Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.024
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(20): e2310348121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709922

RESUMO

The evolutionary conserved YopJ family comprises numerous type-III-secretion system (T3SS) effectors of diverse mammalian and plant pathogens that acetylate host proteins to dampen immune responses. Acetylation is mediated by a central acetyltransferase domain that is flanked by conserved regulatory sequences, while a nonconserved N-terminal extension encodes the T3SS-specific translocation signal. Bartonella spp. are facultative-intracellular pathogens causing intraerythrocytic bacteremia in their mammalian reservoirs and diverse disease manifestations in incidentally infected humans. Bartonellae do not encode a T3SS, but most species possess a type-IV-secretion system (T4SS) to translocate Bartonella effector proteins (Beps) into host cells. Here we report that the YopJ homologs present in Bartonellae species represent genuine T4SS effectors. Like YopJ family T3SS effectors of mammalian pathogens, the "Bartonella YopJ-like effector A" (ByeA) of Bartonella taylorii also targets MAP kinase signaling to dampen proinflammatory responses, however, translocation depends on a functional T4SS. A split NanoLuc luciferase-based translocation assay identified sequences required for T4SS-dependent translocation in conserved regulatory regions at the C-terminus and proximal to the N-terminus of ByeA. The T3SS effectors YopP from Yersinia enterocolitica and AvrA from Salmonella Typhimurium were also translocated via the Bartonella T4SS, while ByeA was not translocated via the Yersinia T3SS. Our data suggest that YopJ family T3SS effectors may have evolved from an ancestral T4SS effector, such as ByeA of Bartonella. In this evolutionary scenario, the signal for T4SS-dependent translocation encoded by N- and C-terminal sequences remained functional in the derived T3SS effectors due to the essential role these sequences coincidentally play in regulating acetyltransferase activity.


Assuntos
Proteínas de Bactérias , Bartonella , Sistemas de Secreção Tipo IV , Bartonella/metabolismo , Bartonella/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Humanos , Sistemas de Secreção Tipo IV/metabolismo , Sistemas de Secreção Tipo IV/genética , Transporte Proteico , Animais
2.
Proc Natl Acad Sci U S A ; 119(25): e2202059119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35714289

RESUMO

The bacterial genus Bartonella comprises numerous emerging pathogens that cause a broad spectrum of disease manifestations in humans. The targets and mechanisms of the anti-Bartonella immune defense are ill-defined and bacterial immune evasion strategies remain elusive. We found that experimentally infected mice resolved Bartonella infection by mounting antibody responses that neutralized the bacteria, preventing their attachment to erythrocytes and suppressing bacteremia independent of complement or Fc receptors. Bartonella-neutralizing antibody responses were rapidly induced and depended on CD40 signaling but not on affinity maturation. We cloned neutralizing monoclonal antibodies (mAbs) and by mass spectrometry identified the bacterial autotransporter CFA (CAMP-like factor autotransporter) as a neutralizing antibody target. Vaccination against CFA suppressed Bartonella bacteremia, validating CFA as a protective antigen. We mapped Bartonella-neutralizing mAb binding to a domain in CFA that we found is hypervariable in both human and mouse pathogenic strains, indicating mutational antibody evasion at the Bartonella subspecies level. These insights into Bartonella immunity and immune evasion provide a conceptual framework for vaccine development, identifying important challenges in this endeavor.


Assuntos
Anticorpos Neutralizantes , Antígenos de Bactérias , Bacteriemia , Infecções por Bartonella , Bartonella , Sistemas de Secreção Tipo V , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Bacteriemia/imunologia , Bacteriemia/microbiologia , Bacteriemia/prevenção & controle , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/uso terapêutico , Bartonella/genética , Bartonella/imunologia , Infecções por Bartonella/imunologia , Infecções por Bartonella/microbiologia , Infecções por Bartonella/prevenção & controle , Clonagem Molecular , Evasão da Resposta Imune , Camundongos , Sistemas de Secreção Tipo V/imunologia , Vacinação
3.
Clin Infect Dis ; 78(6): 1551-1553, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38640140

RESUMO

Among patients with pathologically proven infective endocarditis, the association of pathogen with occurrence of infection-related glomerulonephritis (IRGN) was examined in 48 case patients with IRGN and 192 propensity score-matched controls. Bartonella was very strongly associated with IRGN (odds ratio, 38.2 [95% confidence interval, 6.7-718.8]; P < .001); other microorganisms were not.


Assuntos
Endocardite , Glomerulonefrite , Humanos , Glomerulonefrite/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Endocardite/microbiologia , Endocardite/complicações , Adulto , Estudos de Casos e Controles , Bartonella/isolamento & purificação , Endocardite Bacteriana/microbiologia
4.
Emerg Infect Dis ; 30(7): 1450-1453, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38916637

RESUMO

We analyzed body lice collected from persons experiencing homelessness in Winnipeg, Manitoba, Canada, during 2020-2021 to confirm vector species and ecotype and to identify louseborne pathogens. Of 556 lice analyzed from 7 persons, 17 louse pools (218 lice) from 1 person were positive for the louseborne bacterium Bartonella quintana.


Assuntos
Pessoas Mal Alojadas , Infestações por Piolhos , Pediculus , Humanos , Animais , Pediculus/microbiologia , Infestações por Piolhos/epidemiologia , Infestações por Piolhos/parasitologia , Bartonella quintana/genética , Canadá/epidemiologia , Manitoba/epidemiologia , Masculino , Feminino
5.
Emerg Infect Dis ; 30(8): 1599-1608, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043406

RESUMO

Bacterial zoonoses are established causes of severe febrile illness in East Africa. Within a fever etiology study, we applied a high-throughput 16S rRNA metagenomic assay validated for detecting bacterial zoonotic pathogens. We enrolled febrile patients admitted to 2 referral hospitals in Moshi, Tanzania, during September 2007-April 2009. Among 788 participants, median age was 20 (interquartile range 2-38) years. We performed PCR amplification of V1-V2 variable region 16S rRNA on cell pellet DNA, then metagenomic deep-sequencing and pathogenic taxonomic identification. We detected bacterial zoonotic pathogens in 10 (1.3%) samples: 3 with Rickettsia typhi, 1 R. conorii, 2 Bartonella quintana, 2 pathogenic Leptospira spp., and 1 Coxiella burnetii. One other sample had reads matching a Neoerhlichia spp. previously identified in a patient from South Africa. Our findings indicate that targeted 16S metagenomics can identify bacterial zoonotic pathogens causing severe febrile illness in humans, including potential novel agents.


Assuntos
Febre , Metagenômica , RNA Ribossômico 16S , Humanos , Tanzânia/epidemiologia , Adulto , Pré-Escolar , Adolescente , Metagenômica/métodos , Febre/microbiologia , Masculino , Feminino , Animais , Criança , RNA Ribossômico 16S/genética , Adulto Jovem , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Zoonoses Bacterianas/microbiologia , Zoonoses Bacterianas/epidemiologia , Infecções Bacterianas/microbiologia , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/diagnóstico , Zoonoses/microbiologia , Zoonoses/epidemiologia
6.
Microbiology (Reading) ; 170(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39234940

RESUMO

Queuosine (Q) stands out as the sole tRNA modification that can be synthesized via salvage pathways. Comparative genomic analyses identified specific bacteria that showed a discrepancy between the projected Q salvage route and the predicted substrate specificities of the two identified salvage proteins: (1) the distinctive enzyme tRNA guanine-34 transglycosylase (bacterial TGT, or bTGT), responsible for inserting precursor bases into target tRNAs; and (2) queuosine precursor transporter (QPTR), a transporter protein that imports Q precursors. Organisms such as the facultative intracellular pathogen Bartonella henselae, which possess only bTGT and QPTR but lack predicted enzymes for converting preQ1 to Q, would be expected to salvage the queuine (q) base, mirroring the scenario for the obligate intracellular pathogen Chlamydia trachomatis. However, sequence analyses indicate that the substrate-specificity residues of their bTGTs resemble those of enzymes inserting preQ1 rather than q. Intriguingly, MS analyses of tRNA modification profiles in B. henselae reveal trace amounts of preQ1, previously not observed in a natural context. Complementation analysis demonstrates that B. henselae bTGT and QPTR not only utilize preQ1, akin to their Escherichia coli counterparts, but can also process q when provided at elevated concentrations. The experimental and phylogenomic analyses suggest that the Q pathway in B. henselae could represent an evolutionary transition among intracellular pathogens - from ancestors that synthesized Q de novo to a state prioritizing the salvage of q. Another possibility that will require further investigations is that the insertion of preQ1 confers fitness advantages when B. henselae is growing outside a mammalian host.


Assuntos
Bartonella henselae , Nucleosídeo Q , Nucleosídeo Q/metabolismo , Nucleosídeo Q/genética , Bartonella henselae/genética , Bartonella henselae/metabolismo , Bartonella henselae/enzimologia , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Molecular , Especificidade por Substrato , Guanina/análogos & derivados
7.
Appl Environ Microbiol ; 90(8): e0084224, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39058027

RESUMO

Bartonella spp. are intracellular bacteria associated with several re-emerging human diseases. Small mammals play a significant role in the maintenance and spread of Bartonella spp. Despite the high small mammal biodiversity in South Africa, there is limited epidemiological information regarding Bartonella spp. in these mammals. The main aim of this study was to determine the prevalence and genetic diversity of Bartonella spp. from wild small mammals from 15 localities in 8 provinces of South Africa. Small mammals (n = 183) were trapped in the Eastern Cape, Free State, Gauteng, Limpopo, Mpumalanga, Northern Cape, North West, and Western Cape provinces of South Africa between 2010 and 2018. Heart, kidney, liver, lung, and spleen were harvested for Bartonella DNA screening, and prevalence was determined based on the PCR amplification of partial fragments of the 16S-23S rRNA intergenic spacer (ITS) region, gltA, and rpoB genes. Bartonella DNA was detected in Aethomys chrysophilus, Aethomys ineptus, Gerbillurus spp., Lemniscomys rosalia, Mastomys coucha, Micaelamys namaquensis, Rhabdomys pumilio, and Thallomys paedulcus. An overall prevalence of 16.9% (31/183, 95% CI: 12.2%-23%) was observed. Bartonella elizabethae, Bartonella grahamii, and Bartonella tribocorum were the zoonotic species identified, while the remaining sequences were aligned to uncultured Bartonella spp. with unknown zoonotic potential. Phylogenetic analyses confirmed five distinct Bartonella lineages (I-V), with lineage IV displaying strong M. coucha host specificity. Our results confirm that South African wild small mammals are natural reservoirs of a diverse assemblage of Bartonella spp., including some zoonotic species with high genetic diversity, although prevalence was relatively low.IMPORTANCESmall mammals play a significant role in the maintenance and spread of zoonotic pathogens such as Bartonella spp. Despite the high small mammal biodiversity in southern Africa including South Africa, there is limited epidemiological information regarding Bartonella spp. in these mammals across the country. Results from our study showed the liver and spleen had the highest positive cases for Bartonella spp. DNA among the tested organs. Bartonella elizabethae, B. grahamii, and B. tribocorum were the three zoonotic species identified and five distinct Bartonella lineages (I-V) were confirmed through phylogenetic analyses. To the best of our knowledge, this study presents the first extensive nuclear diversity investigation of Bartonella spp. in South African small mammals in South Africa.


Assuntos
Infecções por Bartonella , Bartonella , Variação Genética , Bartonella/genética , Bartonella/isolamento & purificação , Bartonella/classificação , África do Sul/epidemiologia , Animais , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/microbiologia , Infecções por Bartonella/veterinária , Prevalência , Filogenia , Animais Selvagens/microbiologia , DNA Bacteriano/genética
8.
BMC Microbiol ; 24(1): 159, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724926

RESUMO

The Hyphomicrobiales bacterial order (previously Rhizobiales) exhibits a wide range of lifestyle characteristics, including free-living, plant-association, nitrogen-fixing, and association with animals (Bartonella and Brucella). This study explores the diversity and evolutionary strategies of bacteriophages within the Hyphomicrobiales order, comparing animal-associated (AAB) with non-animal-associated bacteria (NAAB). We curated 560 high-quality complete genomes of 58 genera from this order and used the PHASTER server for prophage annotation and classification. For 19 genera with representative genomes, we curated 96 genomes and used the Defense-Finder server to summarize the type of anti-phage systems (APS) found in this order. We analyzed the genetic repertoire and length distributions of prophages, estimating evolutionary rates and comparing intact, questionable, and incomplete prophages in both groups. Analyses of best-fit parameters and bootstrap sensitivity were used to understand the evolutionary processes driving prophage gene content. A total of 1860 prophages distributed in Hyphomicrobiales were found, 695 in AAB and 1165 in the NAAB genera. The results revealed a similar number of prophages per genome in AAB and NAAB and a similar length distribution, suggesting shared mechanisms of genetic acquisition of prophage genes. Changes in the frequency of specific gene classes were observed between incomplete and intact prophages, indicating preferential loss or enrichment in both groups. The analysis of best-fit parameters and bootstrap sensitivity tests indicated a higher selection coefficient, induction rate, and turnover in NAAB genomes. We found 68 types of APS in Hyphomicrobiales; restriction modification (RM) and abortive infection (Abi) were the most frequent APS found for all Hyphomicrobiales, and within the AAB group. This classification of APS showed that NAAB genomes have a greater diversity of defense systems compared to AAB, which could be related to the higher rates of prophage induction and turnover in the latter group. Our study provides insights into the distributions of both prophages and APS in Hyphomicrobiales genomes, demonstrating that NAAB carry more defense systems against phages, while AAB show increased prophage stability and an increased number of incomplete prophages. These results suggest a greater role for domesticated prophages within animal-associated bacteria in Hyphomicrobiales.


Assuntos
Evolução Molecular , Genoma Bacteriano , Prófagos , Prófagos/genética , Animais , Genoma Bacteriano/genética , Filogenia , Genoma Viral/genética , Bactérias/virologia , Bactérias/genética , Bactérias/classificação , Variação Genética
9.
Infection ; 52(4): 1307-1314, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38300353

RESUMO

OBJECTIVES: Bartonella spp., renowned for cat-scratch disease, has limited reports of dissemination. Tissue and blood cultures have limitations in detecting this fastidious pathogen. Molecular testing (polymerase chain reaction, PCR) and cell-free DNA have provided an avenue for diagnoses. This retrospective observational multicenter study describes the incidence of disseminated Bartonella spp. and treatment-related outcomes. METHODS: Inclusion criteria were diagnosis of bartonellosis via diagnosis code, serology testing of blood, polymerase chain reaction (PCR) of blood, 16/18S tests of blood or tissue, cultures of blood or tissue, or cell-free DNA of blood or tissue from January 1, 2014, through September 1, 2021. Exclusions were patients who did not receive treatment, insufficient data on treatment course, absence of dissemination, or retinitis as dissemination. RESULTS: Patients were primarily male (n = 25, 61.0%), white (n = 28, 68.3%), with mean age of 50 years (SD 14.4), and mean Charlson comorbidity index of 3.5 (SD 2.1). Diagnosis was primarily by serology (n = 34, 82.9%), with Bartonella henselae (n = 40, 97.6%) as the causative pathogen. Treatment was principally doxycycline with rifampin (n = 17, 41.5%). Treatment failure occurred in 16 (39.0%) patients, due to escalation of therapy during treatment (n = 5, 31.3%) or discontinuation of therapy due to an adverse event or tolerability (n = 5, 31.3%). CONCLUSIONS: In conclusion, this is the largest United States-based cohort of disseminated Bartonella spp. infections to date with a reported 39% treatment failure. This adds to literature supporting obtaining multiple diagnostic tests when Bartonella is suspected and describes treatment options.


Assuntos
Antibacterianos , Infecções por Bartonella , Bartonella , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Estudos Retrospectivos , Estados Unidos/epidemiologia , Infecções por Bartonella/tratamento farmacológico , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/diagnóstico , Infecções por Bartonella/microbiologia , Adulto , Antibacterianos/uso terapêutico , Bartonella/isolamento & purificação , Idoso , Incidência , Doxiciclina/uso terapêutico
10.
BMC Infect Dis ; 24(1): 380, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589795

RESUMO

BACKGROUND: Cutaneous bacillary angiomatosis (cBA) is a vascular proliferative disorder due to Bartonella spp. that mostly affects people living with HIV (PLWH), transplanted patients and those taking immunosuppressive drugs. Since cBA is mostly related to these major immunocompromising conditions (i.e., T-cell count impairment), it is considered rare in relatively immunocompetent patients and could be underdiagnosed in them. Moreover, antimicrobial treatment in this population has not been previously investigated. METHODS: We searched the databases PubMed, Google Scholar, Scopus, OpenAIRE and ScienceDirect by screening articles whose title included the keywords "bacillary" AND "angiomatosis" and included case reports about patients not suffering from major immunocompromising conditions to provide insights about antibiotic treatments and their duration. RESULTS: Twenty-two cases of cBA not related to major immunocompromising conditions were retrieved. Antibiotic treatment duration was shorter in patients with single cBA lesion than in patients with multiple lesions, including in most cases macrolides and tetracyclines. CONCLUSIONS: cBA is an emerging manifestation of Bartonella spp. infection in people not suffering from major immunocompromising conditions. Until evidence-based guidelines are available, molecular tests together with severity and extension of the disease can be useful to personalize the type of treatment and its duration.


Assuntos
Angiomatose Bacilar , Antibacterianos , Humanos , Angiomatose Bacilar/tratamento farmacológico , Angiomatose Bacilar/microbiologia , Antibacterianos/uso terapêutico , Hospedeiro Imunocomprometido , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Idoso , Bartonella/efeitos dos fármacos
11.
BMC Infect Dis ; 24(1): 422, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649899

RESUMO

Cat scratch disease (CSD) is caused by Bartonella henselae (B. henselae) and presents as lymphadenopathy following close contact with cats. However, in context of the global COVID-19 pandemic, clinical manifestations of CSD may vary, posing new challenges for healthcare professionals. Here we describe a case of a 54-year-old male with painful left upper arm mass, which gradually resolved until he was infected with COVID-19. The mass then rapidly progressed before admission. Meanwhile, pulmonary symptoms including pleural effusion emerged simultaneously. The cause was undetermined with routine blood culture and pathological test until the next generation sequencing (NGS) confirmed the presence of B. henselae. We believe this case is the first to report localized aggravation of CSD after COVID-19 infection and hopefully, offers treatment experience for clinicians worldwide.


Assuntos
Bartonella henselae , COVID-19 , Doença da Arranhadura de Gato , Humanos , Masculino , COVID-19/complicações , COVID-19/microbiologia , Bartonella henselae/genética , Bartonella henselae/isolamento & purificação , Doença da Arranhadura de Gato/microbiologia , Doença da Arranhadura de Gato/complicações , Doença da Arranhadura de Gato/tratamento farmacológico , Pessoa de Meia-Idade , Infecção Latente , SARS-CoV-2
12.
Adv Exp Med Biol ; 1448: 285-291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39117822

RESUMO

Zoonotic infections can result in life-threatening complications that can manifest with hemophagocytic lymphohistiocytosis (HLH)/cytokine storm syndrome (CSS). Bacteria constitute the largest group of zoonotic infection-related HLH cases. The growing list of zoonotic bacterial infections associated with HLH/CSS include Brucella spp., Rickettsia spp., Ehrlichia, Coxiella burnetii, Mycobacterium spp., and Bartonella spp. Patients most commonly present with fever, cytopenias, hepatosplenomegaly, myalgias, and less frequently with rash, jaundice, and lymphadenopathy.


Assuntos
Síndrome da Liberação de Citocina , Humanos , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/microbiologia , Síndrome da Liberação de Citocina/etiologia , Animais , Zoonoses Bacterianas/microbiologia , Linfo-Histiocitose Hemofagocítica/microbiologia , Linfo-Histiocitose Hemofagocítica/imunologia , Zoonoses/microbiologia
13.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33723071

RESUMO

Small GTPases of the Ras-homology (Rho) family are conserved molecular switches that control fundamental cellular activities in eukaryotic cells. As such, they are targeted by numerous bacterial toxins and effector proteins, which have been intensively investigated regarding their biochemical activities and discrete target spectra; however, the molecular mechanism of target selectivity has remained largely elusive. Here we report a bacterial effector protein that selectively targets members of the Rac subfamily in the Rho family of small GTPases but none in the closely related Cdc42 or RhoA subfamilies. This exquisite target selectivity of the FIC domain AMP-transferase Bep1 from Bartonella rochalimae is based on electrostatic interactions with a subfamily-specific pair of residues in the nucleotide-binding G4 motif and the Rho insert helix. Residue substitutions at the identified positions in Cdc42 enable modification by Bep1, while corresponding Cdc42-like substitutions in Rac1 greatly diminish modification. Our study establishes a structural understanding of target selectivity toward Rac-subfamily GTPases and provides a highly selective tool for their functional analysis.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas rac de Ligação ao GTP/química , Proteínas rac de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Bartonella , Sítios de Ligação , Modelos Moleculares , Família Multigênica , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Proteínas rac de Ligação ao GTP/genética
14.
Parasitol Res ; 123(2): 144, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411931

RESUMO

In the family of fruit bats, Pteropodidae Gray, 1821, as in the third most diverse group of bats (Chiroptera), the bacterium of the genus Bartonella was detected in several species as well as in a few species of their insect ectoparasites in some tropical and sub-tropical regions of the Old World. The Egyptian fruit bat, Rousettus aegyptiacus (Geoffroy, 1810), is one of the most widespread fruit bats, occurring between South Africa, Senegal, and Pakistan. In this bat species, Candidatus Bartonella rousetti has been detected in three African populations in Nigeria, Kenya, and Zambia. This fruit bat, however, also occurs in the Palaearctic, an area isolating the species geographically and phylogenetically from the Afrotropical part of its distribution range. We screened the blood-sucking bat flies (family Nycteribiidae) from R. aegyptiacus for the presence of the Bartonella bacteria. A rich material of bat fly Eucampsipoda aegyptia (Macquart, 1850), a monoxenous ectoparasite of the Egyptian fruit bats, was collected at 26 localities in seven countries (Egypt, Iran, Jordan, Lebanon, Oman, United Arab Emirates, and Yemen) of the Middle East in 2007-2013. The DNA isolates from the bat flies were subjected to a three-marker (gltA, ssrA, and intergenic spacer region, ITS) multilocus sequence analysis. Based on the amplification of the fragment of ssrA gene by a real-time PCR, 65 E. aegyptia samples from 19 localities in all seven countries were positive for the bacteria. One to five Bartonella-positive individuals of E. aegyptia were collected per one individual of R. aegyptiacus. An analysis of the ITS and gltA genes indicated the presence of an uncultured Bartonella sp., belonging to the Cand. B. rousetti genogroup, identified from populations of the Egyptian fruit bat in Africa. These results support the hypothesis that Bartonella's diversity corresponds to its host's diversity (and phylogenetic structure). Specific lineages of pathogens are present in specific phylogenetic groups of bats.


Assuntos
Bartonella , Quirópteros , Humanos , Animais , Filogenia , Oriente Médio , Bartonella/genética , DNA Intergênico , Quênia
15.
Rev Argent Microbiol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38871623

RESUMO

The aim of this study was to detect vector-borne pathogens (Anaplasmataceae family, Rickettsia genus, and Bartonella genus) in bats from Misiones (Argentina). Thirty-three specimens were captured over 8 days using mist nets. Twenty (60.6%) blood samples were positive (11/13 Artibeus lituratus, 4/10 Desmodus rotundus, 4/8 Carollia perspicillata, and 1/2 Myotis nigricans) by PCR for the gltA gene fragment of Bartonella. All samples were negative by PCR for the Anaplasmataceae family and Rickettsia genus. The phylogenetic analysis showed seven Bartonella genotypes. The three genotypes obtained from A. lituratus, 2 from C. perspicillata, and 1 from D. rotundus were related to Bartonella spp. from New World bats, while the sequence obtained from M. nigricans was related to Old World bats. We identified a considerable diversity of Bartonella genotypes in a small number of bats, thus further research is required to better understand the complex bat-pathogen interaction.

16.
Neuroophthalmology ; 48(5): 377-380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156225

RESUMO

Cat-scratch disease (CSD) is a self-limited disease caused by Bartonella henselae, a fastidious gram-negative intracellular bacillus bacterium. Neuroretinitis, a form of optic neuropathy characterised clinically by optic disc swelling and a macular star, is an uncommon manifestation of CSD occurring in approximately 1-2% of cases. We report a case of a 14-year-old female who presented to the emergency department with a chief complaint of acute painless vision loss described as a large black spot in the centre of her right eye vision 2 weeks after being scratched by cats. Fundus examination revealed Frisen grade 5 disc oedema with an atypically diffuse disc and peripapillary haemorrhages with associated subretinal fluid and a macular star in the right eye. Optical coherence tomography (OCT) of the macula and retinal nerve fibre layer showed subretinal fluid involving the fovea, a serous retinal detachment of the nasal macula, and significant optic disc oedema in the right eye. The patient was admitted and treated with doxycycline, rifampin, and prednisone taper. After completing the treatment course, the patient's vision improved, fundus examination showed significantly improved disc oedema and haemorrhages, and OCT demonstrated resolution of the subretinal fluid in the right eye.

17.
Infect Immun ; 91(3): e0018622, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36744895

RESUMO

Bartonella species are hemotropic, facultative intracellular bacteria, some of which cause zoonoses, that are widely disseminated among many mammals, including humans. During infection in humans, vascular endothelial cells play a crucial role as a replicative niche for Bartonella, and some are capable of promoting vascular proliferation. Along with well-studied pathogenic factors such as a trimeric autotransporter adhesin BadA or VirB/D4 type IV secretion system, bacteria-secreted protein BafA is also involved in Bartonella-induced vasoproliferation. Genes encoding BafA orthologs have been found in the genomes of most Bartonella species, but their functionality remains unclear. In this study, we focused on three cat-derived zoonotic species (B. henselae, B. koehlerae, and B. clarridgeiae) and two rodent-derived species (B. grahamii and B. doshiae) and compared the activity of BafA derived from each species. Recombinant BafA proteins of B. henselae, B. koehlerae, B. clarridgeiae, and B. grahamii, species that also cause human disease, induced cell proliferation and tube formation in cultured endothelial cells, while BafA derived from B. doshiae, a species that is rarely found in humans, showed neither activity. Additionally, treatment of cells with these BafA proteins increased phosphorylation of both vascular endothelial growth factor receptor 2 and extracellular signal-regulated kinase 1/2, with the exception of B. doshiae BafA. Differential bafA mRNA expression and BafA secretion among the species likely contributed to the differences in the cell proliferation phenotype of the bacteria-infected cells. These findings suggest that the biological activity of BafA may be involved in the infectivity or pathogenicity of Bartonella species in humans.


Assuntos
Bartonella henselae , Bartonella , Animais , Humanos , Bartonella/genética , Células Endoteliais/metabolismo , Proteínas Recombinantes/metabolismo , Roedores , Sistemas de Secreção Tipo V/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Gatos
18.
Clin Infect Dis ; 76(8): 1382-1390, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36571112

RESUMO

BACKGROUND: Louse-borne trench fever caused by Bartonella quintana is a neglected public health concern, known to be transmitted from body louse feces via scratching. No viable B. quintana have ever been isolated from head lice before; therefore, their role as a vector is still poorly understood. METHODS: In Senegal, the implementation of a permanent local surveillance system in a point-of-care laboratory (POC) allows the monitoring of emerging diseases. Here we used culture as well as molecular and genomic approaches to document an outbreak of trench fever associated with head lice in the village of Ndiop. Head lice and blood samples were collected from febrile patients between November 2010 and April 2015. Genomes of 2 isolated strains of B. quintana were sequenced and analyzed. RESULTS: A total of 2289 blood samples were collected in the 2010-2015 period. From 2010-2013, B. quintana DNA was detected by polymerase chain reaction (PCR) in 0.25% (4/1580). In 2014, 228 blood samples were collected, along with 161 head lice from 5 individuals. B. quintana DNA was detected in 4.4% (10/228) of blood samples, and in lice specimens collected from febrile patients (61.7%, 50/81) and non-febrile patients (61.4%, 43/70). Two B. quintana strains were isolated from blood and head lice from 2 different patients. Genomic sequence analysis showed 99.98% overall similarity between both strains. CONCLUSIONS: The presence of live B. quintana in head lice, and the genetic identity of strains from patients' blood and head lice during a localized outbreak in Senegal, supports the evidence of head lice vectorial capacity.


Assuntos
Bartonella quintana , Infestações por Piolhos , Pediculus , Febre das Trincheiras , Animais , Humanos , Bartonella quintana/genética , Pediculus/genética , Febre das Trincheiras/epidemiologia , Senegal/epidemiologia , Infestações por Piolhos/epidemiologia , Surtos de Doenças , DNA
19.
Emerg Infect Dis ; 29(2): 418-421, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36692454

RESUMO

Persons experiencing homelessness in São Paulo, Brazil, were seropositive for Bartonella spp. (79/109, 72.5%) and typhus group rickettsiae (40/109, 36.7%). Bartonella quintana DNA was detected in 17.1% (14/82) body louse pools and 0.9% (1/114) blood samples. Clinicians should consider vectorborne agents as potential causes of febrile syndromes in this population.


Assuntos
Bartonella , Pessoas Mal Alojadas , Rickettsia , Tifo Epidêmico Transmitido por Piolhos , Humanos , Bartonella/genética , Rickettsia/genética , Brasil/epidemiologia
20.
Emerg Infect Dis ; 30(2): 394-396, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270167

RESUMO

A 22-year-old man from Guatemala sought care for subacute endocarditis and mycotic brain aneurysm after living in good health in the United States for 15 months. Bartonella rochalimae, a recently described human and canine pathogen, was identified by plasma microbial cell-free DNA testing. The source of infection is unknown.


Assuntos
Bartonella , Endocardite Bacteriana , Endocardite , Humanos , Masculino , Adulto Jovem , Bartonella/genética , Encéfalo , Endocardite Bacteriana/diagnóstico , Endocardite Bacteriana/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA