Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.322
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Neurosci ; 44(9)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38242697

RESUMO

Cardiovascular homeostasis is maintained, in part, by neural signals arising from arterial baroreceptors that apprise the brain of blood volume and pressure. Here, we test whether neurons within the nodose ganglia that express angiotensin type-1a receptors (referred to as NGAT1aR) serve as baroreceptors that differentially influence blood pressure (BP) in male and female mice. Using Agtr1a-Cre mice and Cre-dependent AAVs to direct tdTomato to NGAT1aR, neuroanatomical studies revealed that NGAT1aR receive input from the aortic arch, project to the caudal nucleus of the solitary tract (NTS), and synthesize mechanosensitive ion channels, Piezo1/2 To evaluate the functionality of NGAT1aR, we directed the fluorescent calcium indicator (GCaMP6s) or the light-sensitive channelrhodopsin-2 (ChR2) to Agtr1a-containing neurons. Two-photon intravital imaging in Agtr1a-GCaMP6s mice revealed that NGAT1aR couple their firing to elevated BP, induced by phenylephrine (i.v.). Furthermore, optical excitation of NGAT1aR at their soma or axon terminals within the caudal NTS of Agtr1a-ChR2 mice elicited robust frequency-dependent decreases in BP and heart rate, indicating that NGAT1aR are sufficient to elicit appropriate compensatory responses to vascular mechanosensation. Optical excitation also elicited hypotensive and bradycardic responses in ChR2-expressing mice that were subjected to deoxycorticosterone acetate (DOCA)-salt hypertension; however, the duration of these effects was altered, suggestive of hypertension-induced impairment of the baroreflex. Similarly, increased GCaMP6s fluorescence observed after administration of phenylephrine was delayed in mice subjected to DOCA-salt or chronic delivery of angiotensin II. Collectively, these results reveal the structure and function of NGAT1aR and suggest that such neurons may be exploited to discern and relieve hypertension.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Proteína Vermelha Fluorescente , Camundongos , Masculino , Feminino , Animais , Acetato de Desoxicorticosterona/farmacologia , Núcleo Solitário/fisiologia , Células Receptoras Sensoriais , Pressão Sanguínea/fisiologia , Fenilefrina/farmacologia , Canais Iônicos
2.
J Neurophysiol ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140588

RESUMO

Efferent muscle sympathetic nerve activity (MSNA) is under tonic baroreflex control. The arterial baroreflex exerts the strongest influence over medium-sized sympathetic action potential (AP) subpopulations in efferent MSNA recordings. Prior work from multi-unit MSNA recordings has shown baroreflex loading selectively abolishes the sympathetic response to hypoxia. The purpose of the study was to examine baroreflex control over different-sized AP clusters and characterize the neural recruitment strategies of sympathetic AP subpopulations with baroreflex and combined baroreflex/chemoreflex (i.e., hypoxia) activation. We loaded the arterial baroreceptors (intravenous phenylephrine) alone and in combination with systemic hypoxia (SpO2 80%) in 9 healthy young men. We extracted sympathetic APs using wavelet-based methodology and quantified baroreflex gain for individual AP clusters. AP baroreflex threshold gain was measured as the slope of the linear relationship between AP probability versus diastolic blood pressure for 10 normalized clusters. Baroreflex loading with phenylephrine decreased MSNA and AP firing compared to baseline (all P < 0.05). However, the phenylephrine-mediated decrease in AP firing was lost with concurrent hypoxia (P = 0.384). Compared with baseline, baroreflex loading reduced medium sized AP cluster baroreflex threshold slope (condition P = 0.005) and discharge probability (condition P < 0.0001); these reductions from baseline were maintained during simultaneous hypoxia (both P < 0.05). Present findings indicate a key modulatory role of the baroreceptors on medium-sized APs in blood pressure regulation that withstands competing signals from peripheral chemoreflex activation.

3.
Am J Physiol Heart Circ Physiol ; 326(3): H612-H622, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38214907

RESUMO

Discharge of postganglionic muscle sympathetic nerve activity (MSNA) is related poorly to blood pressure (BP) in adults. Whether neural measurements beyond the prevailing level of MSNA can account for interindividual differences in BP remains unclear. The current study sought to evaluate the relative contributions of sympathetic-BP transduction and sympathetic baroreflex gain on resting BP in young adults. Data were analyzed from 191 (77 females) young adults (18-39 years) who underwent continuous measurement of beat-to-beat BP (finger photoplethysmography), heart rate (electrocardiography), and fibular nerve MSNA (microneurography). Linear regression analyses were computed to determine associations between sympathetic-BP transduction (signal-averaging) or sympathetic baroreflex gain (threshold technique) and resting BP, before and after controlling for age, body mass index, and MSNA burst frequency. K-mean clustering was used to explore sympathetic phenotypes of BP control and consequential influence on resting BP. Sympathetic-BP transduction was unrelated to BP in males or females (both R2 < 0.01; P > 0.67). Sympathetic baroreflex gain was positively associated with BP in males (R2 = 0.09, P < 0.01), but not in females (R2 < 0.01; P = 0.80), before and after controlling for age, body mass index, and MSNA burst frequency. K-means clustering identified a subset of participants with average resting MSNA, yet lower sympathetic-BP transduction and lower sympathetic baroreflex gain. This distinct subgroup presented with elevated BP in males (P < 0.02), but not in females (P = 0.10). Sympathetic-BP transduction is unrelated to resting BP, while the association between sympathetic baroreflex gain and resting BP in males reveals important sex differences in the sympathetic determination of resting BP.NEW & NOTEWORTHY In a sample of 191 normotensive young adults, we confirm that resting muscle sympathetic nerve activity is a poor predictor of resting blood pressure and now demonstrate that sympathetic baroreflex gain is associated with resting blood pressure in males but not females. In contrast, signal-averaged measures of sympathetic-blood pressure transduction are unrelated to resting blood pressure. These findings highlight sex differences in the neural regulation of blood pressure.


Assuntos
Barorreflexo , Hipertensão , Adulto Jovem , Humanos , Masculino , Feminino , Pressão Sanguínea/fisiologia , Barorreflexo/fisiologia , Frequência Cardíaca/fisiologia , Sistema Nervoso Simpático , Músculo Esquelético/inervação
4.
Am J Physiol Heart Circ Physiol ; 326(3): H648-H654, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38214903

RESUMO

The prevalence of major depressive disorder (MDD) is highest in young adults and contributes to an increased risk of developing future cardiovascular disease (CVD). However, the underlying mechanisms remain unclear. The studies examining cardiac autonomic function that have included young unmedicated adults with MDD report equivocal findings, and few have considered the potential influence of disease severity or duration. We hypothesized that heart rate variability (HRV) and cardiac baroreflex sensitivity (BRS) would be reduced in young unmedicated adults with MDD (18-30 yr old) compared with healthy nondepressed young adults (HA). We further hypothesized that greater symptom severity would be related to poorer cardiac autonomic function in young adults with MDD. Heart rate and beat-to-beat blood pressure were continuously recorded during 10 min of supine rest to assess HRV and cardiac BRS in 28 HA (17 female, 22 ± 3 yr old) and 37 adults with MDD experiencing current symptoms of mild-to-moderate severity (unmedicated; 28 female, 20 ± 3 yr old). Neither HRV [root mean square of successive differences between normal heartbeats (RMSSD): 63 ± 34 HA vs. 79 ± 36 ms MDD; P = 0.14] nor cardiac BRS (overall gain, 21 ± 10 HA vs. 23 ± 7 ms/mmHg MDD; P = 0.59) were different between groups. In young adults with MDD, there was no association between current depressive symptom severity and either HRV (RMSSD, R2 = 0.004, P = 0.73) or cardiac BRS (overall gain, R2 = 0.02, P = 0.85). Taken together, these data suggest that cardiac autonomic dysfunction may not contribute to elevated cardiovascular risk factor profiles in young unmedicated adults with MDD of mild-to-moderate severity.NEW & NOTEWORTHY This study investigated cardiac autonomic function in young unmedicated adults with major depressive disorder (MDD). The results demonstrated that both heart rate variability and cardiac baroreflex sensitivity were preserved in young unmedicated adults with MDD compared with healthy nondepressed young adults. Furthermore, in young adults with MDD, current depressive symptom severity was not associated with any indices of cardiac autonomic function.


Assuntos
Doenças do Sistema Nervoso Autônomo , Transtorno Depressivo Maior , Cardiopatias , Humanos , Feminino , Adulto Jovem , Transtorno Depressivo Maior/diagnóstico , Sistema Nervoso Autônomo , Coração , Pressão Sanguínea/fisiologia , Barorreflexo/fisiologia , Frequência Cardíaca/fisiologia
5.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R567-R577, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646812

RESUMO

Postexercise reduction in blood pressure, termed postexercise hypotension (PEH), is relevant for both acute and chronic health reasons and potentially for peripheral cardiovascular adaptations. We investigated the interactive effects of exercise intensity and recovery postures (seated, supine, and standing) on PEH. Thirteen normotensive men underwent a V̇o2max test on a cycle ergometer and five exhaustive constant load trials to determine critical power (CP) and the gas exchange threshold (GET). Subsequently, work-matched exercise trials were performed at two discrete exercise intensities (10% > CP and 10% < GET), with 1 h of recovery in each of the three postures. For both exercise intensities, standing posture resulted in a more substantial PEH (all P < 0.01). For both standing and seated recovery postures, the higher exercise intensity led to larger reductions in systolic [standing: -33 (11) vs. -21 (8) mmHg; seated: -34 (32) vs. -17 (37) mmHg, P < 0.01], diastolic [standing: -18 (7) vs. -8 (5) mmHg; seated: -10 (10) vs. -1 (4) mmHg, P < 0.01], and mean arterial pressures [-13 (8) vs. -2 (4) mmHg, P < 0.01], whereas in the supine recovery posture, the reduction in diastolic [-9 (9) vs. -4 (3) mmHg, P = 0.08) and mean arterial pressures [-7 (5) vs. -3 (4) mmHg, P = 0.06] was not consistently affected by prior exercise intensity. PEH is more pronounced during recovery from exercise performed above CP versus below GET. However, the effect of exercise intensity on PEH is largely abolished when recovery is performed in the supine posture.NEW & NOTEWORTHY The magnitude of postexercise hypotension is greater following the intensity above the critical power in a standing position.


Assuntos
Pressão Sanguínea , Exercício Físico , Hipotensão Pós-Exercício , Postura , Humanos , Masculino , Exercício Físico/fisiologia , Adulto , Pressão Sanguínea/fisiologia , Postura/fisiologia , Hipotensão Pós-Exercício/fisiopatologia , Adulto Jovem , Decúbito Dorsal , Recuperação de Função Fisiológica , Posição Ortostática , Postura Sentada , Hipotensão/fisiopatologia , Consumo de Oxigênio
6.
Am J Physiol Regul Integr Comp Physiol ; 327(2): R133-R144, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38766771

RESUMO

Body posture and biological sex exhibit independent effects on the sympathetic neural responses to dynamic exercise. However, the neural mechanisms (e.g., baroreflex) by which posture impacts sympathetic outflow during rhythmic muscular contractions, and whether biological sex affects posture-mediated changes in efferent sympathetic nerve traffic during exercise, remain unknown. Thus, we tested the hypotheses that increases in muscle sympathetic nerve activity (MSNA) would be greater during upright compared with supine rhythmic handgrip (RHG) exercise, and that females would demonstrate smaller increases in MSNA during upright RHG exercise than males. Twenty young (30 [6] yr; means [SD]) individuals (9 males, 11 females) underwent 6 min of supine and upright (head-up tilt 45°) RHG exercise at 40% maximal voluntary contraction with continuous measurements of MSNA (microneurography), blood pressure (photoplethysmography), and heart rate (electrocardiogram). In the pooled group, absolute MSNA burst frequency (P < 0.001), amplitude (P = 0.009), and total MSNA (P < 0.001) were higher during upright compared with supine RHG exercise. However, body posture did not impact the peak change in MSNA during RHG exercise (range: P = 0.063-0.495). Spontaneous sympathetic baroreflex gain decreased from rest to RHG exercise (P = 0.006) and was not impacted by posture (P = 0.347). During upright RHG exercise, males demonstrated larger increases in MSNA burst amplitude (P = 0.002) and total MSNA (P = 0.001) compared with females, which coincided with greater reductions in sympathetic baroreflex gain among males (P = 0.004). Collectively, these data indicate that acute attenuation of baroreflex-mediated sympathoinhibition permits increases in MSNA during RHG exercise and that males exhibit a greater reserve for efferent sympathetic neural recruitment during orthostasis than females.NEW & NOTEWORTHY The impact of posture and sex on cardiovascular control during rhythmic handgrip (RHG) exercise is unknown. We show that increases in muscle sympathetic nerve activity (MSNA) during RHG are partly mediated by a reduction in sympathetic baroreflex gain. In addition, males demonstrate larger increases in total MSNA during upright RHG than females. These data indicate that the baroreflex partly mediates increases in MSNA during RHG and that males have a greater sympathetic vasoconstrictor reserve than females.


Assuntos
Exercício Físico , Força da Mão , Frequência Cardíaca , Músculo Esquelético , Postura , Sistema Nervoso Simpático , Humanos , Masculino , Feminino , Força da Mão/fisiologia , Sistema Nervoso Simpático/fisiologia , Adulto , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Exercício Físico/fisiologia , Postura/fisiologia , Adulto Jovem , Pressão Sanguínea/fisiologia , Barorreflexo , Fatores Sexuais , Contração Muscular
7.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R88-R96, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38842517

RESUMO

The purpose of the present study was to clarify the impact of age on the sympathoinhibitory response to cardiopulmonary baroreceptor loading in females. Nine older females (mean ± SD, 70 ± 6 yr) and 11 younger females (20 ± 1 yr) completed the study. A passive leg raising (PLR) test was performed wherein the participants were positioned supine (baseline, 0°), and their lower limbs were passively lifted at 10°, 20°, 30°, and 40° (3 min at each angle). Muscle sympathetic nerve activity (MSNA) was recorded via microneurography of the left radial nerve. The central venous pressure was estimated based on peripheral venous pressure (eCVP), which was monitored using a cannula in the right large antecubital vein. Baseline MSNA was higher in older females than in younger females. MSNA burst frequency (BF) decreased during the PLR test in both older and younger females, but the magnitude of the decrease in MSNA BF was smaller in older females than in younger females (older, -3.5 ± 1.5 vs. younger, -6.3 ± 1.5 bursts/min at 40° from baseline, P = 0.014). The eCVP increased during the PLR in both groups, and there was no difference in the changes in eCVP between the two groups (older, +1.07 ± 0.37 vs. younger, +1.12 ± 0.33 mmHg at 40° from baseline, P = 0.941). These results suggest that inhibition of sympathetic vasomotor outflow during cardiopulmonary baroreceptor loading could be blunted with advancing age in females.NEW & NOTEWORTHY There were no available data concerning the effect of age on the sympathoinhibitory response to cardiopulmonary baroreceptor loading in females. The magnitude of the decrease in muscle sympathetic nerve activity during passive leg raising (10°-40°) was smaller in older females than in young females. In females, inhibition of sympathetic vasomotor outflow during cardiopulmonary baroreceptor loading could be blunted with advancing age.


Assuntos
Envelhecimento , Barorreflexo , Pressorreceptores , Sistema Nervoso Simpático , Humanos , Feminino , Sistema Nervoso Simpático/fisiologia , Pressorreceptores/fisiologia , Idoso , Envelhecimento/fisiologia , Adulto Jovem , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Fatores Etários , Pressão Sanguínea/fisiologia , Pessoa de Meia-Idade , Pulmão/inervação , Pulmão/fisiologia , Inibição Neural
8.
Heart Fail Rev ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39117958

RESUMO

Increased sympathetic and reduced parasympathetic nerve activity is associated with disease progression and poor outcomes in patients with chronic heart failure. The demonstration that markers of autonomic imbalance and vagal dysfunction, such as reduced heart rate variability and baroreflex sensitivity, hold prognostic value in patients with chronic heart failure despite modern therapies encourages the research for neuromodulation strategies targeting the vagus nerve. However, the approaches tested so far have yielded inconclusive results. This review aims to summarize the current knowledge about the role of the parasympathetic nervous system in chronic heart failure, describing the pathophysiological background, the methods of assessment, and the rationale, limits, and future perspectives of parasympathetic stimulation either by drugs or bioelectronic devices.

9.
Microvasc Res ; 154: 104681, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38493885

RESUMO

BACKGROUND: Arterial baroreflex dysfunction, like many other central nervous system disorders, involves disruption of the blood-brain barrier, but what causes such disruption in ABR dysfunction is unclear. Here we explored the potential role of platelets in this disruption. METHODS: ABR dysfunction was induced in rats using sinoaortic denervation, and the effects on integrity of the blood-brain barrier were explored based on leakage of Evans blue or FITC-dextran, while the effects on expression of CD40L in platelets and of key proteins in microvascular endothelial cells were explored using immunohistochemistry, western blotting and enzyme-linked immunosorbent assay. Similar experiments were carried out in rat brain microvascular endothelial cell line, which we exposed to platelets taken from rats with ABR dysfunction. RESULTS: Sinoaortic denervation permeabilized the blood-brain barrier and downregulated zonula occludens-1 and occludin in rat brain, while upregulating expression of CD40L on the surface of platelets and stimulating platelet aggregation. Similar effects of permeabilization and downregulation were observed in healthy rats that received platelets from animals with ABR dysfunction, and in rat brain microvascular endothelial cells, but only in the presence of lipopolysaccharide. These effects were associated with activation of NF-κB signaling and upregulation of matrix metalloprotease-9. These effects of platelets from animals with ABR dysfunction were partially blocked by neutralizing antibody against CD40L or the platelet inhibitor clopidogrel. CONCLUSION: During ABR dysfunction, platelets may disrupt the blood-brain barrier when CD40L on their surface activates NF-kB signaling within cerebral microvascular endothelial cells, leading to upregulation of matrix metalloprotease-9. Our findings imply that targeting CD40L may be effective against cerebral diseases involving ABR dysfunction.


Assuntos
Barorreflexo , Plaquetas , Barreira Hematoencefálica , Ligante de CD40 , Permeabilidade Capilar , Modelos Animais de Doenças , Células Endoteliais , Metaloproteinase 9 da Matriz , NF-kappa B , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Barreira Hematoencefálica/patologia , Plaquetas/metabolismo , Masculino , Células Endoteliais/metabolismo , Ligante de CD40/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Ocludina/metabolismo , Linhagem Celular , Agregação Plaquetária , Pressão Arterial , Ratos
10.
FASEB J ; 37(9): e23141, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37566482

RESUMO

Insulin not only regulates glucose and/or lipid metabolism but also modulates brain neural activity. The nucleus tractus solitarius (NTS) is a key central integration site for sensory input from working skeletal muscle and arterial baroreceptors during exercise. Stimulation of the skeletal muscle exercise pressor reflex (EPR), the responses of which are buffered by the arterial baroreflex, leads to compensatory increases in arterial pressure to supply blood to working muscle. Evidence suggests that insulin signaling decreases neuronal excitability in the brain, thus antagonizing insulin receptors (IRs) may increase neuronal excitability. However, the impact of brain insulin signaling on the EPR remains fully undetermined. We hypothesized that antagonism of NTS IRs increases EPR function in normal healthy rodents. In decerebrate rats, stimulation of the EPR via electrically induced muscle contractions increased peak mean arterial pressure (MAP) responses 30 min following NTS microinjections of an IR antagonist (GSK1838705, 100 µM; Pre: Δ16 ± 10 mmHg vs. 30 min: Δ23 ± 13 mmHg, n = 11, p = .004), a finding absent in sino-aortic baroreceptor denervated rats. Intrathecal injections of GSK1838705 did not influence peak MAP responses to mechano- or chemoreflex stimulation of the hindlimb muscle. Immunofluorescence triple overlap analysis following repetitive EPR stimulation increased c-Fos overlap with EPR-sensitive nuclei and IR-positive cells relative to sham operation (p < .001). The results suggest that IR blockade in the NTS potentiates the MAP response to EPR stimulation. In addition, insulin signaling in the NTS may buffer EPR stimulated increases in blood pressure via baroreflex-mediated mechanisms during exercise.


Assuntos
Insulinas , Núcleo Solitário , Ratos , Masculino , Animais , Núcleo Solitário/fisiologia , Receptor de Insulina/metabolismo , Reflexo , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Insulinas/metabolismo
11.
Exp Physiol ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460125

RESUMO

The ability to increase cardiac output during dynamic exercise is paramount for the ability to maintain workload performance. Reflex control of the cardiovascular system during exercise is complex and multifaceted involving multiple feedforward and feedback systems. One major reflex thought to mediate the autonomic adjustments to exercise is termed the muscle metaboreflex and is activated via afferent neurons within active skeletal muscle which respond to the accumulation of interstitial metabolites during exercise when blood flow and O2 delivery are insufficient to meet metabolic demands. This is one of the most powerful cardiovascular reflexes capable of eliciting profound increases in sympathetic nerve activity, arterial blood pressure, central blood volume mobilization, heart rate and cardiac output. This review summarizes the mechanisms meditating muscle metaboreflex-induced increases in cardiac output. Although much has been learned from studies using anaesthetized and/or decerebrate animals, we focus on studies in conscious animals and humans performing volitional exercise. We discuss the separate and interrelated roles of heart rate, ventricular contractility, ventricular preload and ventricular-vascular coupling as well as the interaction with other cardiovascular reflexes which modify muscle metaboreflex control of cardiac output. We discuss how these mechanisms may be altered in subjects with heart failure with reduced ejection fraction and offer suggestions for future studies.

12.
J Exp Biol ; 227(3)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38186316

RESUMO

Carnivorous reptiles exhibit an intense metabolic increment during digestion, which is accompanied by several cardiovascular adjustments responsible for meeting the physiological demands of the gastrointestinal system. Postprandial tachycardia, a well-documented phenomenon in these animals, is mediated by the withdrawal of vagal tone associated with the chronotropic effects of non-adrenergic and non-cholinergic (NANC) factors. However, herbivorous reptiles exhibit a modest metabolic increment during digestion and there is no information about postprandial cardiovascular adjustments. Considering the significant impact of feeding characteristics on physiological responses, we investigated cardiovascular and metabolic responses, as well as the neurohumoral mechanisms of cardiac control, in the herbivorous lizard Iguana iguana during digestion. We measured oxygen consumption rate (O2), heart rate (fH), mean arterial blood pressure (MAP), myocardial activity, cardiac autonomic tone, fH/MAP variability and baroreflex efficiency in both fasting and digesting animals before and after parasympathetic blockade with atropine followed by double autonomic blockade with atropine and propranolol. Our results revealed that the peak of O2 in iguanas was reached 24 h after feeding, accompanied by an increase in myocardial activity and a subtle tachycardia mediated exclusively by a reduction in cardiac parasympathetic activity. This represents the first reported case of postprandial tachycardia in digesting reptiles without the involvement of NANC factors. Furthermore, this withdrawal of vagal stimulation during digestion may reduce the regulatory range for short-term fH adjustments, subsequently intensifying the blood pressure variability as a consequence of limiting baroreflex efficiency.


Assuntos
Iguanas , Lagartos , Animais , Atropina/farmacologia , Pressão Sanguínea , Digestão/fisiologia , Frequência Cardíaca/fisiologia , Iguanas/fisiologia , Lagartos/fisiologia , Miocárdio , Taquicardia
13.
Circ Res ; 130(9): 1276-1285, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35345906

RESUMO

BACKGROUND: COVID-19 is characterized by severe inflammation during the acute phase and increased aortic stiffness in the early postacute phase. In other models, aortic stiffness is improved after the reduction of inflammation. We aimed to evaluate the mid- and long-term effects of COVID-19 on vascular and cardiac autonomic function. The primary outcome was aortic pulse wave velocity (aPWV). METHODS: The cross-sectional Study-1 included 90 individuals with a history of COVID-19 and 180 matched controls. The longitudinal Study-2 included 41 patients with COVID-19 randomly selected from Study-1 who were followed-up for 27 weeks. RESULTS: Study-1: Compared with controls, patients with COVID-19 had higher aPWV and brachial PWV 12 to 24 (but not 25-48) weeks after COVID-19 onset, and they had higher carotid Young's elastic modulus and lower distensibility 12 to 48 weeks after COVID-19 onset. In partial least squares structural equation modeling, the higher the hs-CRP (high-sensitivity C-reactive protein) at hospitalization was, the higher the aPWV 12 to 48 weeks from COVID-19 onset (path coefficient: 0.184; P=0.04). Moreover, aPWV (path coefficient: -0.186; P=0.003) decreased with time. Study-2: mean blood pressure and carotid intima-media thickness were comparable at the end of follow-up, whereas aPWV (-9%; P=0.01), incremental Young's elastic modulus (-17%; P=0.03), baroreflex sensitivity (+28%; P=0.049), heart rate variability triangular index (+15%; P=0.01), and subendocardial viability ratio (+12%; P=0.01×10-4) were significantly improved. There was a trend toward improvement in brachial PWV (-6%; P=0.14) and carotid distensibility (+18%; P=0.05). Finally, at the end of follow-up (48 weeks after the onset of COVID-19) aPWV (+6%; P=0.04) remained significantly higher in patients with COVID-19 than in control subjects. CONCLUSIONS: COVID-19-related arterial stiffening involves several arterial tree portions and is partially resolved in the long-term.


Assuntos
COVID-19 , Rigidez Vascular , Proteína C-Reativa , Espessura Intima-Media Carotídea , Estudos Transversais , Humanos , Inflamação , Estudos Longitudinais , Análise de Onda de Pulso , Rigidez Vascular/fisiologia
14.
Curr Hypertens Rep ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023702

RESUMO

PURPOSE OF REVIEW: Resistant Hypertension (RH) poses a significant public health challenge, contributing to increased mortality, cardiovascular events and organ damage. Both clinical and experimental research are striving for higher standards in a translational manner to integrate new findings and confirm hypotheses. Considering that many are the aspects of RH that are still under investigation, this review aims to shed light on the advances made in experimental research concerning RH. It seeks to underscore the pivotal role of experimental studies in shaping clinical practices and also explore future perspectives. RECENT FINDINGS: It is important to emphasize the significance of experimental models, primarily for advancing our understanding: experimental models have greatly contributed to our comprehension of the underlying mechanisms in RH, including factors like sympathetic activation, endothelial dysfunction and structural vessel abnormalities. Secondly, for assessing treatment approaches: animal models have also played a crucial role in evaluating the potential effectiveness of diverse treatment approaches for RH. These encompass both pharmacological options, involving combinations of established drugs or novel pharmaceuticals, and non-pharmacological alternatives, which include surgical procedures like renal denervation, medical devices like baroreceptor stimulators, and lifestyle modifications. The most lacking component in translational research is the fact that there is no well-established animal model that perfectly replicates RH. Consequently, alternative strategies, including the combination of models, must be considered. What remains clear is that the development of animal models closely mimicking RH holds the promise of providing valuable insights into the essential mechanisms and responses necessary to combat or slow the global progression of RH.

15.
Brain Cogn ; 175: 106134, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266398

RESUMO

BACKGROUND: Despite accumulation of a substantial body of literature supporting the role of exercise on frontal lobe functioning, relatively less is understood of the interconnectivity of ventromedial prefrontal cortical (vmPFC) regions that underpin cardio-autonomic regulation predict cardiac chronotropic competence (CC) in response to sub-maximal exercise. METHODS: Eligibility of 161 adults (mean age = 48.6, SD = 18.3, 68% female) was based upon completion of resting state brain scan and sub-maximal bike test. Sliding window analysis of the resting state signal was conducted over 45-s windows, with 50% overlap, to assess how changes in photoplethysmography-derived HRV relate to vmPFC functional connectivity with the whole brain. CC was assessed based upon heart rate (HR) changes during submaximal exercise (HR change /HRmax (206-0.88 × age) - HRrest). RESULTS: During states of elevated HRV the vmPFC showed greater rsFC with an 83-voxel region of the hypothalamus (p < 0.001, uncorrected). Beta estimates of vmPFC connectivity extracted from a 6-mm sphere around this region emerged as the strongest predictor of CC (b = 0.283, p <.001) than age, BMI, and resting HRV F(8,144) = 6.30, p <.001. CONCLUSION: Extensive glutamatergic innervation of the hypothalamus by the vmPFC allows for top-down control of the hypothalamus and its various autonomic efferents which facilitate chronotropic response during sub-maximal exercise.


Assuntos
Sistema Nervoso Autônomo , Encéfalo , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Sistema Nervoso Autônomo/fisiologia , Córtex Pré-Frontal/fisiologia , Lobo Frontal , Frequência Cardíaca/fisiologia , Imageamento por Ressonância Magnética
16.
Acta Pharmacol Sin ; 45(1): 76-86, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670136

RESUMO

Mechanosensitive cation channels such as Piezo1 and Piezo2 are activated by mechanical force like a starched wall of the aorta while blood pressure (BP) rising, which helps to elucidate the underlying mechanism of mechanotransduction of baroreceptor endings. In this study we investigated how Piezo1 channel activation-mediated gender- and afferent-specific BP regulation in rats. We established high-fat diet and fructose drink-induced hypertension model rats (HFD-HTN) and deoxycorticosterone (DOCA)-sensitive hypertension model rats. We showed that the expression levels of Piezo1 and Piezo2 were significantly up-regulated in left ventricle of HFD and DOCA hypertensive rats, whereas the down-regulation of Piezo1 was likely to be compensated by Piezo2 up-regulation in the aorta. Likewise, down-regulated Piezo1 was observed in the nodose ganglion (NG), while up-regulated Piezo2 was found in the nucleus tractus solitarius (NTS), which might synergistically reduce the excitatory neurotransmitter release from the presynaptic membrane. Notably, microinjection of Yoda1 (0.025-2.5 mg/ml) into the NG concentration-dependently reduced BP in both hypertensive rat models as well as in control rats with similar EC50; the effect of Yoda1 was abolished by microinjection of a Piezo1 antagonist GsMTx4 (1.0 µM). Functional analysis in an in vitro aortic arch preparation showed that instantaneous firing frequency of single Ah-fiber of aortic depressor nerve was dramatically increased by Yoda1 (0.03-1.0 µM) and blocked by GsMTx4 (1.0 µM). Moreover, spontaneous synaptic currents recorded from identified 2nd-order Ah-type baroreceptive neurons in the NTS was also facilitated over 100% by Yoda1 (1.0 µM) and completely blocked by GsMTx4 (3.0 µM). These results demonstrate that Piezo1 expressed on Ah-type baroreceptor and baroreceptive neurons in the NG and NTS plays a key role in a sexual-dimorphic BP regulation under physiological and hypertensive condition through facilitation of baroreflex afferent neurotransmission, which is presumably collaborated by Piezo2 expression at different level of baroreflex afferent pathway via compensatory and synergistic mechanisms.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Ratos , Animais , Barorreflexo , Pressão Sanguínea , Mecanotransdução Celular/fisiologia , Acetato de Desoxicorticosterona/farmacologia , Transmissão Sináptica
17.
Clin Auton Res ; 34(1): 125-135, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38446362

RESUMO

PURPOSE: Orthostasis increases the variability of continuously recorded blood pressure (BP). Low-frequency (LF) BP oscillations (Mayer waves) in this setting are related to the vascular-sympathetic baroreflex. Mechanisms of increased high-frequency (HF) BP oscillations at the periodicity of respiration during orthostasis have received less research attention. A previously reported patient with post-neurosurgical orthostatic hypotension (OH) and vascular-sympathetic baroreflex failure had large tilt-evoked, breathing-driven BP oscillations, suggesting that such oscillations can occur independently of vascular-sympathetic baroreflex modulation. In the present study we assessed effects of orthostasis on BP variability in the frequency domain in patient cohorts with or without OH. METHODS: Power spectral analysis of systolic BP variability was conducted on recordings from 73 research participants, 42 with neurogenic OH [13 pure autonomic failure, 14 Parkinson's disease (PD) with OH, 12 parkinsonian multiple system atrophy, and 3 status post-brainstem neurosurgery] and 31 without OH (control group of 16 healthy volunteers and 15 patients with PD lacking OH), before, during, and after 5' of head-up tilt at 90 degrees from horizontal. The data were log transformed for statistical testing. RESULTS: Across all subjects, head-up tilting increased HF power of systolic BP variability (p = 0.001), without a difference between the neurogenic OH and control groups. LF power during orthostasis was higher in the control than in the OH groups (p = 0.009). CONCLUSIONS: The results of this observational cohort study confirm those based on our case report and lead us to propose that even in the setting of vascular-sympathetic baroreflex failure orthostasis increases HF power of BP variability.


Assuntos
Doenças do Sistema Nervoso Autônomo , Hipotensão Ortostática , Humanos , Pressão Sanguínea/fisiologia , Barorreflexo/fisiologia , Tontura , Frequência Cardíaca/fisiologia , Respiração
18.
Clin Auton Res ; 34(1): 117-124, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429568

RESUMO

PURPOSE: We investigated the effect of levodopa on postural blood pressure changes in individuals with Parkinson disease (PD) with (PD+OH) and without neurogenic OH (PD-OH). METHODS: We performed a prospective randomized crossover study with autonomic testing performed ON and OFF levodopa. The primary outcome was the change in systolic blood pressure (SBP) from supine to 70° tilt at 3 min (ΔSBP-3'). Secondary outcomes included indices of baroreflex function and blood pressure and heart rate during tilt. RESULTS: We enrolled 40 individuals with PD (21 PD+OH, 19 PD-OH), mean age (SD) 73.2 years (7.9), 13 women (32.5%)). There was no difference in age, sex, disease duration, and severity between PD+OH and PD-OH. Mean difference in ΔSBP-3' ON versus OFF levodopa in the whole study population was - 3.20 mmHg [- 7.36 to 0.96] (p = 0.14). Mean difference in ΔSBP-3' was - 2.14 mmHg [- 7.55 to 3.28] (p = 0.45) in PD+OH and - 5.14 mmHg [- 11.63 to 1.35] (p = 0.14) in PD-OH. Mean difference in ΔSBP ON versus OFF levodopa was greater at 7 and 10 min (- 7.52 mmHg [- 11.89 to - 3.15], p = 0.002, and - 7.82 mmHg [- 14.02 to - 1.67], p = 0.02 respectively). Levodopa was associated with lower absolute values of blood pressure in both PD+OH and PD-OH and cardiovascular noradrenergic baroreflex impairment. CONCLUSION: Levodopa decreases blood pressure in both PD with and without autonomic failure, but it does not cause a greater fall in blood pressure from supine to standing at 3 min. Levodopa-induced baroreflex sympathetic noradrenergic impairment may contribute to lower blood pressure. Lower standing blood pressure with levodopa may increase the risks of fall and syncope.


Assuntos
Hipotensão Ortostática , Doença de Parkinson , Humanos , Feminino , Idoso , Levodopa/farmacologia , Levodopa/uso terapêutico , Doença de Parkinson/complicações , Pressão Sanguínea/fisiologia , Estudos Cross-Over , Hipotensão Ortostática/complicações , Estudos Prospectivos , Norepinefrina
19.
Arch Toxicol ; 98(4): 1177-1189, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38305864

RESUMO

Recent experimental evidence suggests combined treatment with midazolam and allopregnanolone is more effective than midazolam alone in terminating seizures triggered by acute organophosphate (OP) intoxication. However, there are concerns that combined midazolam and allopregnanolone increases risk of adverse cardiovascular events. To address this, we used telemetry devices to record cardiovascular responses in adult male Sprague-Dawley rats acutely intoxicated with diisopropylfluorophosphate (DFP). Animals were administered DFP (4 mg/kg, sc), followed immediately by atropine (2 mg/kg, i.m.) and 2-PAM (25 mg/kg, i.m.). At 40 min post-exposure, a subset of animals received midazolam (0.65 mg/kg, im); at 50 min, these rats received a second dose of midazolam or allopregnanolone (12 mg/kg, im). DFP significantly increased blood pressure by ~ 80 mmHg and pulse pressure by ~ 34 mmHg that peaked within 12 min. DFP also increased core temperature by ~ 3.5 °C and heart rate by ~ 250 bpm that peaked at ~ 2 h. Heart rate variability (HRV), an index of autonomic function, was reduced by ~ 80%. All acute (within 15 min of exposure) and two-thirds of delayed (hours after exposure) mortalities were associated with non-ventricular cardiac events within 10 min of cardiovascular collapse, suggesting that non-ventricular events should be closely monitored in OP-poisoned patients. Compared to rats that survived DFP intoxication without treatment, midazolam significantly improved recovery of cardiovascular parameters and HRV, an effect enhanced by allopregnanolone. These data demonstrate that midazolam improved recovery of cardiovascular and autonomic function and that the combination of midazolam and allopregnanolone may be a better therapeutic strategy than midazolam alone.


Assuntos
Midazolam , Intoxicação por Organofosfatos , Humanos , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Midazolam/farmacologia , Midazolam/uso terapêutico , Pregnanolona/farmacologia , Isoflurofato/farmacologia , Organofosfatos , Encéfalo , Intoxicação por Organofosfatos/tratamento farmacológico
20.
Eur J Appl Physiol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656378

RESUMO

PURPOSE: We hypothesised that during a rest-to-exercise transient in hypoxia (H), compared to normoxia (N), (i) the initial baroreflex sensitivity (BRS) decrease would be slower and (ii) the fast heart rate (HR) and cardiac output (CO) response would have smaller amplitude (A1) due to lower vagal activity in H than N. METHODS: Ten participants performed three rest-to-50 W exercise transients on a cycle-ergometer in N (ambient air) and three in H (inspired fraction of O2 = 0.11). R-to-R interval (RRi, by electrocardiography) and blood pressure profile (by photo-plethysmography) were recorded non-invasively. Analysis of the latter provided mean arterial pressure (MAP) and stroke volume (SV). CO = HR·SV. BRS was calculated by modified sequence method. RESULTS: Upon exercise onset in N, MAP fell to a minimum (MAPmin) then recovered. BRS decreased immediately from 14.7 ± 3.6 at rest to 7.0 ± 3.0 ms mmHg-1 at 50 W (p < 0.01). The first BRS sequence detected at 50 W was 8.9 ± 4.8 ms mmHg-1 (p < 0.05 vs. rest). In H, MAP showed several oscillations until reaching a new steady state. BRS decreased rapidly from 10.6 ± 2.8 at rest to 2.9 ± 1.5 ms mmHg-1 at 50 W (p < 0.01), as the first BRS sequence at 50 W was 5.8 ± 2.6 ms mmHg-1 (p < 0.01 vs. rest). CO-A1 was 2.96 ± 1.51 and 2.31 ± 0.94 l min-1 in N and H, respectively (p = 0.06). HR-A1 was 7.7 ± 4.6 and 7.1 ± 5.9 min-1 in N and H, respectively (p = 0.81). CONCLUSION: The immediate BRS decrease in H, coupled with similar rapid HR and CO responses, is compatible with a withdrawal of residual vagal activity in H associated with increased sympathetic drive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA