RESUMO
Soil protists have been shown to contribute to the structure and function of the rhizosphere in a variety of ways. Protists are key contributors to nutrient cycling through the microbial loop, where biomass is digested by protists and otherwise stored nutrients are returned to the environment. Protists have also been shown to feed on plant pathogenic bacteria and alter root microbiomes in ways that may benefit plants. Recently, a mechanism involving bacterial transport, facilitated by protists, has been hypothesized to contribute to the spatial distribution of bacteria in the rhizosphere. Here, we observe the differential abilities of three soil protists: a ciliate (Colpoda sp.), a flagellate (Cercomonas sp.), and a naked amoeba (Acanthamoeba castellanii) to transport nitrogen-fixing Sinorhizobium meliloti to infectible root tips. Co-inoculation of protists plus S. meliloti resulted in the movement of bacteria, as measured by the presence of nitrogen-fixing nodules, up to 15 cm farther down the root systems when compared to plants inoculated with S. meliloti alone. Co-inoculation of the ciliate, Colpoda sp., with S. meliloti, resulted in shoot weights that were similar to plants that grew in nitrogen-replete potting mix. Colpoda sp.-feeding style and motility likely contributed to their success at transporting bacteria through the rhizosphere. We observed that the addition of protists alone without the co-inoculum of S. meliloti resulted in plants with larger shoot weights than control plants. Follow-up experiments showed that protists plus their associated microbiomes were aiding in plant health, likely through means of nutrient cycling.IMPORTANCEProtists represent a significant portion of the rhizosphere microbiome and have been shown to contribute to plant health, yet they are understudied compared to their bacterial and fungal counterparts. This study elucidates their role in the rhizosphere community and suggests a mechanism by which protists can be used to move bacteria along plant roots. We found that the co-inoculation of protists with nitrogen-fixing beneficial bacteria, Sinorhizobium meliloti, resulted in nodules farther down the roots when compared to plants inoculated with S. meliloti alone, and shoot weights similar to plants that received nitrogen fertilizer. These data illustrate the ability of protists to transport viable bacteria to uninhabited regions of the root system.
Assuntos
Bactérias , Plantas , Rizosfera , Solo , Nitrogênio , Raízes de Plantas/microbiologia , Microbiologia do SoloRESUMO
Plants can recruit beneficial microbes to enhance their ability to resist disease. It is well established that selenium is beneficial in plant growth, but its role in mediating microbial disease resistance remains poorly understood. Here, we investigated the correlation between selenium, oilseed rape rhizosphere microbes, and Sclerotinia sclerotiorum. Soil application of 0.5 and 1.0 mg kg-1 selenium [selenate Na2SeO4, Se(VI) or selenite Na2SeO3, Se(IV)] significantly increased the resistance of oilseed rape to Sclerotinia sclerotiorum compared with no selenium application, with a disease inhibition rate higher than 20% in Se(VI)0.5, Se(IV)0.5 and Se(IV)1.0 mg kg-1 treatments. The disease resistance of oilseed rape was related to the presence of rhizosphere microorganisms and beneficial bacteria isolated from the rhizosphere inhibited Sclerotinia stem rot. Burkholderia cepacia and the synthetic community consisting of Bacillus altitudinis, Bacillus megaterium, Bacillus cereus, Bacillus subtilis, Bacillus velezensis, Burkholderia cepacia, and Flavobacterium anhui enhanced plant disease resistance through transcriptional regulation and activation of plant-induced systemic resistance. In addition, inoculation of isolated bacteria optimized the bacterial community structure of leaves and enriched beneficial microorganisms such as Bacillus, Pseudomonas, and Sphingomonas. Bacillus isolated from the leaves were sprayed on detached leaves, and it also performed a significant inhibition effect on Sclerotinia sclerotiorum. Overall, our results indicate that selenium improves plant rhizosphere microorganisms and increase resistance to Sclerotinia sclerotiorum in oilseed rape.
Assuntos
Ascomicetos , Brassica napus , Resistência à Doença , Microbiota , Doenças das Plantas , Selênio , Microbiologia do Solo , Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Selênio/farmacologia , Selênio/metabolismo , Brassica napus/microbiologia , Brassica napus/crescimento & desenvolvimento , Rizosfera , Solo/química , Bactérias/efeitos dos fármacosRESUMO
Soybean (Glycine max [L.] Merr.) is an important oilseed crop with a high economic value. However, three damaging soybean diseases, soybean cyst nematode (SCN; Heterodera glycines Ichinohe), Sclerotinia stem rot caused by the fungus Sclerotinia sclerotiorum (Lid.) de Bary, and soybean root rot caused by Fusarium spp., are major constraints to soybean production in the Great Plains. Current disease management options, including resistant or tolerant varieties, fungicides, nematicides, and agricultural practices (crop rotation and tillage), have limited efficacy for these pathogens or have adverse effects on the ecosystem. Microbes with antagonistic activity are a promising option to control soybean diseases with the advantage of being environmentally friendly and sustainable. In this study, 61 bacterial strains isolated from wheat rhizospheres were used to examine their antagonistic abilities against three soybean pathogens. Six bacterial strains significantly inhibited the growth of Fusarium graminearum in the dual-culture assay. These bacterial strains were identified as Chryseobacterium ginsengisoli, C. indologenes, Pseudomonas poae, two Pseudomonas spp., and Delftia acidovorans by 16S rRNA gene sequencing. Moreover, C. ginsengisoli, C. indologenes, and P. poae significantly increased the mortality of SCN second-stage juveniles (J2), and two Pseudomonas spp. inhibited the growth of S. sclerotiorum in vitro. Further growth chamber tests found that C. ginsengisoli and C. indologenes reduced soybean Fusarium root rot disease. C. ginsengisoli and P. poae dramatically decreased SCN egg number on SCN-susceptible soybean 'Williams 82'. Two Pseudomonas spp. protected soybean plants from leaf damage and collapse after being infected by S. sclerotiorum. These bacteria exhibit versatile antagonistic potential. This work lays the foundation for further research on the field control of soybean pathogens.
Assuntos
Fusarium , Glycine max , Doenças das Plantas , Rizosfera , Microbiologia do Solo , Triticum , Glycine max/microbiologia , Glycine max/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/parasitologia , Triticum/microbiologia , Fusarium/fisiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Animais , Ascomicetos/fisiologia , Ascomicetos/genética , RNA Ribossômico 16S/genética , Tylenchoidea/fisiologia , AntibioseRESUMO
The role of probiotics in regulating intestinal flora to enhance host immunity has recently received widespread attention. Altering the human gut microbiota may increase the predisposition to several disease phenotypes such as gut inflammation and metabolic disorders. The intestinal microbiota converts dietary nutrients into metabolites that serve as biologically active molecules in modulating regulatory functions in the host. Probiotics, which are active microorganisms, play a versatile role in restoring the composition of the gut microbiota, helping to improve host immunity and prevent intestinal disease phenotypes. This comprehensive review provides firsthand information on the gut microbiota and their influence on human health, the dietary effects of diet on the gut microbiota, and how probiotics alter the composition and function of the human gut microbiota, along with their corresponding effects on host immunity in building a healthy intestine. We also discuss the implications of probiotics in some of the most important human diseases. In summary, probiotics play a significant role in regulating the gut microbiota, boosting overall immunity, increasing the abundance of beneficial bacteria, and helping ameliorate the symptoms of multiple diseases.
Assuntos
Microbioma Gastrointestinal , Probióticos , Probióticos/farmacologia , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , DietaRESUMO
Climate change has exacerbated the effects of abiotic stresses on plant growth and productivity. Drought is one of the most important abiotic stress factors that interfere with plant growth and development. Plant selection and breeding as well as genetic engineering methods used to improve crop drought tolerance are expensive and time consuming. Plants use a myriad of adaptative mechanisms to cope with the adverse effects of drought stress including the association with beneficial microorganisms such as plant growth promoting rhizobacteria (PGPR). Inoculation of plant roots with different PGPR species has been shown to promote drought tolerance through a variety of interconnected physiological, biochemical, molecular, nutritional, metabolic, and cellular processes, which include enhanced plant growth, root elongation, phytohormone production or inhibition, and production of volatile organic compounds. Therefore, plant colonization by PGPR is an eco-friendly agricultural method to improve plant growth and productivity. Notably, the processes regulated and enhanced by PGPR can promote plant growth as well as enhance drought tolerance. This review addresses the current knowledge on how drought stress affects plant growth and development and describes how PGPR can trigger plant drought stress responses at the physiological, morphological, and molecular levels.
Assuntos
Secas , Desenvolvimento Vegetal , Resistência à Seca , Reguladores de Crescimento de Plantas , AclimataçãoRESUMO
The rhizosphere is the region of soil directly influenced by plant roots. The microbial community in the rhizosphere includes fungi, protists, and bacteria: all play significant roles in plant health. The beneficial bacterium Sinorhizobium meliloti infects growing root hairs on nitrogen-starved leguminous plants. Infection leads to the formation of a root nodule, where S. meliloti converts atmospheric nitrogen to ammonia, a bioavailable form. In soil, S. meliloti is often found in biofilms and travels slowly along the roots, leaving developing root hairs at the growing root tips uninfected. Soil protists are an important component of the rhizosphere system, able to travel quickly along roots and water films, who prey on soil bacteria and have been known to egest undigested phagosomes. We show that a soil protist, Colpoda sp., can transport S. meliloti down Medicago truncatula roots. Using model soil microcosms, we directly observed fluorescently labeled S. meliloti along M. truncatula roots and tracked the displacement of the fluorescence signal over time. Two weeks after co-inoculation, this signal extended 52 mm farther down plant roots when Colpoda sp. was also present versus treatments that contained bacteria but not protists. Direct counts also showed protists are required for viable bacteria to reach the deeper sections of our microcosms. Facilitating bacterial transport may be an important mechanism whereby soil protists promote plant health. IMPORTANCE Soil protists are an important part of the microbial community in the rhizosphere. Plants grown with protists fare better than plants grown without protists. Mechanisms through which protists support plant health include nutrient cycling, alteration of the bacterial community through selective feeding, and consumption of plant pathogens. Here, we provide data in support of an additional mechanism: protists act as transport vehicles for bacteria in soil. We show that protist-facilitated transport can deliver plant-beneficial bacteria to the growing tips of roots that may otherwise be sparsely inhabited with bacteria originating from a seed-associated inoculum. By co-inoculating Medicago truncatula roots with both S. meliloti, a nitrogen-fixing legume symbiont, and Colpoda sp., a ciliated protist, we show substantial and statistically significant transport with depth and breadth of bacteria-associated fluorescence as well as transport of viable bacteria. Co-inoculation with shelf-stable encysted soil protists may be employed as a sustainable agriculture biotechnology to better distribute beneficial bacteria and enhance the performance of inoculants.
Assuntos
Bactérias , Cilióforos , Medicago truncatula , Raízes de Plantas , Rizosfera , Bactérias/metabolismo , Medicago truncatula/microbiologia , Medicago truncatula/parasitologia , Raízes de Plantas/microbiologia , Raízes de Plantas/parasitologia , Sinorhizobium meliloti/fisiologia , Solo/parasitologia , Simbiose , Cilióforos/metabolismoRESUMO
Agave lechuguilla is a widely distributed plant in arid ecosystems. It has been suggested that its microbiome is partially responsible for its great adaptability to the oligotrophic environments of the Chihuahuan Desert. To lead the recruitment of beneficial rhizobacteria, the root exudates are essential; however, the amino acids contained within these compounds had been largely overlooked. Thus, we investigated how the variations of amino acids in the rhizosphere at different growth stages of A. lechuguilla affect the rhizobacterial community composition, its functions, and activity of the beneficial bacteria. In this regard, it was found that arginine and tyrosine were related to the composition of the rhizobacterial community associated to A. lechuguilla, where the most abundant genera were from the phylum Proteobacteria and Bacteroidetes. Moreover, Firmicutes was largely represented by Bacillus in the phosphorus-mineralizing bacteria community, which may indicate its great distribution and versatility in the harsh environments of the Chihuahuan Desert. In contrast, we found a high proportion of Unknown taxa of nitrogen-fixing bacteria, reflecting the enormous diversity in the rhizosphere of these types of plants that remains to be explored. This work also reports the influence of micronutrients and the amino acids methionine and arginine over the increased activity of the nitrogen-fixing and phosphorus-mineralizing bacteria in the rhizosphere of lechuguillas. In addition, the results highlight the multiple beneficial functions present in the microbiome that could help the host to tolerate arid conditions and improve nutrient availability.
Assuntos
Agave , Alphaproteobacteria , Microbiota , Aminoácidos , Raízes de Plantas/microbiologia , Bactérias , Rizosfera , Plantas/microbiologia , Exsudatos e Transudatos , Nutrientes , Arginina , Fósforo , Microbiologia do SoloRESUMO
Coral reefs have been challenged by the current rate and severity of environmental change that might outpace their ability to adapt and survive. Current research focuses on understanding how microbial communities and epigenetic changes separately affect phenotypes and gene expression of corals. Here, we provide the hypothesis that coral-associated microorganisms may directly or indirectly affect the coral's phenotypic response through the modulation of its epigenome. Homologs of ankyrin-repeat protein A and internalin B, which indirectly cause histone modifications in humans, as well as Rv1988 histone methyltransferase, and the DNA methyltransferases Rv2966c, Mhy1, Mhy2, and Mhy3 found in coral-associated bacteria indicate that there are potential host epigenome-modifying proteins in the coral microbiome. With the ideas presented here, we suggest that microbiome manipulation may be a means to alter a coral's epigenome, which could aid the current efforts to protect coral reefs. Also see the video abstract here: https://youtu.be/CW9GbChjKM4.
Assuntos
Antozoários , Microbiota , Animais , Antozoários/genética , Recifes de Corais , Epigênese Genética , Humanos , Microbiota/genética , SimbioseRESUMO
Modification of biochar, such as impregnation with minerals, can improve biochar's efficacy to mitigate heavy metal toxicity in plants. Biochar amendments can alter plant rhizosphere microbiome, which has profound effects on plant growth and fitness. Here, we tested whether rhizosphere microbiome is involved in the ability of silicon (Si)-modified biochar to mitigate cadmium toxicity in tomato (Solanum lycopersicum L.). We demonstrated that Si modification altered biochar's physico-chemical properties and enhanced its ability to mitigate cadmium toxicity in tomato. Particularly, the Si-modified biochar contained higher content of Si and increased plant-available Si content in the soil. The rhizosphere microbiome transplant experiment showed that changes in rhizosphere microbiome contributed to the mitigation of cadmium toxicity by biochar amendments. The raw biochar and Si-modified biochar differently altered tomato rhizosphere bacterial community composition. Both biochars, especially the Si-modified biochar, promoted specific bacterial taxa (e.g., Sphingomonas, Lysobacter and Pseudomonas spp.). Subsequent culturing found these promoted bacteria could mitigate cadmium toxicity in tomato. Moreover, both biochars stimulated tomato to recruit plant-beneficial bacteria with Si-modified biochar having stronger stimulatory effects, indicating that the positive effects of biochar on plant-beneficial bacteria was partially mediated via the host plant. Overall, Si modification enhanced biochar's ability to mitigate cadmium toxicity, which was linked to the stimulatory effects on plant-beneficial bacteria.
Assuntos
Solanum lycopersicum , Cádmio/toxicidade , Cádmio/análise , Silício/farmacologia , Carvão Vegetal/farmacologia , Carvão Vegetal/química , Bactérias , Rizosfera , Solo/químicaRESUMO
Waterlogging has been shown to have a significant inhibitory effect on plant growth. However, the response mechanisms of the soil environment of sugar beet seedlings under waterlogging conditions still need to be fully understood. This study aimed to investigate the effects of waterlogging treatments on the content of effective nutrients and the microbial communities in the rhizosphere and non-rhizosphere using high-throughput sequencing. We set up waterlogging and non-waterlogging treatments, sampled sugar beet seedlings after 10 days of waterlogging, determined the effective soil nutrients in the rhizosphere and non-rhizosphere of the plants, and analyzed the differences in microbial diversity at ten days of waterlogging. The results showed that waterlogging significantly affected available potassium (AK) content. The Ak content of waterlogged soil was significantly higher than that of non-waterlogged soil. Waterlogging caused no significant difference in available nitrogen (AN) content and pH. Moreover, the plant growth-promoting bacteria Pseudomonas was significantly enriched in sugar beet waterlogged rhizospheres compared with the non-waterlogged ones. Similarly, the harmful fungi Gibellulopsis and Alternaria were enriched in sugar beet non-waterlogged rhizosphere. The network analysis revealed that waterlogging built a less complex root-microbial network than non-waterlogging. These findings implied that sugar beets subjected to waterlogging stress were enriched with beneficial microorganisms in the rhizosphere, potentially alleviating the stress.
RESUMO
American foulbrood (AFB) is a cosmopolitan bacterial disease that affects honey bee (Apis mellifera) larvae and causes great economic losses in apiculture. Currently, no satisfactory methods are available for AFB treatment mainly due to the difficulties to eradicate the tenacious spores produced by the etiological agent of AFB, Paenibacillus larvae (Bacillales, Paenibacillaceae). This present review focused on the beneficial bacteria that displayed antagonistic activities against P. larvae and demonstrated potential in AFB control. Emphases were placed on commensal bacteria (genus Bacillus and lactic acid bacteria in particular) in the alimentary tract of honey bees. The probiotic roles lactic acid bacteria play in combating the pathogenic P. larvae and the limitations referring to the application of these beneficial bacteria were addressed.
Assuntos
Paenibacillus larvae , Abelhas , Animais , Estados Unidos , Larva/microbiologia , Criação de Abelhas , Trato GastrointestinalRESUMO
Utilizing beneficial microbes for crop improvement is one strategy to achieve sustainable agriculture. However, identifying microbial isolates that promote crop growth is challenging, in part because using bacterial taxonomy to predict an isolate's effect on plant growth may not be reliable. The overall aim of this work was to determine whether in vitro functional traits of bacteria were predictive of their in planta impact. We isolated 183 bacterial endophytes from field-grown roots of two tomato species, Solanum lycopersicum and S. pimpinellifolium. Sixty isolates were screened for six in vitro functional traits: auxin production, siderophore production, phosphate solubilization, antagonism to a soilborne pathogen, and the presence of two antimicrobial metabolite synthesis genes. Hierarchical clustering of the isolates based on the in vitro functional traits identified several groups of isolates sharing similar traits. We called these groups 'functional groups'. To understand how in vitro functional traits of bacteria relate to their impact on plants, we inoculated three isolates from each of the functional groups on tomato seedlings. Isolates within the same functional group promoted plant growth at similar levels, regardless of their host origin or taxonomy. Together, our results demonstrate the importance of examining root endophyte functions for improving crop production.
Assuntos
Endófitos , Solanum lycopersicum , Bactérias/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/metabolismo , Desenvolvimento Vegetal , Raízes de Plantas/metabolismoRESUMO
Plants harbor various beneficial microbes that modulate their innate immunity, resulting in induced systemic resistance (ISR) against a broad range of pathogens. Camalexin is an integral part of Arabidopsis innate immunity, but the contribution of its biosynthesis in ISR is poorly investigated. We focused on camalexin accumulation primed by two beneficial bacteria, Pseudomonas fluorescens and Bacillus subtilis, and its role in ISR against Botrytis cinerea and Pseudomonas syringae Pst DC3000. Our data show that colonization of Arabidopsis thaliana roots by beneficial bacteria triggers ISR against both pathogens and primes plants for enhanced accumulation of camalexin and CYP71A12 transcript in leaf tissues. Pseudomonas fluorescens induced the most efficient ISR response against B. cinerea, while B. subtilis was more efficient against Pst DC3000. Analysis of cyp71a12 and pad3 mutants revealed that loss of camalexin synthesis affected ISR mediated by both bacteria against B. cinerea. CYP71A12 and PAD3 contributed significantly to the pathogen-triggered accumulation of camalexin, but PAD3 does not seem to contribute to ISR against Pst DC3000. This indicated a significant contribution of camalexin in ISR against B. cinerea, but not always against Pst DC3000. Experiments with Arabidopsis mutants compromised in different hormonal signaling pathways highlighted that B. subtilis stimulates similar signaling pathways upon infection with both pathogens, since salicylic acid (SA), but not jasmonic acid (JA) or ethylene, is required for ISR camalexin accumulation. However, P. fluorescens-induced ISR differs depending on the pathogen; both SA and JA are required for camalexin accumulation upon B. cinerea infection, while camalexin is not necessary for priming against Pst DC3000.
Assuntos
Arabidopsis , Solanum lycopersicum , Arabidopsis/metabolismo , Botrytis/fisiologia , Regulação da Expressão Gênica de Plantas , Imunidade Inata , Indóis , Solanum lycopersicum/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Ácido Salicílico/metabolismo , TiazóisRESUMO
AIMS: Liver damage has caused great illness in human beings. Bifidobacterium catenulatum LI10 has been determined with protective effect against D-galactosamine-induced liver damage. However, due to the sample limitation, the individual difference in its protective effect was not determined. The current study was designed to characterize the gut microbiota of LI10-pretreated rats with lower levels of liver damage. METHODS AND RESULTS: A series of experiments and bioinformatic analyses were carried out. Two rat cohorts with different levels of liver damage were determined, that is, Non-Severe and Severe cohorts. Six out of the seven measured liver function variables were lower in the Non-Severe cohort, while four cytokine variables also yielded differences between the two cohorts. The Non-Severe and Severe cohorts were determined with distinct gut microbiota, among which ASV14_Parabacteroides and ASV7_Bacteroides were most associated with Non-Severe and Severe cohorts, respectively. Five phylotypes were determined as structural gatekeepers in the microbiota network of Non-Severe cohort, ASV135_Lachnospiraceae_NK4A136 of which contributed most to the stability of the network. CONCLUSIONS: The relevant findings suggest that some gut bacteria could benefit the protective effect of LI10 on lowering the severity of rat liver damage. SIGNIFICANCE AND IMPACT OF THE STUDY: The bacteria benefiting the protective effects of potential probiotics could be further investigated for future clinical application.
Assuntos
Microbioma Gastrointestinal , Probióticos , Animais , Bifidobacterium , Galactosamina/farmacologia , Humanos , Fígado , Probióticos/uso terapêutico , RatosRESUMO
BACKGROUND AND AIM: The gut microbiota (GM) plays an essential role in maintaining health, and imbalance in its composition is associated with the physiopathogenesis of metabolic diseases, such as obesity and type 2 diabetes mellitus (T2DM). Diet and antibiotics are known modulators of GM, but the influence of physical exercise in modulating the diversity and abundance of hindgut bacteria is still poorly understood. The aim of this systematic review was to investigate the scientific evidence about the effect of physical exercise on GM modulation in subjects with obesity and T2DM. METHODS AND RESULTS: A search in PubMed, Web of Science, Scopus, Cochrane and Embase databases using keywords related to gut microbiota, physical exercise and metabolic diseases was performed. Eight clinical studies met the inclusion criteria, six in subjects with obesity and two in individuals with T2DM. In three studies carried out in individuals with obesity, exercise was able to positively modulate the diversity of GM and the abundance of some species of bacteria, mostly by increasing the Bifidobacteriaceae family, and the Bacteroides and Akkermansia genera, and by decreasing the Proteobacteria phylum. The studies in subjects with T2DM found that physical exercise may reduce metabolic endotoxemia markers. CONCLUSIONS: Physical exercise may be a beneficial modulation strategy of GM composition in metabolic diseases, specifically aerobic exercises carried out for at least 6 weeks with moderate or high intensity. Nevertheless, well-designed clinical trials are needed to clarify the role of physical exercise on GM in subjects with obesity and T2DM.
Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Bactérias , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/terapia , Exercício Físico , Humanos , Obesidade/diagnóstico , Obesidade/terapiaRESUMO
Earthworms have become a potential source of multi-beneficial bacteria and effective bioinoculants. Seed biopriming is an efficient inoculation method to apply bacteria prior to sowing, which enhances the chances of bacterial candidates to colonize the rhizosphere and/or establish a liaison with the plant. In this study, we evaluated plant growth-promoting traits of bacterial strains isolated from the earthworm's Aporrectodea molleri chloragogenous tissue. In addition, we investigated their prospective use as biopriming agents to enhance Zea mays germination and seedling growth. Results were subjected to principal component analysis for potential correlations between the studied parameters. The bacterial strains displayed different in vitro plant growth-promoting characteristics and were efficient when applied in vivo as they significantly increased maize germination rate (26-78%), root elongation (67-84%), seedlings fresh weight and dry weight. Aeromonas encheleia TC22 was the most significant strain to influence germination due to its high ability to produce indole-3-acetic acid, and along with Pseudomonas azotoformans TC1, they were the most proficient at enhancing seedling root elongation and biomass, which was significantly correlated with their in vitro plant growth-promoting traits. Our findings indicate that isolates TC22 and TC1 are potent bio-primers for maize seeds and should be tested further for their use as biopriming inoculants.
Assuntos
Oligoquetos , Plântula , Animais , Bactérias/genética , Germinação , Raízes de Plantas , Estudos Prospectivos , Plântula/microbiologia , Sementes/microbiologia , Zea mays/microbiologiaRESUMO
Spore formers are ubiquitous microorganisms commonly isolated from most environments, including the gastro-intestinal tract (GIT) of insects and animals. Spores ingested as food and water contaminants safely transit the stomach and reach the intestine, where some of them germinate and temporarily colonize that niche. In the lower part of the GIT, they re-sporulate and leave the body as spores, therefore passing through their entire life cycle in the animal body. In the intestine, both un-germinated spores and germination-derived cells interact with intestinal and immune cells and have health-beneficial effects, which include the production of useful compounds, protection against pathogenic microorganisms, contribution to the development of an efficient immune system and modulation of the gut microbial composition. We report a genomic and physiological characterization of SF106 and SF174, two aerobic spore former strains previously isolated from ileal biopsies of healthy human volunteers. SF106 and SF174 belong respectively to the B. subtilis and Alkalihalobacillus clausii (formerly Bacillus clausii) species, are unable to produce toxins or other metabolites with cytotoxic activity against cultured human cells, efficiently bind mucin and human epithelial cells in vitro and produce molecules with antimicrobial and antibiofilm activities.
Assuntos
Trato Gastrointestinal , Esporos Bacterianos , Animais , Humanos , Esporos Bacterianos/fisiologia , Intestinos , Íleo , Estômago , Bacillus subtilis/fisiologiaRESUMO
Beejamrit is an ancient organic formulation commonly used as a seed treatment in organic and natural farming in India. This low-cost formulation is primarily a product of dairy excreta (e.g., cow dung and cow urine) and forest soil, often supplemented with limestone. Growing data suggest that dairy excreta are the potential sources of enriched microbial niche, including several plant growth-promoting bacteria capable of synthesizing plant growth regulators. However, the microbiological properties of Beejamrit and their temporal changes after different incubation periods, delineating its application in seed treatment, remain largely unexplored. Here, we aimed to analyze the decomposition rate of Beejamrit over 7-consecutive days of incubation. This study further elucidates the microbial niche and their dynamics in Beejamrit, including the plant beneficial bacteria. We have shown that the population of plant beneficial bacteria, such as the free-living nitrogen fixers (FNFs) and the phosphate solubilizers (PSBs), proliferates progressively up to 4- and 5-days of incubation, respectively (p < 0.0001). This study also reports the total indolic content of Beejamrit, including indole 3-acetic acid (IAA), which further tends to oscillate in concentration based on the incubation periods incurred during the Beejamrit preparation. Our analyses, together, establish that Beejamrit provides a dynamic, microbe-based metabolic network and may, therefore, act as a plant biostimulant to crop plants. A plant-based bioassay finally demonstrates the role of Beejamrit in the seed treatment to improve seed germination, seedling survival rate, and shoot length trait in French beans (p < 0.01). In conclusion, this study highlights, for the first time, the scientific insights of Beejamrit as a potential seed priming agent in agriculture.
Assuntos
Germinação , Desenvolvimento Vegetal , Bactérias , Plantas , Sementes/microbiologia , Microbiologia do SoloRESUMO
CONTEXT: Ocimum sanctum Linn (Labiatae) (OS), Zingiber officinale Rose (Zingiberaceae) (ZO), and Piper nigrum Linn (Piperaceae) (PN) are used in traditional medicine as immunomodulator, anti-inflammatory, and bioavailability enhancer agents. OBJECTIVE: Active phytoconstituents of OS, ZO, PN hydro-alcoholic extracts and their effects on gut microbiota, basal inflammation and lipid profile were investigated in rats. MATERIALS AND METHODS: Active phytoconstituents of extracts were analysed using HPLC and GC-MS. SD rats were supplemented with individual/combined extracts (OS-850; ZO-500; PN-100 mg/kg Bw) and Fructooligosaccharide (standard prebiotic-5g/kg-Bw), orally for 30 days. Haematology, lipid profile, LPS, CRP, IL-6, insulin and histology of vital organs were analysed. Caecal bacterial levels were assessed by RT-PCR. RESULTS: High content of phenolic compounds luteolin-7-O-glucoside (430 ± 2.3 mg/100g), gallic acid (84.13 ± 1.2 mg/100 g) and flavones (88.18 ± 1.8 mg/100 g) were found in OS, ZO, and PN, respectively. Combined extract was rich in luteolin-7-O-glucoside (266.0 ± 1.80 mg/100 g). Essential oils including methyleugenol (13.96%), 6-shogaol (11.00%), piperine (18.26%), and cyclopentasiloxane (10.06%) were higher in OS, ZO, PN and combined extract. Higher levels of caecal Lactobacillus (1.7-3.4-fold), Bifidobacterium (5.89-28.4-fold), and lower levels of Firmicutes (0.04-0.91-fold), Bacteroides (0.69-0.88-fold) were noted among extracts and FOS supplemented rats. Significant (p < 0.05) decrease in plasma lipid profile and LPS was noted in all supplemented rats. DISCUSSION AND CONCLUSIONS: The current study could be first of its kind in exploring prebiotic potential of OS, ZO, PN and their effect on native gut bacterial population.
Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/tratamento farmacológico , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Feminino , Zingiber officinale/química , Lipídeos/sangue , Medicina Tradicional , Ocimum sanctum/química , Óleos Voláteis/isolamento & purificação , Piper nigrum/química , Prebióticos/administração & dosagem , Ratos , Ratos Sprague-DawleyRESUMO
In most animals, digestive tracts harbor the greatest number of bacteria in the animal that contribute to its health: by aiding in the digestion of nutrients, provisioning essential nutrients and protecting against colonization by pathogens. Invertebrates have been used to enhance our understanding of metabolic processes and microbe-host interactions owing to experimental advantages. This review describes how advances in DNA sequencing technologies have dramatically altered how researchers investigate microbe-host interactions, including 16S rRNA gene surveys, metagenome experiments, and metatranscriptome studies. Advantages and challenges of each of these approaches are described herein. Hypotheses generated through omics studies can be directly tested using site-directed mutagenesis, and findings from transposon studies and site-directed experiments are presented. Finally, unique structural aspects of invertebrate digestive tracts that contribute to symbiont specificity are presented. The combination of omics approaches with genetics and microscopy allows researchers to move beyond correlations to identify conserved mechanisms of microbe-host interactions.