Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Nutr ; 35: 33-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25974692

RESUMO

Measures of B6 status are categorized as direct biomarkers and as functional biomarkers. Direct biomarkers measure B6 vitamers in plasma/serum, urine and erythrocytes, and among these plasma pyridoxal 5'-phosphate (PLP) is most commonly used. Functional biomarkers include erythrocyte transaminase activities and, more recently, plasma levels of metabolites involved in PLP-dependent reactions, such as the kynurenine pathway, one-carbon metabolism, transsulfuration (cystathionine), and glycine decarboxylation (serine and glycine). Vitamin B6 status is best assessed by using a combination of biomarkers because of the influence of potential confounders, such as inflammation, alkaline phosphatase activity, low serum albumin, renal function, and inorganic phosphate. Ratios between substrate-products pairs have recently been investigated as a strategy to attenuate such influence. These efforts have provided promising new markers such as the PAr index, the 3-hydroxykynurenine:xanthurenic acid ratio, and the oxoglutarate:glutamate ratio. Targeted metabolic profiling or untargeted metabolomics based on mass spectrometry allow the simultaneous quantification of a large number of metabolites, which are currently evaluated as functional biomarkers, using data reduction statistics.


Assuntos
Biomarcadores/sangue , Estado Nutricional , Deficiência de Vitamina B 6/sangue , Vitamina B 6 , Aminoácidos/sangue , Biomarcadores/urina , Índice de Massa Corporal , Feminino , Nível de Saúde , Humanos , Lactente , Recém-Nascido , Inflamação , Cinurenina/sangue , Estilo de Vida , Masculino , Metaboloma , Metabolômica , Gravidez , Piridoxal/sangue , Fosfato de Piridoxal/sangue , Ácido Piridóxico/urina , Transaminases , Vitamina B 6/sangue , Vitamina B 6/fisiologia , Vitamina B 6/urina , Deficiência de Vitamina B 6/urina
2.
Biochim Biophys Acta Gen Subj ; 1863(6): 1088-1097, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30928491

RESUMO

BACKGROUND: Pyridoxal 5'-phosphate (PLP) is the active form of vitamin B6. Mammals cannot synthesize vitamin B6, so they rely on dietary uptake of the different B6 forms, and via the B6 salvage pathway they interconvert them into PLP. Humans possess three enzymes in this pathway: pyridoxal kinase, pyridox(am)ine phosphate oxidase and pyridoxal phosphatase. Besides these, a fourth enzyme has been described in plants and yeast but not in humans: pyridoxal reductase. METHODS: We analysed B6 vitamers in remnant CSF samples of PLP-treated patients and four mammalian cell lines (HepG2, Caco2, HEK293 and Neuro-2a) supplemented with PL as the sole source of vitamin B6. RESULTS: Strong accumulation of pyridoxine (PN) in CSF of PLP-treated patients was observed, suggesting the existence of a PN-forming enzyme. Our in vitro studies show that all cell lines reduce PL to PN in a time- and dose-dependent manner. We compared the amino acid sequences of known PL reductases to human sequences and found high homology for members of the voltage-gated potassium channel beta subunits and the human aldose reductases. Pharmacological inhibition and knockout of these proteins show that none of the candidates is solely responsible for PL reduction to PN. CONCLUSIONS: We show evidence for the presence of PL reductase activity in humans. Further studies are needed to identify the responsible protein. GENERAL SIGNIFICANCE: This study expands the number of enzymes with a role in B6 salvage pathway. We hypothesize a protective role of PL reductase(s) by limiting the intracellular amount of free PL and PLP.


Assuntos
Oxirredutases do Álcool/metabolismo , Vitamina B 6 , Células CACO-2 , Células HEK293 , Células Hep G2 , Humanos , Piridoxina/metabolismo , Vitamina B 6/farmacocinética , Vitamina B 6/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA