establish a highly sensitive flow cytometry (MFC)-based B-ALL-MRD (BMRD) assay for patients receiving anti-CD19 immunotherapy with an alternate gating approach and to document the prevalence and immunophenotype of recurrently occurring low-level mimics and confounding populations. METHODS: We standardized a 15-color highly-sensitive BMRD assay with an alternate CD19-free gating approach. The study included 137 MRD samples from 43 relapsed/refractory B-ALL patients considered for anti-CD19 immunotherapy. RESULTS: The 15-color BMRD assay with CD22/CD24/CD81/CD33-based gating approach was routinely applicable in 137 BM samples and could achieve a sensitivity of 0.0005%. MRD was detected in 29.9% (41/137) samples with 31.7% (13/41) of them showing <.01% MRD. Recurrently occurring low-level cells that showed immunophenotypic overlap with leukemic B-blasts included: (a) CD19+CD10+CD34+CD22+CD24+CD81+CD123+CD304+ plasmacytoid dendritic cells, (b) CD73bright/CD304bright/CD81bright mesenchymal stromal/stem cells (CD10+) and endothelial cells (CD34+CD24+), (c) CD22dim/CD34+/CD38dim/CD81dim/CD19-/CD10-/CD24- early lymphoid progenitor/precursor type-1 cells (ELP-1) and (d) CD22+/CD34+/CD10heterogeneous/CD38moderate/CD81moderate/CD19-/CD24- stage-0 B-cell precursors or ELP-2 cells. CONCLUSIONS: We standardized a highly sensitive 15-color BMRD assay with a non-CD19-based gating strategy for patients receiving anti-CD19 immunotherapy. We also described the immunophenotypes of recurrently occurring low-level populations that can be misinterpreted as MRD in real-world practice.


Assuntos
Anticorpos Biespecíficos , Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Humanos , Citometria de Fluxo , Células Endoteliais , Antígenos CD19 , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Neoplasia Residual/diagnóstico
10.
Pediatr Blood Cancer ; 71(7): e30996, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38637852

RESUMO

BACKGROUND: Compared to other ethnicities, Hispanics/Latinos (H/L) have a high incidence of acute lymphoblastic leukemia (ALL), enrichment of unfavorable ALL genetic subtypes, and worse outcomes, even after correcting for socioeconomic factors. We previously demonstrated increased incidence of the high-risk genetic drivers IKZF1 deletion and IGH::CRLF2 rearrangement in H/L compared to non-H/L children with B-ALL. Here in an expanded pediatric cohort, we sought to identify novel genetic drivers and secondary genetic alterations in B-ALL associated with H/L ethnicity. PROCEDURE: Comprehensive clinicopathologic data from patients with B-ALL treated from 2016 to 2020 were analyzed. Subtype was determined from karyotype, fluorescence in situ hybridization (FISH), chromosome microarray (CMA), and our next-generation sequencing (NGS) panel (OncoKids). Non-driver genetic variants were also examined. p-Values less than .05 (Fisher's exact test) were considered significant. RESULTS: Among patients with B-ALL at diagnosis (n = 273), H/L patients (189, 69.2%) were older (p = .018), more likely to present with CNS2 or CNS3 disease (p = .004), and NCI high-risk ALL (p = .014) compared to non-H/L patients. Higher incidence of IGH::CRLF2 rearrangement (B-ALL, BCR::ABL1-like, unfavorable; p = .016) and lower incidence of ETV6::RUNX1 rearrangement (favorable, p = .02) were also associated with H/L ethnicity. Among secondary (non-subtype-defining) genetic variants, B-ALL in H/L was associated with IKFZ1 deletion alone (p = .001) or with IGH::CRLF2 rearrangement (p = .003). The IKZF1PLUS profile (IKZF1 deletion plus CDKN2A/2Bdel, PAX5del, or P2RY8::CRLF2 rearrangement without DUX4 rearrangement) was identified as a novel high-risk feature enriched in H/L patients (p = .001). CONCLUSIONS: Our study shows enrichment of high-risk genetic variants in H/L B-ALL and raises consideration for novel therapeutic targets.


Assuntos
Hispânico ou Latino , Fator de Transcrição Ikaros , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Biomarcadores Tumorais/genética , Seguimentos , Hispânico ou Latino/genética , Fator de Transcrição Ikaros/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Prognóstico , Taxa de Sobrevida
11.
Mol Biol Rep ; 51(1): 163, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252348

RESUMO

BACKGROUND: Due to the high demand for novel approaches for leukemia-targeted therapy, this study investigates the impact of DNA-PK inhibitor NU7441 on the sensitivity of pre-B ALL cells to the telomerase inhibitor MST-312. METHODS: The study involved NALM-6 cells treated with MST-312 and NU7441, assessing their viability and metabolic activity using trypan blue and MTT assays. The study also evaluated apoptosis, gene expression changes, and DNA damage using flow cytometry, qRT-PCR, and micronucleus assays. The binding energy of MST-312 in the active site of telomerase was calculated using molecular docking. RESULTS: The study's findings revealed a synergistic decline in both cell viability and metabolic activity in NALM-6 cells when exposed to the combined treatment of MST-312 and NU7441, and this decrease occurred without any adverse effects on healthy PBMC cells. Furthermore, the combination treatment exhibited a significantly higher induction of apoptosis than treatment with MST-312 alone, as observed through flow cytometry assay. qRT-PCR analysis revealed that this enhanced apoptosis was associated with a notable downregulation of Bcl-2 expression and an upregulation of Bax gene expression. Moreover, the combination therapy decreased expression levels of hTERT and c-Myc genes. The micronucleus assay indicated that the combination treatment increased DNA damage in NALM-6 cells. Also, a good conformation between MST-312 and the active site of telomerase was revealed by docking data. CONCLUSIONS: The study suggests that simultaneous inhibition of telomerase and DNA-PK in pre-B ALL presents a novel targeted therapy approach.


Assuntos
Benzamidas , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Telomerase , Humanos , Telomerase/genética , Leucócitos Mononucleares , Simulação de Acoplamento Molecular , Proteína Quinase Ativada por DNA/genética , DNA
12.
Mol Ther ; 31(7): 2089-2104, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36945773

RESUMO

CAR T cells recognizing CD19 effectively treat relapsed and refractory B-ALL and DLBCL. However, CD19 loss is a frequent cause of relapse. Simultaneously targeting a second antigen, CD22, may decrease antigen escape, but is challenging: its density is approximately 10-fold less than CD19, and its large structure may hamper immune synapse formation. The characteristics of the optimal CD22 CAR are underexplored. We generated 12 distinct CD22 antibodies and tested CARs derived from them to identify a CAR based on the novel 9A8 antibody, which was sensitive to low CD22 density and lacked tonic signaling. We found no correlation between affinity or membrane proximity of recognition epitope within Ig domains 3-6 of CD22 with CART function. The optimal strategy for CD19/CD22 CART co-targeting is undetermined. Co-administration of CD19 and CD22 CARs is costly; single CARs targeting CD19 and CD22 are challenging to construct. The co-expression of two CARs has previously been achieved using bicistronic vectors. Here, we generated a dual CART product by co-transduction with 9A8-41BBζ and CAT-41BBζ (obe-cel), the previously described CD19 CAR. CAT/9A8 CART eliminated single- and double-positive target cells in vitro and eliminated CD19- tumors in vivo. CAT/9A8 CART is being tested in a phase I clinical study (NCT02443831).


Assuntos
Linfoma de Burkitt , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Recidiva Local de Neoplasia , Imunoterapia Adotiva , Proteínas Adaptadoras de Transdução de Sinal , Antígenos CD19 , Anticorpos , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico
13.
BMC Pediatr ; 24(1): 574, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39251964

RESUMO

PURPOSE: The current study aims to investigate the significance of N6-methyladenosine (m6A) methylationrelated genes in the clinical prognosis of childhood relapsed B-cell acute lymphoblastic leukemia (B-ALLL) patient. METHODS: Transcriptome data and corresponding clinical data on m6A methylation-related genes (including 20 genes) were obtained from the Therapeutically Applicable Research To Generate Effective Treatments (TARGET) database. RESULTS: The bone marrow (BM) samples of 134 newly diagnosed (naive) and 116 relapsed B-ALL from TARGET were enrolled in the current study. Three genes (FTO, HNRNPC, RBM15B) showed significant up-regulation in relapsed B-ALL compared with that in naive B-ALL.The three genes had a significantly worse survival (P < 0.05). The LASSO Cox regression model was used to select the most predictive genes as prognostic indicators, and YTHDC1 and FTO were identified as prognostic factors for relapsed B-ALL. Finally, the results of multivariate regression analysis showed that the risk score of m6A methylation-related genes was an independent prognostic factor in relapsed B-ALL (P < 0.05). CONCLUSION: We found that the expression levels of m6A methylation-related genes were different in naive and relapsed patients with B-ALL and correlated with survival and prognosis.This implies that m6A methylation-related genes may be promising prognostic indicators or therapeutic targets for relapsed B-ALL.


Assuntos
Adenosina , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Fatores de Processamento de RNA , Proteínas de Ligação a RNA , Humanos , Prognóstico , Adenosina/análogos & derivados , Adenosina/genética , Criança , Feminino , Masculino , Proteínas de Ligação a RNA/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Fatores de Processamento de RNA/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Metilação , Pré-Escolar , Transcriptoma , Regulação para Cima , Biomarcadores Tumorais/genética , Recidiva , Recidiva Local de Neoplasia/genética , Adolescente , Proteínas do Tecido Nervoso
14.
Adv Exp Med Biol ; 1459: 379-403, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017853

RESUMO

Myocyte enhancer factor 2 (MEF2) is a key transcription factor (TF) in skeletal, cardiac, and neural tissue development and includes four isoforms: MEF2A, MEF2B, MEF2C, and MEF2D. These isoforms significantly affect embryonic development, nervous system regulation, muscle cell differentiation, B- and T-cell development, thymocyte selection, and effects on tumorigenesis and leukemia. This chapter describes the multifaceted roles of MEF2 family proteins, covering embryonic development, nervous system regulation, and muscle cell differentiation. It further elucidates the contribution of MEF2 to various blood and immune cell functions. Specifically, in B-cell precursor acute lymphoblastic leukemia (BCP-ALL), MEF2D is aberrantly expressed and forms a fusion protein with BCL9, CSF1R, DAZAP1, HNRNPUL1, and SS18. These fusion proteins are closely related to the pathogenesis of leukemia. In addition, it specifically introduces the regulatory effect of MEF2D fusion protein on the proliferation and growth of B-cell acute lymphoblastic leukemia (B-ALL) cells. Finally, we detail the positive feedback loop between MEF2D and IRF8 that significantly promotes the progression of acute myeloid leukemia (AML) and the importance of the ZMYND8-BRD4 interaction in regulating the IRF8 and MYC transcriptional programs. The MEF2D-CEBPE axis is highlighted as a key transcriptional mechanism controlling the block of leukemic cell self-renewal and differentiation in AML. This chapter starts with the structure and function of MEF2 family proteins, specifically summarizing and analyzing the role of MEF2D in B-ALL and AML, mediating the complex molecular mechanisms of transcriptional regulation and exploring their implications for human health and disease.


Assuntos
Fatores de Transcrição MEF2 , Fatores de Transcrição MEF2/metabolismo , Fatores de Transcrição MEF2/genética , Humanos , Animais , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Diferenciação Celular/genética , Regulação Leucêmica da Expressão Gênica , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proliferação de Células/genética
15.
Adv Exp Med Biol ; 1459: 291-320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017849

RESUMO

Genetic alterations of the repressive ETS family transcription factor gene ETV6 are recurrent in several categories of hematopoietic malignancy, including subsets of B-cell and T-cell acute lymphoblastic leukemias (B-ALL and T-ALL), myeloid neoplasms, and mature B-cell lymphomas. ETV6 is essential for adult hematopoietic stem cells (HSCs), contributes to specific functions of some mature immune cells, and plays a key role in thrombopoiesis as demonstrated by familial ETV6 mutations associated with thrombocytopenia and predisposition to hematopoietic cancers, particularly B-ALL. ETV6 appears to have a tumor suppressor role in several hematopoietic lineages, as demonstrated by recurrent somatic loss-of-function (LoF) and putative dominant-negative alterations in leukemias and lymphomas. ETV6 rearrangements contribute to recurrent fusion oncogenes such as the B-ALL-associated transcription factor (TF) fusions ETV6::RUNX1 and PAX5::ETV6, rare drivers such as ETV6::NCOA6, and a spectrum of tyrosine kinase gene fusions encoding hyperactive signaling proteins that self-associate via the ETV6 N-terminal pointed domain. Another subset of recurrent rearrangements involving the ETV6 gene locus appear to function primarily to drive overexpression of the partner gene. This review surveys what is known about the biochemical and genome regulatory properties of ETV6 as well as our current understanding of how alterations in these functions contribute to hematopoietic and nonhematopoietic cancers.


Assuntos
Variante 6 da Proteína do Fator de Translocação ETS , Neoplasias Hematológicas , Proteínas Proto-Oncogênicas c-ets , Proteínas Repressoras , Humanos , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Animais , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo
16.
Genes Dev ; 30(22): 2486-2499, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27913602

RESUMO

Even though leukemia is considered to be confined to one specific hematopoietic cell type, cases of acute leukemia of ambiguous lineage and patients relapsing in phenotypically altered disease suggest that a malignant state may be transferred between lineages. Because B-cell leukemia is associated with mutations in transcription factors of importance for stable preservation of lineage identity, we here investigated the potential lineage plasticity of leukemic cells. We report that primary pro-B leukemia cells from mice carrying heterozygous mutations in either or both the Pax5 and Ebf1 genes, commonly mutated in human leukemia, can be converted into T lineage leukemia cells. Even though the conversion process involved global changes in gene expression and lineage-restricted epigenetic reconfiguration, the malignant phenotype of the cells was preserved, enabling them to expand as T lineage leukemia cells in vivo. Furthermore, while the transformed pro-B cells displayed plasticity toward myeloid lineages, the converted cells failed to cause myeloid leukemia after transplantation. These data provide evidence that a malignant phenotype can be transferred between hematopoietic lineages. This has important implications for modern cancer medicine because lineage targeted treatment of leukemia patients can be predicted to provoke the emergence of phenotypically altered subclones, causing clinical relapse.


Assuntos
Linfócitos B/patologia , Transformação Celular Neoplásica/genética , Leucemia Linfoide/fisiopatologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Linhagem da Célula , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia de Células T/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Células Mieloides/patologia , Células Precursoras de Linfócitos B/metabolismo , Ligação Proteica , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais
17.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338754

RESUMO

Childhood B-cell acute lymphoblastic leukemia (B-ALL) is a heterogeneous disease comprising multiple molecular subgroups with subtype-specific expression profiles. Recently, a new type of ncRNA, termed circular RNA (circRNA), has emerged as a promising biomarker in cancer, but little is known about their role in childhood B-ALL. Here, through RNA-seq analysis in 105 childhood B-ALL patients comprising six genetic subtypes and seven B-cell controls from two independent cohorts we demonstrated that circRNAs properly stratified B-ALL subtypes. By differential expression analysis of each subtype vs. controls, 156 overexpressed and 134 underexpressed circRNAs were identified consistently in at least one subtype, most of them with subtype-specific expression. TCF3::PBX1 subtype was the one with the highest number of unique and overexpressed circRNAs, and the circRNA signature could effectively discriminate new patients with TCF3::PBX1 subtype from others. Our results indicated that NUDT21, an RNA-binding protein (RBP) involved in circRNA biogenesis, may contribute to this circRNA enrichment in TCF3::PBX1 ALL. Further functional characterization using the CRISPR-Cas13d system demonstrated that circBARD1, overexpressed in TCF3::PBX1 patients and regulated by NUDT21, might be involved in leukemogenesis through the activation of p38 via hsa-miR-153-5p. Our results suggest that circRNAs could play a role in the pathogenesis of childhood B-ALL.


Assuntos
MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , RNA Circular , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , RNA Circular/genética
18.
Cancer Sci ; 114(7): 2882-2894, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37137487

RESUMO

ANP32B, a member of the acidic leucine-rich nuclear phosphoprotein 32 kDa (ANP32) family of proteins, is critical for normal development because its constitutive knockout mice are perinatal lethal. It is also shown that ANP32B acts as a tumor-promoting gene in some kinds of cancer such as breast cancer and chronic myelogenous leukemia. Herein, we observe that ANP32B is lowly expressed in B-cell acute lymphoblastic leukemia (B-ALL) patients, which correlates with poor prognosis. Furthermore, we utilized the N-myc or BCR-ABLp190 -induced B-ALL mouse model to investigate the role of ANP32B in B-ALL development. Intriguingly, conditional deletion of Anp32b in hematopoietic cells significantly promotes leukemogenesis in two B-ALL mouse models. Mechanistically, ANP32B interacts with purine rich box-1 (PU.1) and enhances the transcriptional activity of PU.1 in B-ALL cells. Overexpression of PU.1 dramatically suppresses B-ALL progression, and highly expressed PU.1 significantly reverses the accelerated leukemogenesis in Anp32b-deficient mice. Collectively, our findings identify ANP32B as a suppressor gene and provide novel insight into B-ALL pathogenesis.


Assuntos
Linfoma de Burkitt , Leucemia Mieloide , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Camundongos , Proteínas Nucleares/genética , Camundongos Knockout , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas de Fusão bcr-abl , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ciclo Celular/metabolismo
19.
Cancer ; 129(21): 3390-3404, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37498973

RESUMO

BACKGROUND: The published literature on hematological, clinical, flowcytometric-immunophenotyping, and minimal residual disease outcomes of the prognostically important genetic subtypes of acute lymphoblastic leukemia (ALL) is scarce from low-income countries. For newer classifications such as BCR::ABL1-like ALLs, the scarcity of patient-level data is even more pronounced. METHODS: The authors performed comprehensive detection of recurrent gene fusions and BCR::ABL1-like ALL cases followed by immunophenotypic profiling and obtained clinical outcome parameters for a large cohort (n = 1021) of patients from India. This cohort included a significant number of patients with BCR::ABL1-like ALL subtype and other genetic subtypes of ALL. RESULTS: Patients with BCR::ABL1-positive and BCR::ABL1-like ALL were significantly older, had male preponderance, and expressed a higher white blood cell count than BCR::ABL1-negative cases (p < .05). Logistic regression modeling of B-lineage-ALL (B-ALL) subtypes revealed that cluster of differentiation (CD)36 is a strong statistically significant predictive marker of BCR::ABL1-like ALL (p < .05). Furthermore, patients with BCR::ABL1-like ALLs show a significantly higher frequency of CD36 expression compared to BCR::ABL1-negative ALLs (p < .05). In terms of clinical symptoms, lymphadenopathy is a strong statistically significant predictive marker in BCR::ABL1-like ALLs compared to BCR::ABL1-negative ALL cases (p < .05). In terms of treatment outcomes, minimal residual disease (MRD) positivity in BCR::ABL1-positive ALL cases were statistically significant (p < .05), and BCR::ABL1-like ALL cases had high MRD-positivity as compared to BCR::ABL1-negative ALL cases but did not show statistical significance. CONCLUSIONS: The findings evince the use of novel therapies and personalized treatment regimens to improve the overall survival of the newer incorporated entities in B-ALLs. This is the first report characterizing the hematological, clinical, flowcytometric-immunophenotyping, and minimal residual disease outcomes of the prognostically significant subtypes of ALLs in patients from India. PLAIN LANGUAGE SUMMARY: Characterizing the hematological, clinical, flowcytometric-immunophenotyping, and minimal residual disease outcomes of the prognostically significant subtypes (n = 1021) of acute lymphoblastic leukemia (ALLs) in patients from India. We have made two independent logistic regression models of cluster of differentiation (CD) markers and clinical symptoms to differentiate prognostically significant subtypes of ALLs. Logistic regression analysis of CD markers revealed CD36 as a strong predictor in BCR::ABL1-like ALL cases compared to BCR::ABL1-negative ALL cases. Logistic regression analysis of clinical symptoms revealed lymphadenopathy significantly predicts BCR::ABL1-like ALLs (p < .05). In terms of treatment outcomes, BCR::ABL1-positive ALL had statistically significant minimal residual disease (MRD) (p < .05), and BCR::ABL1-like ALL cases had high MRD-positivity but did not show statistical significance as compared to BCR::ABL1-negative ALLs.

20.
Cancer ; 129(8): 1217-1226, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36738086

RESUMO

BACKGROUND: The gold standard for the identification of Philadelphia (Ph)-like acute lymphoblastic leukemia (ALL) patients is gene expression profiling. Because of its diverse nature, its identification is extremely difficult and expensive. On the genomic and proteomic landscape of Ph-like ALL patients, there is a paucity of published literature from developing countries. METHODS: The authors used digital barcoded nCounter NanoString gene expression profiling for its detection, followed by molecular and proteomic characterization using fluorescence in situ hybridization and liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: The authors found 32.05% Ph-like ALL patients and their median age at presentation was considerably higher than Ph-negative ALL cases (p = .0306). Furthermore, we identified 20% CRLF2 overexpressed cases having 8.33% CRLF2-IGH translocation with concomitant R683S mutation and 8.33% CRLF2-P2RY8 translocation. In 80% of CRLF2 downregulated cases, we identified 10% as having JAK2 rearrangement. Minimal residual disease-positivity was more common in Ph-like ALL cases (55.55% vs. 25% in Ph-negative ALL cases). Immunoglobulin J chain (Jchain), small nuclear ribonucleoprotein SmD1 (SNRPD1), immunoglobulin κ constant (IGKC), NADH dehydrogenase (ubiquinone) 1 α subcomplex subunit 2 (NDUFA2), histone H2AX (H2AFX), charged multivesicular body protein 4b (CHMP4B), and carbonyl reductase (NADPH) (CBR1) proteins were identified to be substantially expressed in Ph-like ALL patients, using LC-MS/MS. Gene enrichment analysis indicated that involvement of spliceosomal mediated messenger RNA splicing pathway and four microRNAs was statistically significant in Ph-like ALL patients. CONCLUSIONS: For the first time, we have described incidence, molecular, and proteomic characterization of Ph-like ALL, in developing nations. PLAIN LANGUAGE SUMMARY: In developing countries, detecting Philadelphia (Ph)-like B-lineage acute lymphoblastic leukemia is complicated and challenging due to its diverse genetic landscape. There is no well-defined and cost-effective methodology for its detection. The incidence of this high-risk subtype is very high in adult cases, and there is an urgent need for its accurate detection. We have developed an online PHi-RACE classifier for its rapid detection, followed by delineating the genomic and proteomic landscape of Ph-like acute lymphoblastic leukemias for the first time in Indian patients.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Humanos , Proteômica , Hibridização in Situ Fluorescente , Cromatografia Líquida , Espectrometria de Massas em Tandem , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Doença Aguda , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA