RESUMO
Previous work demonstrated that human liver microsomes (HLMs) can spontaneously bind to silica-coated magnetizable beads (HLM-beads) and that these HLM-beads retain uridine 5'-diphospho-glucuronosyltransferase (UGT) activity. However, the contributions of individual UGT isoforms are not directly assessable in this system except through use of model inhibitors. Thus, a preparation wherein recombinant UGT (rUGT) microsomes bound to these same beads to form rUGT-beads of individual UGT isoforms would provide a novel system for measuring the contribution of individual UGT isoforms in a direct manner. To this end, the enzyme activities and kinetic parameter estimates of various rUGT isoforms in rUGT-beads were investigated, as well as the impact of fatty acids (FAs) on enzyme activity. The catalytic efficiencies (Vmax/Km) of the tested rUGTs were twofold to sevenfold higher in rUGT-beads compared with rUGT microsomes, except for rUGT1A6, where Vmax is the maximum product formation rate normalized to milligram of microsomal protein (pmol/min/mg protein). Interestingly, in contrast to traditional rUGT preparations, the sequestration of UGT-inhibitory FA using bovine serum albumin did not alter the catalytic efficiency (Vmax/Km) of the rUGTs in rUGT-beads. Moreover, the increase in catalytic efficiency of rUGT-beads over rUGT microsomes was similar to increases in catalytic efficiency noted with rUGT microsomes (not bound to beads) incubated with bovine serum albumin, suggesting the beads in some way altered the potential for FAs to inhibit activity. The rUGT-bead system may serve as a useful albumin-free tool to determine kinetic constants for UGT substrates, particularly those that exhibit high binding to albumin.
Assuntos
Glucuronosiltransferase , Isoenzimas , Microssomos Hepáticos , Proteínas Recombinantes , Animais , Humanos , Ácidos Graxos/metabolismo , Ácidos Graxos/química , Glucuronosiltransferase/metabolismo , Glucuronosiltransferase/genética , Glucuronosiltransferase/química , Isoenzimas/metabolismo , Isoenzimas/genética , Cinética , Microssomos Hepáticos/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Magnetismo , Microssomos/química , Microssomos/metabolismoRESUMO
Bacterial wilt, caused by Xanthomonas translucens pv. graminis (Xtg), is a serious disease of economically important forage grasses, including Italian ryegrass (Lolium multiflorum Lam.). A major QTL for resistance to Xtg was previously identified, but the precise location as well as the genetic factors underlying the resistance are yet to be determined. To this end, we applied a bulked segregant analysis (BSA) approach, using whole-genome deep sequencing of pools of the most resistant and most susceptible individuals of a large (n = 7484) biparental F2 population segregating for resistance to Xtg. Using chromosome-level genome assemblies as references, we were able to define a ~300 kb region highly associated with resistance on pseudo-chromosome 4. Further investigation of this region revealed multiple genes with a known role in disease resistance, including genes encoding for Pik2-like disease resistance proteins, cysteine-rich kinases, and RGA4- and RGA5-like disease resistance proteins. Investigation of allele frequencies in the pools and comparative genome analysis in the grandparents of the F2 population revealed that some of these genes contain variants with allele frequencies that correspond to the expected heterozygosity in the resistant grandparent. This study emphasizes the efficacy of combining BSA studies in very large populations with whole genome deep sequencing and high-quality genome assemblies to pinpoint regions associated with a binary trait of interest and accurately define a small set of candidate genes. Furthermore, markers identified in this region hold significant potential for marker-assisted breeding strategies to breed resistance to Xtg in Italian ryegrass cultivars more efficiently.
Assuntos
Resistência à Doença , Lolium , Doenças das Plantas , Xanthomonas , Lolium/genética , Lolium/microbiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Xanthomonas/fisiologia , Locos de Características Quantitativas/genética , Genes de Plantas/genética , Mapeamento CromossômicoRESUMO
As a Brassica crop, Brassica napus typically has single flowers that contain four petals. The double-flower phenotype of rapeseed has been a desirable trait in China because of its potential commercial value in ornamental tourism. However, few double-flowered germplasms have been documented in B. napus, and knowledge of the underlying genes is limited. Here, B. napus D376 was characterized as a double-flowered strain that presented an average of 10.92 ± 1.40 petals and other normal floral organs. F1, F2 and BC1 populations were constructed by crossing D376 with a single-flowered line reciprocally. Genetic analysis revealed that the double-flower trait was a recessive trait controlled by multiple genes. To identify the key genes controlling the double-flower trait, bulk segregant analysis sequencing (BSA-seq) and RNA-seq analyses were conducted on F2 individual bulks with opposite extreme phenotypes. Through BSA-seq, one candidate interval was mapped at the region of chromosome C05: 14.56-16.17 Mb. GO and KEGG enrichment analyses revealed that the DEGs were significantly enriched in carbohydrate metabolic processes, notably starch and sucrose metabolism. Interestingly, five and thirty-six DEGs associated with floral development were significantly up- and down-regulated, respectively, in the double-flowered plants. A combined analysis of BSA-seq and RNA-seq data revealed that five genes were candidates associated with the double flower trait, and BnaC05.ERS2 was the most promising gene. These findings provide novel insights into the breeding of double-flowered varieties and lay a theoretical foundation for unveiling the molecular mechanisms of floral development in B. napus.
Assuntos
Brassica napus , Flores , Fenótipo , RNA-Seq , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Genes de Plantas , Regulação da Expressão Gênica de Plantas , Mapeamento Cromossômico , Perfilação da Expressão GênicaRESUMO
BACKGROUND: Pod shell thickness (PST) is an important agronomic trait of peanut because it affects the ability of shells to resist pest infestations and pathogen attacks, while also influencing the peanut shelling process. However, very few studies have explored the genetic basis of PST. RESULTS: An F2 segregating population derived from a cross between the thick-shelled cultivar Yueyou 18 (YY18) and the thin-shelled cultivar Weihua 8 (WH8) was used to identify the quantitative trait loci (QTLs) for PST. On the basis of a bulked segregant analysis sequencing (BSA-seq), four QTLs were preliminarily mapped to chromosomes 3, 8, 13, and 18. Using the genome resequencing data of YY18 and WH8, 22 kompetitive allele-specific PCR (KASP) markers were designed for the genotyping of the F2 population. Two major QTLs (qPSTA08 and qPSTA18) were identified and finely mapped, with qPSTA08 detected on chromosome 8 (0.69-Mb physical genomic region) and qPSTA18 detected on chromosome 18 (0.15-Mb physical genomic region). Moreover, qPSTA08 and qPSTA18 explained 31.1-32.3% and 16.7-16.8% of the phenotypic variation, respectively. Fifteen genes were detected in the two candidate regions, including three genes with nonsynonymous mutations in the exon region. Two molecular markers (Tif2_A08_31713024 and Tif2_A18_7198124) that were developed for the two major QTL regions effectively distinguished between thick-shelled and thin-shelled materials. Subsequently, the two markers were validated in four F2:3 lines selected. CONCLUSIONS: The QTLs identified and molecular markers developed in this study may lay the foundation for breeding cultivars with a shell thickness suitable for mechanized peanut shelling.
Assuntos
Arachis , Locos de Características Quantitativas , Arachis/genética , Mapeamento Cromossômico , Melhoramento Vegetal , FenótipoRESUMO
Rice root system plays a crucial role in plant adaptation under adverse conditions, particularly drought stress. However, the regulatory gene networks that govern rice root development during stress exposure remain largely unexplored. In this study, we applied a QTL sequencing method to identify QTL/gene controlling the crown root development under Jasmonic acid simulation using the Bulk-segregant analysis. Two rice cultivars with contrasting phenotypes from the Vietnamese traditional rice collection were used as parent pairs for crossing. The single-seed descent method was employed to generate an F2 population of progenies. This F2/3 population was further segregated based on root count under JA stress. Pooled DNA from the two extreme groups in this population was sequenced, and SNP indexes across all loci in these pools were calculated. We detected a significant genomic region on chromosome 10, spanned from 20.39-20.50 Mb, where two rice RLKs were located, OsPUB54 and OsPUB58. Receptor-like kinases (RLKs) are pivotal in regulating various aspects of root development in plants, and the U-box E3 ubiquitination ligase class was generally known for its degradation of some protein complexes. Notably, OsPUB54 was strongly induced by JA treatment, suggesting its involvement in the degradation of the Aux/IAA protein complex, thereby influencing crown root initiation. Besides, the Eukaryotic translation initiation of factor 3 subunit L (eIF3l) and the Mitogen-activated protein kinase kinase kinase 37 (MAPKKK 37) proteins identified from SNPs with high score index which suggests their significant roles in the translation initiation process and cellular signaling pathways, respectively. This information suggests several clues of how these candidates are involved in modifying the rice root system under stress conditions.
Assuntos
Ciclopentanos , Oryza , Oxilipinas , Raízes de Plantas , Locos de Características Quantitativas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
BACKGROUND: Focusing on key indicators of drought resistance is highly important for quickly mining candidate genes related to drought resistance in cotton. RESULTS: In the present study, drought resistance was identified in drought resistance-related RIL populations during the flowering and boll stages, and multiple traits were evaluated; these traits included three key indicators: plant height (PH), single boll weight (SBW) and transpiration rate (Tr). Based on these three key indicators, three groups of extreme mixing pools were constructed for BSA-seq. Based on the mapping interval of each trait, a total of 6.27 Mb QTL intervals were selected on chromosomes A13 (3.2 Mb), A10 (2.45 Mb) and A07 (0.62 Mb) as the focus of this study. Based on the annotation information and qRTâPCR analysis, three key genes that may be involved in the drought stress response of cotton were screened: GhF6'H1, Gh3AT1 and GhPER55. qRTâPCR analysis of parental and extreme germplasm materials revealed that the expression of these genes changed significantly under drought stress. Cotton VIGS experiments verified the important impact of key genes on cotton drought resistance. CONCLUSIONS: This study focused on the key indicators of drought resistance, laying the foundation for the rapid mining of drought-resistant candidate genes in cotton and providing genetic resources for directed molecular breeding of drought resistance in cotton.
Assuntos
Resistência à Seca , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Fenótipo , Secas , Gossypium/genéticaRESUMO
BACKGROUND: The cold tolerance of rice is closely related to its production and geographic distribution. The identification of cold tolerance-related genes is of important significance for developing cold-tolerant rice. Dongxiang wild rice (Oryza rufipogon Griff.) (DXWR) is well-adapted to the cold climate of northernmost-latitude habitats ever found in the world, and is one of the most valuable rice germplasms for cold tolerance improvement. RESULTS: Transcriptome analysis revealed genes differentially expressed between Xieqingzao B (XB; a cold sensitive variety) and 19H19 (derived from an interspecific cross between DXWR and XB) in the room temperature (RT), low temperature (LT), and recovery treatments. The results demonstrated that chloroplast genes might be involved in the regulation of cold tolerance in rice. A high-resolution SNP genetic map was constructed using 120 BC5F2 lines derived from a cross between 19H19 and XB based on the genotyping-by-sequencing (GBS) technique. Two quantitative trait loci (QTLs) for cold tolerance at the early seedling stage (CTS), qCTS12 and qCTS8, were detected. Moreover, a total of 112 candidate genes associated with cold tolerance were identified based on bulked segregant analysis sequencing (BSA-seq). These candidate genes were divided into eight functional categories, and the expression trend of candidate genes related to 'oxidation-reduction process' and 'response to stress' differed between XB and 19H19 in the RT, LT and recovery treatments. Among these candidate genes, the expression level of LOC_Os12g18729 in 19H19 (related to 'response to stress') decreased in the LT treatment but restored and enhanced during the recovery treatment whereas the expression level of LOC_Os12g18729 in XB declined during recovery treatment. Additionally, XB contained a 42-bp deletion in the third exon of LOC_Os12g18729, and the genotype of BC5F2 individuals with a survival percentage (SP) lower than 15% was consistent with that of XB. Weighted gene coexpression network analysis (WGCNA) and modular regulatory network learning with per gene information (MERLIN) algorithm revealed a gene interaction/coexpression network regulating cold tolerance in rice. In the network, differentially expressed genes (DEGs) related to 'oxidation-reduction process', 'response to stress' and 'protein phosphorylation' interacted with LOC_Os12g18729. Moreover, the knockout mutant of LOC_Os12g18729 decreased cold tolerance in early rice seedling stage signifcantly compared with that of wild type. CONCLUSIONS: In general, study of the genetic basis of cold tolerance of rice is important for the development of cold-tolerant rice varieties. In the present study, QTL mapping, BSA-seq and RNA-seq were integrated to identify two CTS QTLs qCTS8 and qCTS12. Furthermore, qRT-PCR, genotype sequencing and knockout analysis indicated that LOC_Os12g18729 could be the candidate gene of qCTS12. These results are expected to further exploration of the genetic mechanism of CTS in rice and improve cold tolerance of cultivated rice by introducing the cold tolerant genes from DXWR through marker-assisted selection.
Assuntos
Temperatura Baixa , Oryza , Locos de Características Quantitativas , Plântula , Oryza/genética , Oryza/fisiologia , Locos de Características Quantitativas/genética , Plântula/genética , Plântula/fisiologia , Plântula/crescimento & desenvolvimento , Genes de Plantas , RNA-Seq , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Frio/genéticaRESUMO
Globe artichoke (Cynara cardunculus var. scolymus; 2n = 2x = 34) is a food crop consumed for its immature flower heads. Traditionally, globe artichoke varietal types are vegetatively propagated. However, seed propagation makes it possible to treat the crop as annual, increasing field uniformity and reducing farmers costs, as well as pathogens diffusion. Despite globe artichoke's significant agricultural value and the critical role of heterosis in the development of superior varieties, the production of hybrids remains challenging without a reliable system for large-scale industrial seed production. Male sterility (MS) presents a promising avenue for overcoming these challenges by simplifying the hybridization process and enabling cost-effective seed production. However, within the Cynara genus, genic male sterility has been linked to three recessive loci in globe artichoke, with no definitive genetic mechanism elucidated to date. A 250 offsprings F2 population, derived from a cross between a MS globe artichoke and a male fertile (MF) cultivated cardoon (C. cardunculus var. altilis) and fitting a monogenic segregation model (3:1), was analyzed through BSA-seq, aiming at the identification of genomic regions/genes affecting male sterility. Four QTL regions were identified on chromosomes 4, 12, and 14. By analyzing the sequence around the highest pick on chromosome 14, a cytochrome P450 (CYP703A2) was identified, carrying a deleterious substitution (R/Q) fixed in the male sterile parent. A single dCAPS marker was developed around this SNP, allowing the discrimination between MS and MF genotypes within the population, suitable for applications in plant breeding programs. A 3D model of the protein was generated by homology modeling, revealing that the mutated amino acid is part of a highly conserved motif crucial for protein folding.
Assuntos
Cynara scolymus , Infertilidade das Plantas , Pólen , Infertilidade das Plantas/genética , Cynara scolymus/genética , Pólen/genética , Genoma de Planta , Genes de PlantasRESUMO
Electrochemiluminescence (ECL) is a powerful tool for clinical diagnosis due to its exceptional sensitivity. However, the standard tripropylamine (TPrA) coreactant for Ru(bpy)3Cl2, the most widely studied and used ECL system, is highly toxic. Despite extensive research on alternative coreactants, they often fall short in poor efficiency. From a reaction kinetics perspective, accelerating electrooxidation rate of Ru(bpy)3Cl2 is an essential way to compensate the efficiency limitation of coreactants, but is rarely reported. Here, a hybrid electrocatalyst@coreactant dots for the ECL of Ru(bpy)3Cl2 is reported. The as-prepared WSe2@bovine serum albumin (WSe2@BSA) dots is biocompatible, and demonstrate dual functions, i.e., the BSA shell works as a coreactant, meanwhile, the WSe2 core effectively catalyzes Ru(bpy)3Cl2 oxidation. As a result, WSe2@BSA dots exhibit an exceptionally high efficiency comparable to TPrA for the ECL of Ru(bpy)3Cl2. In addition, the procedure for synthesizing WSe2@BSA dots is facile (room temperature, atmospheric conditions), rapid (5 min), and scalable (for millions of bioassays). A biosensor utilizing WSe2@BSA dots shows promise for highly sensitive detecting glypican-3 in clinical liver cancer serum samples, especially for alpha-fetoprotein-negative patients. This work opens a new avenue for developing a highly efficient ECL system for biosensing and clinical diagnosis.
RESUMO
Many proteins could aggregate into amyloid fibrils under certain conditions. However, the aggregation process and morphology of the fibrils may be significantly different because of the distinct protein structure. In this article, the hydrophilic carbon dots (Lys-CA-CDs) were prepared using lysine (Lys) and citric acid (CA) as reactant under the assistance of a microwave. The dissimilar modulation effect of Lys-CA-CDs on the aggregation process of distinct structure protein was further investigated, where bovine serum albumin (BSA) and hen egg white lysozyme (HEWL) were chosen as model proteins. All results showed that Lys-CA-CDs displayed the contrary influence on the aggregation process of BSA and HEWL. Lys-CA-CDs could induce BSA to aggregate into more wormlike fibrils and inhibit the aggregation of HEWL into hair-like fibrils. The influence on the aggregation process of BSA may be assigned to the increased concentration of BSA around the Lys-CA-CDs caused by their interaction. However, inserting of Lys-CA-CDs into the inner structure of HEWL led to the change of protein secondary structure. The change of secondary structure further made it difficult for HEWL to aggregate into fibrils and Lys-CA-CDs showed the inhibition effect on HEWL aggregation.
Assuntos
Amiloide , Carbono , Interações Hidrofóbicas e Hidrofílicas , Muramidase , Agregados Proteicos , Soroalbumina Bovina , Muramidase/química , Muramidase/metabolismo , Carbono/química , Soroalbumina Bovina/química , Amiloide/química , Animais , Agregados Proteicos/efeitos dos fármacos , Bovinos , Lisina/química , Estrutura Secundária de Proteína , Pontos Quânticos/química , Galinhas , Ácido Cítrico/químicaRESUMO
Fruit firmness is an important trait in sweet cherry breeding because it directly positively influences fruit transportability, storage and shelf life. However, the underlying genes responsible and the molecular mechanisms that control fruit firmness remain unknown. In this study, we identified a candidate gene, PavSCPL, encoding a serine carboxypeptidase-like protein with natural allelic variation, that controls fruit firmness in sweet cherry using map-based cloning and functionally characterized PavSCPL during sweet cherry fruit softening. Genetic analysis revealed that fruit firmness in the 'Rainier' × 'Summit' F1 population was controlled by a single dominant gene. Bulked segregant analysis combined with fine mapping narrowed the candidate gene to a 473-kb region (7418778-7 891 914 bp) on chromosome 6 which included 72 genes. The candidate gene PavSCPL, and a null allele harbouring a 5244-bp insertion in the second exon that completely inactivated PavSCPL expression and resulted in the extra-hard-flesh phenotype, were identified by RNA-sequencing analysis and gene cloning. Quantitative RT-PCR analysis revealed that the PavSCPL expression level was increased with fruit softening. Virus-induced gene silencing of PavSCPL enhanced fruit firmness and suppressed the activities of certain pectin-degrading enzymes in the fruit. In addition, we developed functional molecular markers for PavSCPL and the Pavscpl5.2-k allele that co-segregated with the fruit firmness trait. Overall, this research identified a crucial functional gene for fruit firmness. The results provide insights into the genetic control and molecular mechanism of the fruit firmness trait and present useful molecular markers for molecular-assisted breeding for fruit firmness in sweet cherry.
Assuntos
Carboxipeptidases , Frutas , Proteínas de Plantas , Prunus avium , Frutas/genética , Prunus avium/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Fenótipo , Regulação da Expressão Gênica de Plantas , Mapeamento Cromossômico , Alelos , Genes de Plantas/genéticaRESUMO
BACKGROUND: Glycosylation is an enzyme-catalyzed post-translational modification that is distinct from glycation and is present on a majority of plasma proteins. N-glycosylation occurs on asparagine residues predominantly within canonical N-glycosylation motifs (Asn-X-Ser/Thr) although non-canonical N-glycosylation motifs Asn-X-Cys/Val have also been reported. Albumin is the most abundant protein in plasma whose glycation is well-studied in diabetes mellitus. However, albumin has long been considered a non-glycosylated protein due to absence of canonical motifs. Albumin contains two non-canonical N-glycosylation motifs, of which one was recently reported to be glycosylated. METHODS: We enriched abundant serum proteins to investigate their N-linked glycosylation followed by trypsin digestion and glycopeptide enrichment by size-exclusion or mixed-mode anion-exchange chromatography. Glycosylation at canonical as well as non-canonical sites was evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) of enriched glycopeptides. Deglycosylation analysis was performed to confirm N-linked glycosylation at non-canonical sites. Albumin-derived glycopeptides were fragmented by MS3 to confirm attached glycans. Parallel reaction monitoring was carried out on twenty additional samples to validate these findings. Bovine and rabbit albumin-derived glycopeptides were similarly analyzed by LC-MS/MS. RESULTS: Human albumin is N-glycosylated at two non-canonical sites, Asn68 and Asn123. N-glycopeptides were detected at both sites bearing four complex sialylated glycans and validated by MS3-based fragmentation and deglycosylation studies. Targeted mass spectrometry confirmed glycosylation in twenty additional donor samples. Finally, the highly conserved Asn123 in bovine and rabbit serum albumin was also found to be glycosylated. CONCLUSIONS: Albumin is a glycoprotein with conserved N-linked glycosylation sites that could have potential clinical applications.
Assuntos
Albuminas , Glicoproteínas , Glicosilação , Animais , Bovinos , Humanos , Albuminas/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida , Glicopeptídeos/metabolismo , Glicopeptídeos/química , Glicoproteínas/metabolismo , Glicoproteínas/química , Dados de Sequência Molecular , Espectrometria de Massas em TandemRESUMO
In the ongoing arms race between rice and Magnaporthe oryzae, the pathogen employs effectors to evade the immune response, while the host develops resistance genes to recognise these effectors and confer resistance. In this study, we identified a novel Pik allele, Pik-W25, from wild rice WR25 through bulked-segregant analysis, creating the Pik-W25 NIL (Near-isogenic Lines) named G9. Pik-W25 conferred resistance to isolates expressing AvrPik-C/D/E alleles. CRISPR-Cas9 editing was used to generate transgenic lines with a loss of function in Pik-W25-1 and Pik-W25-2, resulting in loss of resistance in G9 to isolates expressing the three alleles, confirming that Pik-W25-induced immunity required both Pik-W25-1 and Pik-W25-2. Yeast two-hybrid (Y2H) and split luciferase complementation assays showed interactions between Pik-W25-1 and the three alleles, while Pik-W25-2 could not interact with AvrPik-C, -D, and -E alleles with Y2H assay, indicating Pik-W25-1 acts as an adaptor and Pik-W25-2 transduces the signal to trigger resistance. The Pik-W25 NIL exhibited enhanced field resistance to leaf and panicle blast without significant changes in morphology or development compared to the parent variety CO39, suggesting its potential for resistance breeding. These findings advance our knowledge of rice blast resistance mechanisms and offer valuable resources for effective and sustainable control strategies.
RESUMO
Platinum-based drugs are widely recognized efficient anti-tumor agents, but faced with multiple undesirable effects. Here, four dinuclear platinum(II) complexes, [{Pt(1,2-pn)Cl}2(µ-pydz)]Cl2 (C1), [{Pt(ibn)Cl}2(µ-pydz)]Cl2 (C2), [{Pt(1,3-pn)Cl}2(µ-pydz)]Cl2 (C3) and [{Pt(1,3-pnd)Cl}2(µ-pydz)]Cl2 (C4), were designed (pydz is pyridazine, 1,2-pn is ( ±)-1,2-propylenediamine, ibn is 1,2-diamino-2-methylpropane, 1,3-pn is 1,3-propylenediamine, and 1,3-pnd is 1,3-pentanediamine). Interactions and binding ability of C1-C4 complexes with calf thymus DNA (CT-DNA) has been monitored by viscosity measurements, UV-Vis, fluorescence emission spectroscopy and molecular docking. Binding affinities of C1-C4 complexes to the bovine serum albumin (BSA) has been monitored by fluorescence emission spectroscopy. The tested complexes exhibit variable cytotoxicity toward different mouse and human tumor cell lines. C2 shows the most potent cytotoxicity, especially against mouse (4T1) and human (MDA-MD468) breast cancer cells in the dose- and time-dependent manner. C2 induces 4T1 and MDA-MD468 cells apoptosis, further documented by the accumulation of cells at sub-G1 phase of cell cycle and increase of executive caspase 3 and caspase 9 levels in 4T1 cells. C2 exhibits anti-proliferative effect through the reduction of cyclin D3 and cyclin E expression and elevation of inhibitor p27 level. Also, C2 downregulates c-Myc and phosphorylated AKT, oncogenes involved in the control of tumor cell proliferation and death. In order to measure the amount of platinum(II) complexes taken up by the cells, the cellular platinum content were quantified. However, C2 failed to inhibit mouse breast cancer growth in vivo. Chemical modifications of tested platinum(II) complexes might be a valuable approach for the improvement of their anti-tumor activity, especially effects in vivo.
Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Piridazinas , Humanos , Animais , Camundongos , Feminino , Platina/farmacologia , Platina/química , Soroalbumina Bovina/química , Simulação de Acoplamento Molecular , Ligantes , DNA/química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Piridazinas/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/químicaRESUMO
Cardiac troponin I (cTnI) is the most resorted biomarker for the detection of cardiovascular disease (CVD). The means of rapid quantification of cTnI levels in the blood can substantially minimize the risk of acute myocardial infarction and heart failure. A sensor for the non-enzymatic evaluation of cardiac troponin-I has been developed using fluorescent iron nanoclusters via a one-pot synthesis employing (BSA) as the template and reducing agent, and hydrogen peroxide as the additive. The fluorescence of Iron Nanocluster is quenched with graphene oxide (GO) via fluorescence resonance energy transfer (FRET) between conjugate iron nanoclusters and graphene oxide. The sensor shows a low detection limit of 0.011â ng/mL. The benefits of utilizing a non-enzymatic probe for detecting cardiac troponin I is that it avoids the need for enzymes and hence is economical, stable, and less impacted by environmental conditions such as temperature and pH. Non-enzymatic probes are more useful for clinical use since they are more stable and have a longer shelf life. The developed non-enzymatic probes are also highly selective and sensitive to the target analyte, making them suitable for the direct detection of cardiac troponin I in actual biological samples.
RESUMO
BACKGROUND: Multiparametric MRI (mpMRI) provides detailed insights into renal function, but the impact of anthropometric factors on renal imaging is not fully understood. PURPOSE: To investigate regional correlations between mpMRI parameters and age, body mass index (BMI), and body surface area (BSA). STUDY TYPE: Prospective, cross-sectional observational study. POPULATION: Twenty-nine healthy volunteers (44.5 ± 18.3 years, 18 females) without a history of renal disease. FIELD STRENGTH/SEQUENCE: 3-T, pseudo-continuous arterial spin labeling, multi-echo gradient-recalled echo, diffusion-weighted imaging, T1 and T2 mapping. ASSESSMENT: Bilateral kidneys were segmented into nine concentric layers (outer cortex to inner regions) and nine equiangular sections (lower to upper pole). Key parameters (renal blood flow [RBF], R 2 * $$ {R}_2^{\ast } $$ , apparent diffusion coefficient [ADC], T1 and T2 maps) were correlated with age, BMI, and BSA. Differences in parameters between age and BMI groups were also evaluated. STATISTICAL TESTS: Spearman correlation, Mann-Whitney U test, and rank-biserial correlation coefficient for effect size. A P-value <0.05 was considered statistically significant. RESULTS: RBF correlated negatively with age in all regions and BMI in inner layers and lower pole. ADC negatively correlated with BMI (significance was not reached in layers 2, 7, 8; P-value = 0.06-0.12) and BSA in layers 1-7. T1 negatively correlated with age in inner regions and lower medial pole. Significant positive correlations were found between age and R 2 * $$ {R}_2^{\ast } $$ (outermost layer, upper pole), age and T2 (inner and cranial-caudal regions), as well as BMI and T2 (except upper pole; P-value = 0.06). Significant differences between age groups were observed for RBF (all regions), R 2 * $$ {R}_2^{\ast } $$ (outermost and second innermost layers, central lateral region), T1 (innermost layer), and T2 (upper medial pole). Between BMI groups, ADC (middle layers, upper medial pole) and T2 (outermost and inner layers, lower pole to lateral region) differed significantly. DATA CONCLUSION: Intrarenal variance of mpMRI parameters correlated with age, BMI, and BSA. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 1.
RESUMO
Hollowness is a physiological disorder that frequently occurs during the growth and postharvest storage phases of fleshy radish roots, significantly diminishing quality, yield, and marketability. However, the molecular mechanism for hollowness remains elusive. To identify the QTLs and potential candidate genes for hollowness tolerance in radish, F2 and BC1 populations were constructed from hollowness-tolerant radish (C16) and hollowness-sensitive radish (C17) in the present study. Genetic analysis indicated that hollowness tolerance may be governed by two independent recessive genes. By employing bulked segregant analysis sequencing (BSA-seq), two significant candidate genomic intervals were pinpointed on chromosomes R04 (960 kb, 6.48-7.44 Mb) and R05 (600 kb, 31.44-32.04 Mb), which together harbor 107 annotated genes. Transcriptomic sequencing revealed that the downregulated differentially expressed genes (DEGs) were significantly enriched in biological processes related to cell death and the response to water stress, whereas the upregulated DEGs were significantly associated with the chitin catabolic process and the cell wall macromolecule metabolic process. A total of 46 intersecting genes were identified among these DEGs within the genomic intervals of interest. One gene with high expression (Rsa10025345) and two with low expression (Rsa10025320 and Rsa10018106) were detected in the tolerant variety C16. Furthermore, a SNP within Rsa10025320 resulting in an amino acid change (A188E) was characterized through sequence variation observed in both BSA-seq and RNA-seq data and further developed as a derived cleaved amplified polymorphic sequence (dCAPS) marker. Our study reveals potential target genes for tolerance to hollowness and paves the way for marker-assisted breeding of hollowness tolerance in red-skinned radishes.
Assuntos
Mapeamento Cromossômico , Genes de Plantas , Raízes de Plantas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Raphanus , Raphanus/genética , Raphanus/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Mapeamento Cromossômico/métodos , Fenótipo , Regulação da Expressão Gênica de PlantasRESUMO
The properties and arrangement of surface-active molecules at air-water interfaces influence foam stability and bubble shape. Such multiscale-relationships necessitate a well-conducted analysis of mesoscopic foam properties. We introduce a novel automated and precise method to characterize bubble growth, size distribution and shape based on image analysis and using the machine learning algorithm Cellpose. Studying the temporal evolution of bubble size and shape facilitates conclusions on foam stability. The addition of two sets of masks, for tiny bubbles and large bubbles, provides for a high precision of analysis. A python script for analysis of the evolution of bubble diameter, circularity and dispersity is provided in the Supporting Information. Using foams stabilized by bovine serum albumin (BSA), hydrophobin (HP), and blends thereof, we show how this technique can be used to precisely characterize foam structures. Foams stabilized by HP show a significantly increased foam stability and rounder bubble shape than BSA-stabilized foams. These differences are induced by the different molecular structure of the two proteins. Our study shows that the proposed method provides an efficient way to analyze relevant foam properties in detail and at low cost, with higher precision than conventional methods of image analysis.
RESUMO
RESEARCH QUESTION: To what extent does the type and concentration of protein and the type of culture medium affect the sensitivity of the mouse embryo assay (MEA) to detect Triton X-100 (TX-100) in culture media? DESIGN: The effect of the concentration of bovine serum albumin (BSA) and human serum albumin (HSA) was assessed by supplementing media with 0.5 or 5 mg/ml. Potassium-supplemented simplex optimized medium (KSOM) and human tubal fluid (HTF) were used as complex and simple formulation media, respectively. Variables were combined, forming study groups where embryos were cultured in test media spiked with a sublethal TX-100 concentration. The conditions of greatest sensitivity were determined by statistical comparison of blastocyst formation rates and total cell counts between groups. RESULTS: Although all of the study groups showed equal capacity for sustaining proper embryo development, the reported sensitivity of the MEA differed between groups when subjected to TX-100. HTF conferred significantly greater sensitivity than KSOM regardless of the type and concentration of protein used, and medium supplementation with 5 mg/ml BSA rather than 0.5 mg/ml BSA resulted in significantly higher sensitivity regardless of the type of medium used. This increase in concentration also resulted in higher sensitivity when supplementing HTF with HSA. The BSA groups provided more sensitivity than their HSA counterparts, except for the KSOMâ¯+â¯0.5 mg/ml BSA group. Cell count analysis did not provide further significant conclusions. CONCLUSIONS: For TX-100 detection within culture medium, the type and concentration of protein and the type of culture medium have a direct effect on MEA sensitivity. These results could help to standardize the MEA protocol, and increase its ability to detect sublethal concentrations of embryotoxic substances, especially TX-100, thus avoiding possible clinical harmful effects.
Assuntos
Meios de Cultura , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário , Octoxinol , Soroalbumina Bovina , Octoxinol/farmacologia , Animais , Camundongos , Soroalbumina Bovina/farmacologia , Técnicas de Cultura Embrionária/métodos , Feminino , Desenvolvimento Embrionário/efeitos dos fármacos , Embrião de Mamíferos/efeitos dos fármacos , Humanos , Albumina Sérica Humana/análiseRESUMO
Albumin is a vital blood protein responsible for transporting metabolites and drugs throughout the body and serves as a potential biomarker for various medical conditions, including inflammatory, cardiovascular, and renal issues. This report details the fabrication of Ni-metal organic framework/SnS2nanocomposite modified nickel foam electrochemical sensor for highly sensitive and selective non enzymatic detection of albumin in simulated human blood serum samples. Ni-metal organic framework/SnS2nanocomposite was synthesized using solvothermal technique by combining Ni-metal-organic framework (MOF) with conductive SnS2leading to the formation of a highly porous material with reduced toxicity and excellent electrical conductivity. Detailed surface morphology and chemical bonding of the Ni-MOF/SnS2nanocomposite was studied using scanning electron microscopy, transmission electron microscopy, Fourier transform infra-red, and Raman analysis. The Ni-MOF/SnS2nanocomposite coated on Ni foam electrode demonstrated outstanding electrochemical performance, with a low limit of detection (0.44µM) and high sensitivity (1.3µA/pM/cm2) throughout a broad linear range (100 pM-10 mM). The remarkable sensor performance is achieved through the synthesis of a Ni-MOF/SnS2nanocomposite, enhancing electrocatalytic activity for efficient albumin redox reactions. The enhanced performance can be attributed due to the structural porosity of nickel foam and Ni-metal organic framework, which favours increased surface area for albumin interaction. The presence of SnS2shows stability in acidic and neutral solutions due to high surface to volume ratio which in turn improves sensitivity of the sensing material. The sensor exhibited commendable selectivity, maintaining its performance even when exposed to potential interfering substances like glucose, ascorbic acid, K+, Na+, uric acid, and urea. The sensor effectively demonstrates its accuracy in detecting albumin in real samples, showcasing substantial recovery percentages of 105.1%, 110.28%, and 91.16%.