Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Environ Res ; 212(Pt B): 113249, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35421392

RESUMO

Constructed wetland-microbial fuel cell system (CW-MFC), an attractive technology still under study, has shown to improve domestic wastewater treatment efficiency and generate bioelectricity. This work investigated the effect of multiple factors on the performance optimization for the pollutants removal and bioelectricity production compared to a traditional CW, including influent chemical oxygen demand (COD) concentration, hydraulic retention time (HRT) and external resistance. The results showed that the optimal operating conditions of COD concentration, HRT and external resistance for CW-MFC were 200 mg/L, 24 h and 1000 Ω, respectively. The average COD, NH4+-N, NO3--N and TP removal efficiencies were 6.06%, 3.85%, 3.68% and 3.68% higher than these in CW system, respectively. Meanwhile, the maximum output voltage and power density of CW-MFC were 388 ± 12 mV and 107.54 mW/m3. In addition, the microbial community analysis indicated that the pollution removal and bioelectricity generation might benefit from the gradual enrichment of electroactive bacteria (Tolumonas) and denitrifying bacteria (Denitratisoma, Methylotenera and Sulfuritales). The findings can provide the optimum operation parameters and mechanism insight for the performance of CW-MFC systems.


Assuntos
Fontes de Energia Bioelétrica , Microbiota , Purificação da Água , Eletricidade , Eletrodos , Águas Residuárias/microbiologia , Purificação da Água/métodos , Áreas Alagadas
2.
Environ Sci Pollut Res Int ; 31(10): 15039-15049, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38285263

RESUMO

Three identical sets of constructed wetland-microbial fuel cells (CW-MFCs) fabricated with biomass carbon source addition were constructed and underwent the short- and long-term experiments. For this, the efficacy of biomass dosage and Pb(II) concentration towards Pb(II) removal and concurrent bioelectricity production of CW-MFCs were systematically explored. From the perspective of integrated capabilities and economic benefits, the solid biomass carbon sources equivalent to 500 mg/L COD was regarded as the optimal dosage, and the corresponding device was labeled as CW-MFC-2. For the short-term experiment, the closed-circuit CW-MFC-2 produced maximum output voltages and power densities in a range of 386-657 mV and 1.55 × 103-6.31 × 103 mW/m2 with the increasing Pb(II) level, respectively. Also, Pb(II) removal up to 94.4-99.6% was obtained in CW-MFC-2. With respect to long-term experiment, Pb(II) removal, the maximum output voltage, and power density of CW-MFC-2 ranged from 98.7 to 99.2%, 322 to 387 mV, and 3.28 × 102 to 2.26 × 103 mW/m2 upon 200 mg/L Pb(II) level, respectively. The migration results confirmed the potential of substrate and biomass for Pb(II) adsorption and fixation. For the cathode, Pb(II) was fixed and removed via binding to O. This study enlarges our knowledge of effective modulation of CW-MFCs for the treatment of high-level Pb(II)-containing wastewater and bioelectricity generation via adopting desirable biomass dosage.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Eletricidade , Chumbo , Áreas Alagadas , Biomassa , Eletrodos , Carbono
3.
Heliyon ; 9(6): e16614, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37303508

RESUMO

In the present study, carbon cloth (CC) was functionalized using dimethyl sulfoxide (DMSO) and employed as an excellent bioanode for improving defluoridation efficiency, wastewater treatment, and power output from a microbial desalination cell (MDC). The Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis of DMSO modified carbon cloth (CCDMSO) confirmed the functionalization of CCDMSO, and the water drop contact angle of 0° ensured its superior hydrophilicity. The presence of -COOH (carboxyl), S[bond, double bond]O (sulfoxide) and O-C[bond, double bond]O (carbonyl) functional groups on CCDMSO aids in enhancing the performance of the MDC. Besides, cyclic voltametric and electrochemical impedance analysis revealed that CCDMSO had an excellent electrochemical performance with low charge transfer resistance. Replacing CC with CCDMSO as anode in MDC, the time required for 3,10 and 20 mg/L of initial fluoride (F-) concentrations in the middle chamber was reduced from 24 ± 0.75 to 17 ± 0.37, 72 ± 1 to 48 ± 0.70, and 120 ± 0.5 to 96 ± 0.53 h, respectively to meet the prescribed standards (1.5 mg/L). Furthermore, using CCDMSO, the anode chamber of MDC exhibited a maximum of 83% substrate degradation, and simultaneously, the power output is increased by 2-2.8 times. CCDMSO improved the power production from 0.009 ± 0.003, 1.394 ± 0.06 and 1.423 ± 0.15 mW/m2 to 0.020 ± 0.07, 2.748 ± 0.22 and 3.245 ± 0.16 mW/m2, respectively, for initial F- concentrations of 3,10, and 20 mg/L. Modifying CC with DMSO thus proved to be an efficient and simple methodology for enhancing the overall performance of MDC.

4.
Bioelectrochemistry ; 154: 108537, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37542876

RESUMO

Environmental pollution problems caused by the use of fossil fuels have led to the search for renewable energy sources to mitigate greenhouse gas emissions. In addition, constructed wetlands-microbial fuel cells (CW-MFC) could contribute to sustainable development, considering that this technology focuses on the production of bioelectricity. One of the main challenges of CW-MFCs is to potentiate their bioelectrochemical performance. Therefore, this research used the Geobacter sulfurreducens DL-1 bacterium (biofilm) as a bioelectrocatalyst to increase bioelectricity generation. For this, three bioreactors were built as CW-MFCs, using Juncus effusus root exudates and Philodendron cordatum macrophytes as endogenous substrates. The biofilm was developed in a nutrient broth acetate fumarate and directly inoculated onto the anodes of each CW-MFC. The results of bioelectrochemical analyses showed that the biofilm generated more bioelectricity when it consumed the exudates of the Juncus effusus macrophyte, resulting in a maximum performance of 107 mW/m2 power density, -361 mV anodic potential, 290 mV cathodic potential, and 124 Ω internal resistance, using a concentration of 27.5 mg/L of total organic carbon as an endogenous substrate. The results determined that the quantity of root exudates consumed by the anodic biofilm is directly related to the production of bioelectricity in CW-MFCs.


Assuntos
Fontes de Energia Bioelétrica , Geobacter , Áreas Alagadas , Eletrodos , Bactérias , Eletricidade
5.
Environ Sci Pollut Res Int ; 30(8): 19725-19736, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36239892

RESUMO

In this study, an attempt was made to clarify the impact of substrates on the microbial fuel cell coupled with constructed wetland (CW-MFC) towards the treatment of nickel-containing wastewater. Herein, zeolite (ZEO), coal cinder (COA), ceramsite (CER), and granular activated carbon (GAC) were respectively introduced into lab-scaled CW-MFCs to systematically investigate the operational performances and microbial community response. GAC was deemed as the most effective substrate, and the corresponding device yielded favorable nickel removal efficiencies over 99% at different initial concentrations of nickel. GAC-CW-MFC likewise produced a maximum output voltage of 573 mV, power density of 8.95 mW/m2, and internal resistance of 177.9 Ω, respectively. The strong adsorptive capacity of nickel by GAC, accounting for 54.5% of total contaminant content, was mainly responsible for the favorable nickel removal performances of device GAC-CW-MFC. The high-valence Ni2+ was partially reduced to elemental Ni0 on the cathode, which provided evidence for the removal of heavy metals via the cathodic reduction of CW-MFC. The microbial community structure varied considerably as a result of substrates addition. For an introduction of GAC into the CW-MFC, a remarkably enriched population of genera Thermincola, norank_f__Geobacteraceae, Anaerovorax, Bacillus, etc. was noted. This study was dedicated to providing a theoretical guidance for an effective regulation of CW-MFC treatment on nickel-containing wastewater and accompanied by bioelectricity generation via the introduction of optimal substrate.


Assuntos
Fontes de Energia Bioelétrica , Níquel , Águas Residuárias , Áreas Alagadas , Eletrodos , Eletricidade
6.
Environ Technol ; 43(3): 311-326, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32571180

RESUMO

ABSTRACTThe present work focuses on the synthesis of a proton exchange membrane to be assembled in a microbial fuel cell (MFC) for simultaneous bioelectricity production and domestic wastewater treatment. The indigenous membrane was prepared by ionizing irradiation-induced graft copolymerization of glycidyl methacrylate (GMA) and vinyl acetate (VAc) onto low-density polyethylene and subsequently, the prepared grafted sheets were sulfonated via epoxy ring-opening of PGMA moieties. Parameters affecting the grafting degree were investigated and the prepared membranes were characterized by investigating their structural, thermal, mechanical, and electrical properties. Some physicochemical characteristics including ion exchange capacity, sulfonation density, and proton conductivity were also evaluated. The data confirmed the success of the preparation protocol to obtain a suitable membrane for the proposed application. Moreover, the performance of the assembled MFC was thoroughly investigated through the evaluation of its electrochemical behaviour including cyclic voltammetry, electrochemical impedance spectroscopy, columbic efficiency, and wastewater treatment capability. The sulfonated LDPE-g-P(GMA-co-VAc) membrane of 80% grafting degree shows substantial removal of chemical oxygen demand up to about 90% with columbic efficiency of 10.1%, columbic recovery of 8.7%, rate of energy harvest of 2.1 C/h and power density of 2.72 W m-2. However, the use of 10 mM of KMnO4 as electron acceptor drastically increase the harvested power density to reach 356.4 W m-2.


Assuntos
Fontes de Energia Bioelétrica , Compostos de Epóxi , Metacrilatos , Polietileno , Prótons , Compostos de Vinila
7.
BioTech (Basel) ; 11(3)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35997344

RESUMO

Due to the continuous depletion of natural resources currently used for electricity generation, it is imperative to develop alternative energy sources. Human waste is nowadays being explored as an efficient source to produce bio-energy. Human waste is renewable and can be used as a source for an uninterrupted energy supply in bioelectricity or biofuel. Annually, human waste such as urine is produced in trillions of liters globally. Hence, utilizing the waste to produce bioenergy is bio-economically suitable and ecologically balanced. Microbial fuel cells (MFCs) play a crucial role in providing an effective mode of bioelectricity production by implementing the role of transducers. MFCs convert organic matter into energy using bio-electro-oxidation of material to produce electricity. Over the years, MFCs have been explored prominently in various fields to find a backup for providing bioenergy and biofuel. MFCs involve the role of exoelectrogens which work as transducers to convert the material into electricity by catalyzing redox reactions. This review paper demonstrates how human waste is useful for producing electricity and how this innovation would be beneficial in the long term, considering the current scenario of increasing demand for the supply of products and shortages of natural resources used to produce biofuel and bioelectricity.

8.
Sci Total Environ ; 752: 141907, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32890820

RESUMO

This first-attempt study elucidated the microbial mechanism associated with bioelectricity output in microbial fuel cells (MFCs) fed with sludge matrices of freezing/thawing (F/T) liquid versus fermentation liquor, while a novel schematic elucidation for exploring cooperative interactions in anodic microbial consortia of MFCs supplied with such two feeds toward electrogenesis was put forward. Moreover, the F/T liquid cultivated main genera of Azospira, Povalibacter, Thauera, Terrimonas, Alicycliphilus, Dokdonella and Simplicispira for dual organics degradation and electrogenesis with power density of 0.152 mW/m2 and electrogenesis efficiency of 1.152 kWh/kg COD, while the fermentation liquor fostered higher diversity and medium evenness with the enrichment of Phenylobacterium, Cellulomonas, Edaphobacter, Burkholderia, Clostridium, Sphingomonas, Leifsonia and Microbacterium in anodic biofilm and causing larger power density of 0.182 mW/m2 and 1.418 kWh/kg COD-electrogenesis efficiency. Comparative analysis results indicated that the anodic fermentative bacteria exert considerable influence on concurrent organics degradation and electricity production through the synergistic interactions with exoelectrogens toward stable running of MFCs. Besides, the higher anodic microbial diversity, relatively middling community evenness and larger abundance of functional genes associated with electrogenesis together played contributive roles on more power generation through MFCs for treating WAS matrix. This study was conducive to bring about some new microbial mechanism understanding on maximizing bioenergy recovery via MFCs in future sludge management.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Eletrodos , Fermentação , Congelamento , Esgotos
9.
Sci Total Environ ; 748: 141425, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32798878

RESUMO

Microbial fuel cells (MFCs) that are bio-energy transducers capture bioelectricity produced from the oxidation of organic matter by using the electro-active bacteria grown on the biofilm attached on anode. Previous studies explored the effect of several limiting factors, such as electrode material, catalyst type, membrane structure, and electrolyte, on the electrochemical performance of MFCs. However, the effects of electrode position on Cr(VI) reduction and bioelectricity production remain unknown. In this study, MFCs with different electrode positions (i.e., 4 cm (MFC-4), 3 cm (MFC-3), 2 cm (MFC-2), and 1 cm (MFC-1)) were designed and fabricated to evaluate the overall performance of MFCs. The results of electrochemical analysis confirmed that MFC-2 exhibited low exchange transfer resistance (4.9 Ω) and strong conductivity, resulting in optimal electrochemical performance. In addition, Cr(VI) was completely removed within 11 h in MFC-2 with a large reduction rate of 0.91 g/m3·h. and COD removal efficiency of 78.25%. The overall performance of MFC-2 was comparatively higher than those of MFC-1 (0.80 g/m3·h and 68.82%), MFC-3 (0.64 g/m3·h and 61.67%), and MFC-4 (0.52 g/m3·h and 39.85%). Meanwhile, MFC-2 generated high open voltage (1.02 V) and power density (535.4 mW/m2), which are 1.4- and 3.1-fold larger than those of MFC-4 (0.72 V and 171.3 mW/m2). High COD removal and power density indicated the strong electrochemical activity of electroactive bacteria in the anode chamber of the MFCs, which was due to the low resistance in the MFCs could accelerate electron transfer and boost electrochemical reaction. Consequently, the optimal electrode spacing in MFCs was 2 cm. Further studies confirmed that Cr(VI) was removed and deposited in the form of Cr(III) on the electrode surface. High-throughput analysis suggested Pseudomonas species are the key electroactive bacteria for electricity generation.


Assuntos
Fontes de Energia Bioelétrica , Cromo , Eletricidade , Eletrodos
10.
Bioresour Technol ; 311: 123469, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32408194

RESUMO

This first-attempted study demonstrated endogenous redox-mediators harvest/application from waste activated sludge (WAS) through freezing/thawing (F/T) pretreatment-enhanced anaerobic acidogenesis coupled with microbial fuel cells (MFCs). A total of 2.57 kWh electricity was produced from per kg soluble chemical oxygen demand (SCOD) via MFCs just in 2 d with about 90% organics removal, which contained 1.152 kWh/kg COD from F/T liquid together with 1.418 kWh/kg COD from fermentation liquid. The fermentation liquor-MFCs fostered higher anodic biodiversity and more power output as compared with the F/T liquid-MFCs. Essentially, the completely endogenous redox mediators-like substances with relatively high redox activities could be retained after MFC electrogenesis from F/T liquid and played electron shuttle-roles sufficiently in enlarging bio-energy production of MFCs, which seemed to be an effective option for harvesting endogenous redox mediators from sludge. This study might inspire progressive thinking toward aims of high-efficiency of resource recycle/bioenergy production from WAS.


Assuntos
Fontes de Energia Bioelétrica , Anaerobiose , Eletricidade , Congelamento , Oxirredução , Esgotos
11.
Bioresour Technol ; 288: 121462, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31128542

RESUMO

The use of constructed wetlands in combination with microbial fuel cells (CW-MFC) to treat saline wastewater may enhance electricity production by increasing the ionic strength, reducing internal resistance and stimulating microbes to accelerate electron transfer. In this study, salinity did not significantly inhibit the removal of TP and COD, but TN and NH4+-N removal efficiencies during saline wastewater treatment (ST) were significantly lower than during non-saline wastewater treatment (NT). However, salinity significantly increased the power density (16.4 mW m-2 in ST and 3.9 mW m-2 in NT, a 4-fold enhancement) by increasing the electron transfer rate and reducing internal resistance (140.29â€¯Ω in ST and 415.21â€¯Ω in NT). The peptides in extracellular polymeric substances (EPS) acted as electron shuttles to promote the migration of electrons and protons in ST. From start-up to stable operation, though the microorganisms in ST were reduced in diversity relative to NT, the proportion of electrochemically active bacteria (EAB), such as Ochrobactrum, significantly increased (p < 0.05) and gradually predominated in the microbial community.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Eletrodos , Águas Residuárias , Áreas Alagadas
12.
Bioresour Technol ; 273: 122-129, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30423495

RESUMO

Cu(II) ion was employed as an electron-shuttle mediator to enhance bioelectricity output and accelerate reduction rate of Cr(VI) in a dual-chamber microbial fuel cell (MFC). In the presence of Cu(II), power density and the Cr(VI) reduction rate were 1235.53 mW m-2 and 1.191 g m-3 h-1, respectively, which were 1.44 times and 1.17 times than that of MFC in the absence of Cu(II). A series of electrochemical analysis confirmed the presence of Cu(II) can diminish overpotential and diffusional resistance of MFC, further accelerating electrochemical reduction process of Cr(VI) via an indirect mechanism. After reduction, Cr(VI) and Cu(II) in this work were mainly deposited on cathode electrodes in the form of Cr(OH)3 and little Cu, thus wastewater containing Cr(VI) was successfully treated by bio-electrochemical technology. The aim of this work was to study the efficacy of Cu(II) as an electron-shuttle mediator for improved bioelectricity generation and Cr(VI) reduction in MFCs.


Assuntos
Fontes de Energia Bioelétrica , Cromo/isolamento & purificação , Cobre/química , Eletrodos , Elétrons , Águas Residuárias
13.
Bioresour Technol ; 289: 121661, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31234073

RESUMO

In this study, bacterial cellulose doped with phosphorus and copper via freeze-drying and high-temperature pyrolysis was used to prepare MFC cathode catalysts. After a series of characterization, the synthesized catalyst showed a three-dimensional network with a specific surface area of 580.09 m2/g. Due to the doping of Cu and P, more active sites were induced in the pores of bacterial cellulose and subsequently improved catalytic activity. The prepared catalyst was coated on the air cathode surface of the MFC to obtain the maximum output power and current density of 1177.31 mW/m2 and 6.73 A/m2, respectively, which were higher than those of Pt (1044.93 mW/m2 and 6.02 A/m2). This work aimed to improve bioelectrical generation in MFC and find alternative commercial Pt catalysts.


Assuntos
Fontes de Energia Bioelétrica , Catálise , Celulose , Cobre , Eletrodos
14.
Huan Jing Ke Xue ; 39(7): 3240-3246, 2018 Jul 08.
Artigo em Zh | MEDLINE | ID: mdl-29962148

RESUMO

In this study, a novel combined system for simultaneous recovery of bioelectricity and water from wastewater was developed by integrating anaerobic acidification and a forward osmosis (FO) membrane with a microbial fuel cell (AAFO-MFC). Conductivity was thought to be an important factor affecting the performance of the AAFO-MFC system. Thus, effects of conductivity on the performance of AAFO-MFC system in treating synthetic wastewater were investigated. The results indicated that a higher conductivity increased the bioelectricity production, owing to a reduction in the internal resistance. However, it resulted in a rapid decrease of FO water flux and a shorter operating time because of a severer membrane fouling. The conductivity had no impact on the water quality of the effluents. The total organic carbon (TOC) and total phosphorus (TP) concentrations in the FO permeate were less than 4 and 0.5 mg·L-1, respectively, at all conductivity levels. However, the rejection of the FO membrane for NH4+-N was lower at all conductivity levels. The optimal comprehensive performance of this system was obtained when the conductivity was maintained at 7-8 mS·cm-1. In this case, the AAFO-MFC system achieved continuous and relatively stable power generation, and the water flux of FO membrane was relatively stable during a long-term operation of approximately 29 days.


Assuntos
Fontes de Energia Bioelétrica , Osmose , Membranas Artificiais , Águas Residuárias , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA