Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cytogenet Genome Res ; 163(3-4): 163-177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37071978

RESUMO

In the case of a radiological or nuclear event, biological dosimetry can be an important tool to support clinical decision-making. During a nuclear event, individuals might be exposed to a mixed field of neutrons and photons. The composition of the field and the neutron energy spectrum influence the degree of damage to the chromosomes. During the transatlantic BALANCE project, an exposure similar to a Hiroshima-like device at a distance of 1.5 km from the epicenter was simulated, and biological dosimetry based on dicentric chromosomes was performed to evaluate the participants ability to discover unknown doses and to test the influence of differences in neutron spectra. In a first step, calibration curves were established by irradiating blood samples with 5 doses in the range of 0-4 Gy at two different facilities in Germany (Physikalisch-Technische Bundesanstalt [PTB]) and the USA (the Columbia IND Neutron Facility [CINF]). The samples were sent to eight participating laboratories from the RENEB network and dicentric chromosomes were scored by each participant. Next, blood samples were irradiated with 4 blind doses in each of the two facilities and sent to the participants to provide dose estimates based on the established calibration curves. Manual and semiautomatic scoring of dicentric chromosomes were evaluated for their applicability to neutron exposures. Moreover, the biological effectiveness of the neutrons from the two irradiation facilities was compared. The calibration curves from samples irradiated at CINF showed a 1.4 times higher biological effectiveness compared to samples irradiated at PTB. For manual scoring of dicentric chromosomes, the doses of the test samples were mostly successfully resolved based on the calibration curves established during the project. For semiautomatic scoring, the dose estimation for the test samples was less successful. Doses >2 Gy in the calibration curves revealed nonlinear associations between dose and dispersion index of the dicentric counts, especially for manual scoring. The differences in the biological effectiveness between the irradiation facilities suggested that the neutron energy spectrum can have a strong impact on the dicentric counts.


Assuntos
Nêutrons , Humanos , Alemanha
2.
FASEB J ; 36(11): e22621, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36260291

RESUMO

In order to achieve the goal of rapid response, effective controland protection of life inlarge-scale radiation events, the IAEA Manual 2011 has been revised based on the data of radio-sensitivity, dose-rate findings. Analyze individual differences in radiation sensitivity using 60 Co radiation (0.27 Gy/min). Chromosomal aberrations with different irradiation dose rates were used to establish the biological dose curve and analyze the excess of the "dicentric + ring" caused by the dose rate at each dose point; DAPI-images and Metafer 4 were used to capture metaphase images and make further analysis. The data were collected in 2020, Dicentric + ring/100 Cells was 17.5-43.8, the average value was28.32 ± 6.98. The mean value of Dicentric + ring/100 Cells was 31.37 in males while 25.27 in females, there are significant differences (p < .01). The irradiation dose is dominant, At each dose point, the value of"(dicentric chromosome + centric rings)/cell" is proportional to "dose rate", that is, Y = kx + b, within the dose range of 1-5 Gy, "(dicentric chromosome + centric rings)/Cell" holds a quadratic linear relationship with dose rate, that is, y = ax2 + bx + c; The DAPI-images might give you more hints than those of conventional Giemsa-stain. The authors recommend that the IAEA Manual 2011 could be revised based on data of radio-sensitivity and dose-rate, which may contribute to the establishment of a unified dose-response calibration curve and stimulation of potential for automation in cytogenetic biodosimetry. (1) Individual differences of radiosensitivity are very large. (2) At each dose point, "(dicentric chromosome + centric rings)/cell" is proportional to "dose rate", that is, Y = kx + b. (3) "(dicentric chromosome + centric rings)/Cell" is a quadratic linear relationship with dose rate, that is, y = ax2 + bx + c. (4) We created a "Unity Standard Curve of Biological Dose Estimation". Creating a Unity Standard Curve of Biological Dose, under these circumstances, we can form a joint and rapid response to a nuclear and radiological accident.


Assuntos
Radioisótopos de Cobalto , Radiometria , Masculino , Feminino , Humanos , Radiometria/métodos , Tolerância a Radiação/genética , Análise Citogenética
3.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055062

RESUMO

Theoretical evaluations indicate the radiation weighting factor for thermal neutrons differs from the current International Commission on Radiological Protection (ICRP) recommended value of 2.5, which has radiation protection implications for high-energy radiotherapy, inside spacecraft, on the lunar or Martian surface, and in nuclear reactor workplaces. We examined the relative biological effectiveness (RBE) of DNA damage generated by thermal neutrons compared to gamma radiation. Whole blood was irradiated by 64 meV thermal neutrons from the National Research Universal reactor. DNA damage and erroneous DNA double-strand break repair was evaluated by dicentric chromosome assay (DCA) and cytokinesis-block micronucleus (CBMN) assay with low doses ranging 6-85 mGy. Linear dose responses were observed. Significant DNA aberration clustering was found indicative of high ionizing density radiation. When the dose contribution of both the 14N(n,p)14C and 1H(n,γ)2H capture reactions were considered, the DCA and the CBMN assays generated similar maximum RBE values of 11.3 ± 1.6 and 9.0 ± 1.1, respectively. Consequently, thermal neutron RBE is approximately four times higher than the current ICRP radiation weighting factor value of 2.5. This lends support to bimodal peaks in the quality factor for RBE neutron energy response, underlining the importance of radiological protection against thermal neutron exposures.


Assuntos
Modelos Teóricos , Nêutrons , Eficiência Biológica Relativa , Aberrações Cromossômicas/efeitos da radiação , Dano ao DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Testes para Micronúcleos/métodos
4.
J Radiol Prot ; 42(2)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35196651

RESUMO

Large-scale radiological accidents or nuclear terrorist incidents involving radiological or nuclear materials can potentially expose thousands, or hundreds of thousands, of people to unknown radiation doses, requiring prompt dose reconstruction for appropriate triage. Two types of dosimetry methods namely, biodosimetry and physical dosimetry are currently utilized for estimating absorbed radiation dose in humans. Both methods have been tested separately in several inter-laboratory comparison exercises, but a direct comparison of physical dosimetry with biological dosimetry has not been performed to evaluate their dose prediction accuracies. The current work describes the results of the direct comparison of absorbed doses estimated by physical (smartphone components) and biodosimetry (dicentric chromosome assay (DCA) performed in human peripheral blood lymphocytes) methods. For comparison, human peripheral blood samples (biodosimetry) and different components of smartphones, namely surface mount resistors (SMRs), inductors and protective glasses (physical dosimetry) were exposed to different doses of photons (0-4.4 Gy; values refer to dose to blood after correction) and the absorbed radiation doses were reconstructed by biodosimetry (DCA) and physical dosimetry (optically stimulated luminescence (OSL)) methods. Additionally, LiF:Mg,Ti (TLD-100) chips and Al2O3:C (Luxel) films were used as reference TL and OSL dosimeters, respectively. The best coincidence between biodosimetry and physical dosimetry was observed for samples of blood and SMRs exposed toγ-rays. Significant differences were observed in the reconstructed doses by the two dosimetry methods for samples exposed to x-ray photons with energy below 100 keV. The discrepancy is probably due to the energy dependence of mass energy-absorption coefficients of the samples extracted from the phones. Our results of comparative validation of the radiation doses reconstructed by luminescence dosimetry from smartphone components with biodosimetry using DCA from human blood suggest the potential use of smartphone components as an effective emergency triage tool for high photon energies.


Assuntos
Radiometria , Triagem , Humanos , Fótons , Dosímetros de Radiação , Radiometria/métodos , Triagem/métodos , Raios X
5.
Radiat Environ Biophys ; 59(3): 357-387, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32372284

RESUMO

This work presents an overview of the applications of retrospective dosimetry techniques in case of incorporation of radionuclides. The fact that internal exposures are characterized by a spatially inhomogeneous irradiation of the body, which is potentially prolonged over large periods and variable over time, is particularly problematic for biological and electron paramagnetic resonance (EPR) dosimetry methods when compared with external exposures. The paper gives initially specific information about internal dosimetry methods, the most common cytogenetic techniques used in biological dosimetry and EPR dosimetry applied to tooth enamel. Based on real-case scenarios, dose estimates obtained from bioassay data as well as with biological and/or EPR dosimetry are compared and critically discussed. In most of the scenarios presented, concomitant external exposures were responsible for the greater portion of the received dose. As no assay is available which can discriminate between radiation of different types and different LETs on the basis of the type of damage induced, it is not possible to infer from these studies specific conclusions valid for incorporated radionuclides alone. The biological dosimetry assays and EPR techniques proved to be most applicable in cases when the radionuclides are almost homogeneously distributed in the body. No compelling evidence was obtained in other cases of extremely inhomogeneous distribution. Retrospective dosimetry needs to be optimized and further developed in order to be able to deal with real exposure cases, where a mixture of both external and internal exposures will be encountered most of the times.


Assuntos
Radiação Ionizante , Radiometria/métodos , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Radioisótopos/farmacocinética
6.
Radiat Environ Biophys ; 59(1): 131-144, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31734721

RESUMO

Biological dosimetry based on sulfhemoglobin (SHb), methemoglobin (MetHb), and carboxyhemoglobin (HbCO) levels was evaluated. SHb, MetHb and HbCO levels were estimated in erythrocytes of mice irradiated by γ rays from a 60Co source using the method of multi-component spectrophotometric analysis developed recently. In this method, absorption measurements of diluted aqueous Hb-solution were made at λ = 500, 569, 577 and 620 nm, and using the mathematical formulas based on multi-component spectrophotometric analysis and the mathematical Gaussian elimination method for matrix calculation, the concentrations of various Hb-derivatives and total Hb in mice blood were estimated. The dose range of γ rays was from 0.5 to 8 Gy and the dose rate was 0.5 Gy min-1. Among all Hb-derivatives, MetHb, SHb and HbCO demonstrated an unambiguous dose-dependent response. For SHb and MetHb, the detection limits were about 0.5 Gy and 1 Gy, respectively. After irradiation, high levels of MetHb, SHb and HbCO persisted for at least 10 days, and the maximal increase of MetHb, SHb and HbCO occurred up to 24 h following γ irradiation. The use of this "MetHb + SHb + HbCO"-derivatives-based absorbed dose relationship showed a high accuracy. It is concluded that simultaneous determination of MetHb, SHb and HbCO, by multi-component spectrophotometry provides a quick, simple, sensitive, accurate, stable and inexpensive biological indicator for the early assessment of the absorbed dose in mice.


Assuntos
Carboxihemoglobina/análise , Raios gama , Dosimetria in Vivo/métodos , Metemoglobina/análise , Sulfa-Hemoglobina/análise , Animais , Biomarcadores/análise , Eritrócitos/metabolismo , Masculino , Camundongos , Irradiação Corporal Total
7.
Int J Mol Sci ; 21(4)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102335

RESUMO

During almost 40 years of use, the micronucleus assay (MN) has become one of the most popular methods to assess genotoxicity of different chemical and physical factors, including ionizing radiation-induced DNA damage. In this minireview, we focus on the position of MN among the other genotoxicity tests, its usefulness in different applications and visibility by international organizations, such as International Atomic Energy Agency, Organization for Economic Co-operation and Development and International Organization for Standardization. In addition, the mechanism of micronuclei formation is discussed. Finally, foreseen directions of the MN development are pointed, such as automation, buccal cells MN and chromothripsis phenomenon.


Assuntos
Linfócitos/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Testes para Micronúcleos/métodos , Testes de Mutagenicidade/métodos , Mutagênicos/farmacologia , Dano ao DNA , Previsões , Humanos , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Testes para Micronúcleos/tendências , Radiação Ionizante
8.
J Radiol Prot ; 40(4)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33142276

RESUMO

In May 2016, a new linear accelerator (Linac) was installed at a hospital oncology department. A team of individuals supervised the installation, including a Radiation Oncologist who acted as an independent observer to the installation, calibration, beam data collection and shielding measurements. In order to ensure the shielding was correct, a licensed representative of the Turkish Atomic Energy Authority carried out formal measurements of the gamma and neutron dose rates at a variety of locations in and around the Linac facility. At 18 MV, the maximum neutron dose rate was 172µSv h-1and the maximum gamma dose rate was approximately 2µSv h-1(ambient dose equivalent in both cases), significantly higher than the expected and local background doses. As the neutron dose rates in particular were so high, it was concluded that the shielding was not sufficient, potentially due to an inadequate design. In order to rule out overexposure during the installation, biological dosimetry was carried out for a number of the individuals involved. The estimated doses were closely aligned with the doses measured using commercially available neutron dosemeters and were also within the tolerance dose ranges estimated using Monte Carlo simulations, which also supported the investigation. The results underline the need for careful planning before and after installation of new radiation exposure facilities, especially high MV Linac operation for which photo-neutrons might need to be mitigated. The results clearly indicate the importance of such checks, in addition to demonstrating the relevance of biological dosimetry supported by modelling strategies complex or unclear exposure scenarios.


Assuntos
Proteção Radiológica , Humanos , Método de Monte Carlo , Nêutrons , Aceleradores de Partículas , Doses de Radiação , Radiometria
9.
Radiat Environ Biophys ; 58(1): 49-57, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30465080

RESUMO

This article describes the application of a simplified Bayesian method for estimation of doses from a mixed field using cytogenetic biological dosimetry, taking as an example neutron and gamma radiation emitted from the MARIA nuclear research reactor in Poland. The Bayesian approach is a good alternative to the commonly used iterative method, which allows separate dose estimation. In the present paper, a computer program, which uses the iterative and simplified Bayesian methods to calculate mixed radiation doses, is introduced.


Assuntos
Biometria/métodos , Análise Citogenética , Raios gama , Teorema de Bayes , Humanos , Radiometria
10.
Radiat Environ Biophys ; 57(3): 195-203, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29869092

RESUMO

The present paper proposes two methods of calculating components of the dose absorbed by the human body after exposure to a mixed neutron and gamma radiation field. The article presents a novel approach to replace the common iterative method in its analytical form, thus reducing the calculation time. It also shows a possibility of estimating the neutron and gamma doses when their ratio in a mixed beam is not precisely known.


Assuntos
Radiobiologia , Radiometria , Teorema de Bayes , Raios gama , Nêutrons , Doses de Radiação
11.
Radiat Environ Biophys ; 56(3): 213-226, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28526978

RESUMO

This study set out to investigate chromosomal damage in peripheral blood lymphocytes of thyroid cancer patients receiving 131I for thyroid remnant ablation or treatment of metastatic disease. The observed chromosomal damage was further converted to the estimates of whole-body dose to project the adverse side effects. Chromosomal aberration analysis was performed in 24 patients treated for the first time or after multiple courses. Blood samples were collected before treatment and 3 or 4 days after administration of 2-4 GBq of 131I. Both conventional cytogenetic and chromosome 2, 4 and 12 painting assays were used. To account for dose-rate effect, a dose-protraction factor was applied to calculate the whole-body dose. The mean dose was 0.62 Gy (95% CI: 0.44-0.77 Gy) in the subgroup of patients treated one time and 0.67 Gy (95% CI: 0.03-1.00 Gy) in re-treated patients. These dose estimates are about 1.7-fold higher than those disregarding the effect of exposure duration. In re-treated patients, the neglected dose-rate effect can result in underestimation of the cumulative whole-body dose by the factor ranging from 2.6 to 6.8. Elevated frequency of chromosomal aberrations observed in re-treated patients before radioiodine therapy allows estimation of a cumulative dose received from all previous treatments.


Assuntos
Aberrações Cromossômicas/efeitos da radiação , Radioisótopos do Iodo/uso terapêutico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/radioterapia , Adolescente , Adulto , Idoso , Criança , Relação Dose-Resposta à Radiação , Feminino , Humanos , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Radiometria , Neoplasias da Glândula Tireoide/sangue
12.
Rep Pract Oncol Radiother ; 22(6): 470-476, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28951698

RESUMO

AIM: The purpose of the present study is to investigate the dependence of micronuclei response on the depth of absorbed dose. BACKGROUND: One of the most common cytogenetic methods used for radiation dosimetry is micronuclei (MN). Being less complex and faster than other methods are two remarkable advantages of the MN method which make it suitable for monitoring of population. In biological dosimetry based on the micronuclei method, the investigation into the dependence of response on the depth in which dose is absorbed is significant, though has received less attention so far. MATERIALS AND METHODS: Blood samples were poured in separate vials to be irradiated at different depths using a linear accelerator system. RESULTS: According to the results, MN, as a function of the absorbed dose, had the best fitness with the linear-quadratic model at all depths. Furthermore, the results showed the dependence of MN response on the depth of absorbed dose. For doses up to 2 Gy, the maximum difference from the reference depth of 1.5 cm was related to the depth of 10 cm; however, by increasing the absorbed dose, the response associated with the depth of 20 cm showed the maximum deviation from the reference depth. CONCLUSIONS: Consequently, it is necessary to apply a correction factor to the biological dosimetry. The correction factor is dependent on the depth and the absorbed dose.

13.
Radiat Environ Biophys ; 55(2): 203-13, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27015828

RESUMO

The purpose of this study was to compare cytogenetic data in a patient before and after treatment with radioiodine to evaluate the assays in the context of biological dosimetry. We studied a 34-year-old male patient who underwent a total thyroidectomy followed by ablation therapy with (131)I (19.28 GBq) for a papillary thyroid carcinoma. The patient provided blood samples before treatment and then serial samples at monthly intervals during the first year period and quarterly intervals for 5 years and finally 20 years after treatment. A micronucleus assay, dicentric assay, FISH method and G-banding were used to detect and measure DNA damage in circulating peripheral blood lymphocytes of the patient. The results showed that radiation-induced cytogenetic effects persisted for many years after treatment as shown by elevated micronuclei and chromosome aberrations as a result of exposure to (131)I. At 5 years after treatment, the micronucleus count was tenfold higher than the pre-exposure frequency. Shortly after the treatment, micronucleus counts produced a dose estimate of 0.47 ± 0.09 Gy. The dose to the patient evaluated retrospectively using FISH-measured translocations was 0.70 ± 0.16 Gy. Overall, our results show that the micronucleus assay is a retrospective biomarker of low-dose radiation exposure. However, this method is not able to determine local dose to the target tissue which in this case was any residual thyroid cells plus metastases of thyroidal origin.


Assuntos
Análise Citogenética , Radioisótopos do Iodo/efeitos adversos , Lesões por Radiação/genética , Adulto , Carcinoma/genética , Carcinoma/radioterapia , Carcinoma/cirurgia , Carcinoma Papilar , Aberrações Cromossômicas/efeitos da radiação , Seguimentos , Humanos , Hibridização in Situ Fluorescente , Radioisótopos do Iodo/uso terapêutico , Cariótipo , Masculino , Testes para Micronúcleos , Medição de Risco , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/radioterapia , Neoplasias da Glândula Tireoide/cirurgia , Tireoidectomia
14.
Radiat Environ Biophys ; 55(1): 41-51, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26507139

RESUMO

An in vitro study of the dose responses of human peripheral blood lymphocytes was conducted with the aim of creating calibrated dose-response curves for biodosimetry measuring up to 4 Gy (0.25-4 Gy) of gamma radiation. The cytokinesis-blocked micronucleus (CBMN) assay was employed to obtain the frequencies of micronuclei (MN) per binucleated cell in blood samples from 16 healthy donors (eight males and eight females) in two age ranges of 20-34 and 35-50 years. The data were used to construct the calibration curves for men and women in two age groups, separately. An increase in micronuclei yield with the dose in a linear-quadratic way was observed in all groups. To verify the applicability of the constructed calibration curve, MN yields were measured in peripheral blood lymphocytes of two real overexposed subjects and three irradiated samples with unknown dose, and the results were compared with dose values obtained from measuring dicentric chromosomes. The comparison of the results obtained by the two techniques indicated a good agreement between dose estimates. The average baseline frequency of MN for the 130 healthy non-exposed donors (77 men and 55 women, 20-60 years old divided into four age groups) ranged from 6 to 21 micronuclei per 1000 binucleated cells. Baseline MN frequencies were higher for women and for the older age group. The results presented in this study point out that the CBMN assay is a reliable, easier and valuable alternative method for biological dosimetry.


Assuntos
Citocinese/efeitos da radiação , Testes para Micronúcleos/normas , Adulto , Calibragem , Relação Dose-Resposta à Radiação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Radiometria , Valores de Referência , Adulto Jovem
15.
Radiat Environ Biophys ; 55(3): 317-28, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27013085

RESUMO

A study directed to the cytogenetic and dosimetric aspects of radionuclides of medical interest is very valuable, both for an accurate evaluation of the dose received by the patients, and consequently of the genetic damage, and for the optimization of therapeutic strategies. Cytogenetic and dosimetric effects of (131)I in lymphocytes of thyroidectomized differentiated thyroid cancer (DTC) patients were evaluated through chromosome aberration (CA) technique: Euthyroid patients submitted to recombinant human thyroid-stimulating hormone (rhTSH) therapy (group A) were compared with hypothyroid patients left without levothyroxine treatment (group B). CA analysis was carried out prior to and 24 h, 1 week, 1 month and 1 year after radioiodine administration (4995-7030 MBq) in both groups. An activity-response curve of (131)I (0.074-0.740 MBq/mL) was elaborated, comparing dicentric chromosomes in vivo and in vitro in order to estimate the absorbed dose through Monte Carlo simulations. In general, radioiodine therapy induced a higher total CA rate in hypothyroid patients as compared to euthyroid patients. The frequencies of dicentrics obtained in DTC patients 24 h after treatment were equivalent to those induced in vitro (0.2903 ± 0.1005 MBq/mL in group A and 0.2391 ± 0.1019 MBq/mL in group B), corresponding to absorbed doses of 0.65 ± 0.23 Gy and 0.53 ± 0.23 Gy, respectively. The effect on lymphocytes of internal radiation induced by (131)I therapy is minimal when based on the frequencies of CA 1 year after the treatment, maintaining a higher quality of life for DTC patients receiving rhTSH-aided therapy.


Assuntos
Aberrações Cromossômicas , Radioisótopos do Iodo , Neoplasias da Glândula Tireoide/tratamento farmacológico , Adulto , Relação Dose-Resposta à Radiação , Humanos , Radioisótopos do Iodo/administração & dosagem , Radioisótopos do Iodo/uso terapêutico , Radioisótopos do Iodo/toxicidade , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Pessoa de Meia-Idade , Doses de Radiação , Tirotropina Alfa/farmacologia , Tiroxina/uso terapêutico
16.
Biom J ; 58(2): 259-79, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26461836

RESUMO

Within the field of cytogenetic biodosimetry, Poisson regression is the classical approach for modeling the number of chromosome aberrations as a function of radiation dose. However, it is common to find data that exhibit overdispersion. In practice, the assumption of equidispersion may be violated due to unobserved heterogeneity in the cell population, which will render the variance of observed aberration counts larger than their mean, and/or the frequency of zero counts greater than expected for the Poisson distribution. This phenomenon is observable for both full- and partial-body exposure, but more pronounced for the latter. In this work, different methodologies for analyzing cytogenetic chromosomal aberrations datasets are compared, with special focus on zero-inflated Poisson and zero-inflated negative binomial models. A score test for testing for zero inflation in Poisson regression models under the identity link is also developed.


Assuntos
Aberrações Cromossômicas , Modelos Estatísticos , Biometria , Aberrações Cromossômicas/efeitos da radiação , Análise Citogenética , Humanos , Distribuição de Poisson , Radiometria , Análise de Regressão , Irradiação Corporal Total
17.
Artigo em Inglês | MEDLINE | ID: mdl-24374146

RESUMO

Biological dosimetry plays an important role in case of a radiation accident or incident, either when it is the only way to estimate the dose or when it is used to complement physical dosimetry. A cytogenetic study was conducted in a group of 16 Portuguese individuals by use of the cytokinesis-blocked micronucleus (CBMN) assay. A dose-response curve for micronuclei yield was established with a linear-quadratic model: Y=(0.0122±0.0010)+(0.0241±0.0023)D+(0.0193±0.0007)D(2). Also, baseline values for the micronucleus formation in the 16 donors were analyzed, with results in close agreement with those from other laboratories. A validation experiment was carried out with three individuals. The real and the estimated doses obtained with the dose-response curve were in very good agreement, allowing the use of the micronucleus dose-response calibration curve in biological dosimetry for estimation of radiation dose in case of overexposure. The results obtained for the cytogenetic endpoints, studied in the same group of 16 individuals, were also analyzed as a function of age and gender. A higher inter-variability was observed for the higher dose points and differences in response were identified between genders, above 2Gy, for all endpoints.


Assuntos
Citocinese/efeitos da radiação , Raios gama , Linfócitos/efeitos da radiação , Testes para Micronúcleos/métodos , Adulto , Calibragem , Aberrações Cromossômicas/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Humanos , Linfócitos/metabolismo , Masculino , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Pessoa de Meia-Idade , Monitoramento de Radiação/métodos , Fatores Sexuais , Inquéritos e Questionários , Adulto Jovem
18.
Int J Radiat Biol ; 100(8): 1202-1212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953870

RESUMO

PURPOSE: Radiation-induced alterations in gene expression show great promise for dose reconstruction and for severity prediction of acute health effects. Among several genes explored as potential biomarkers, FDXR is widely used due to high upregulation in white blood cells following radiation exposure. Nonetheless, the absence of a standardized protocols for gene expression-based biodosimetry is a notable gap that warrants attention to enhance the accuracy, reproducibility and reliability. The objective of this study was to evaluate the sensitivity of transcriptional biodosimetry to differences in protocols used by different laboratories and establish guidelines for the calculation of calibration curve using FDXR expression data. MATERIAL AND METHODS: Two sets of irradiated blood samples generated during RENEB exercise were used. The first included samples irradiated with known doses including: 0, 0.25, 0.5, 1, 2, 3 and 4 Gy. The second set consisted of three 'blind' samples irradiated with 1.8 Gy, 0.4 Gy and a sham-irradiated sample. After irradiation, samples were incubated at 37 °C over 24 h and sent to participating laboratories, where RNA isolation and FDXR expression analysis by qPCR were performed using sets of primers/probes and reference genes specific for each laboratory. Calibration curves based on FDXR expression data were generated using non-linear and linear regression and used for dose estimation of 'blind' samples. RESULTS: Dose estimates for sham-irradiated sample (0.020-0.024 Gy) and sample irradiated with 0.4 Gy (0.369-0.381 Gy) showed remarkable consistency across all laboratories, closely approximating the true doses regardless variation in primers/probes and reference genes used. For sample irradiated with 1.8 Gy the dose estimates were less precise (1.198-2.011 Gy) but remained within an acceptable margin for triage within the context of high dose range. CONCLUSION: Methodological differences in reference genes and primers/probes used for FDXR expression measurement do not have a significant impact on the dose estimates generated, provided that all reference genes performed as expected and the primers/probes target a similar set of transcript variants. The preferred method for constructing a calibration curve based on FDXR expression data involves employing linear regression to establish a function that describes the relationship between the logarithm of absorbed dose and FDXR ΔCt values. However, one should be careful with using non-irradiated sample data as these cannot be accurately represented on a logarithmic scale. A standard curve generated using this approach can give reliable dose estimations in a dose range from 50 mGy to 4 Gy at least.


Assuntos
Doses de Radiação , Radiometria , Calibragem , Humanos , Radiometria/métodos , Relação Dose-Resposta à Radiação , Masculino , Reprodutibilidade dos Testes
19.
Int J Radiat Biol ; 100(8): 1155-1164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38991111

RESUMO

INTRODUCTION: For Hiroshima and Nagasaki survivors, it has not been possible to calculate individual doses from the cytogenetic data and compare them with the physically estimated doses. This is because the cytogenetic studies used solid Giemsa staining which only provides the percent of cells bearing at least one stable-type aberration (most of the unstable-type aberrations had already disappeared), and a gamma-ray dose plus a 10-times neutron dose was used to integrate the data for both cities. OBJECTIVES: To compare the FISH-derived gamma-ray dose with the DS02R1-derived gamma-ray dose after correcting for a contribution of the neutron dose. It was also an attempt to determine if the frequency of stable-type aberrations had remained unchanged after the exposure. METHODS: Stable exchange-type aberration data was obtained using the 2-color FISH method from 1,868 atomic bomb survivors in Hiroshima and Nagasaki. The collected frequency was first extended to a genome-equivalent frequency. Then, by using known induction rates of exchange-type aberrations in vitro caused by neutrons and gamma-rays, respectively, and the mean relationship between the neutron and gamma-ray doses in the DS02R1 estimates for the survivors, the gamma-ray effect was estimated from the total yield of translocations. RESULTS: It was found that over 95% of individual cytogenetic gamma-ray doses fell within the expected range of plus/minus about 1 Gy from the DS02R1 dose and the mean slope for the linear regression was 0.98, which reassures us of the validity of the DS02R1 study. CONCLUSIONS: The present results demonstrate the validity of the individual DS02R1 doses, and that the frequency of stable-type aberrations in blood lymphocytes did not decay over the years, and thus is useful for retrospective dose evaluations of exposures which took place in the distant past.


Assuntos
Sobreviventes de Bombas Atômicas , Raios gama , Hibridização in Situ Fluorescente , Doses de Radiação , Humanos , Japão , Aberrações Cromossômicas/efeitos da radiação , Masculino , Adulto , Feminino , Relação Dose-Resposta à Radiação , Pessoa de Meia-Idade , Nêutrons , Análise Citogenética , Guerra Nuclear , Sobreviventes
20.
Int J Radiat Biol ; 100(6): 875-889, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38647504

RESUMO

PURPOSE: To examine the distortion of the linear quadratic (LQ) model of in vitro cytogenetic dose response over an extended range of γ-ray doses by analyzing the available literature data, and to establish the dose ranges, in which the LQ dose response curve (DRC) can be most accurately fitted for biological dosimetry. MATERIALS AND METHODS: Data on yields of dicentrics (Dic) or dicentrics plus centric rings (Dic + CR) induced in vitro in human lymphocytes by acute γ-rays were extracted from 108 open sources. The overall dose response dataset in the dose range up to 50 Gy was fitted to a fractional-rational (FR) model, which included a 'basic' LQ function in the numerator, and a reduction factor dependent on the square of the dose in the denominator. Cytogenetic dose response data obtained at Grigoriev Institute for Medical Radiology, Kharkiv, Ukraine (GIMRO) in the range 0.1 - 20.3 Gy acute γ-rays were fitted to the LQ model with the progressive changing minimum or maximum radiation dose. RESULTS: The overall dose response, as expected, followed the LQ function in the dose range ≤5 Gy, but in the extended dose range appeared to be S-shaped, with intensive saturation and a plateau at doses ≥22 Gy. Coefficients of the 'basic' LQ equation in FR model were very close to many published DRCs; calculated asymptote was 17. Fitting of the GIMRO dataset to the LQ model with the shift of the dose range showed the increase in linear coefficient with the increment of either minimum or maximum radiation dose, while the decline of the quadratic coefficient was regulated mostly by the increase of the highest dose. The best goodness of fit, assessed by lower χ2 values, occurred for dose ranges 0.1 - 1.0 Gy; 0.5 - 5.9 Gy; 1.0 - 7.8 Gy; 2.0 - 9.6 Gy, 3.9 - 16.4 Gy and 5.9 - 20.3 Gy. The 'see-saw' effect in changes of LQ coefficients was confirmed by re-fitting datasets published by other laboratories. CONCLUSIONS: The classical LQ model with fixed coefficients appears to have limited applicability for cytogenetic dosimetry at radiation doses >5 Gy due to the saturation of the dose response. Different response of the LQ coefficients to the changes of the dose range must be considered during the DRC construction. Proper selection of minimum and maximum dose in calibration experiments makes it possible to improve the goodness of fit of the LQ DRC.


Assuntos
Aberrações Cromossômicas , Relação Dose-Resposta à Radiação , Raios gama , Humanos , Aberrações Cromossômicas/efeitos da radiação , Análise Citogenética , Linfócitos/efeitos da radiação , Doses de Radiação , Radiometria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA