Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.324
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(33): e2306322120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549256

RESUMO

Plants produce various pigments that not only appear as attractive colors but also provide valuable resources in applications in daily life and scientific research. Biosynthesis pathways for these natural plant pigments are well studied, and most have multiple enzymes that vary among plant species. However, adapting these pathways to animals remains a challenge. Here, we describe successful biosynthesis of betalains, water-soluble pigments found only in a single plant order, Caryophyllales, in transgenic silkworms by coexpressing three betalain synthesis genes, cytochrome P450 enzyme CYP76AD1, DOPA 4,5-dioxygenase, and betanidin 5-O-glucosyltransferase. Betalains can be synthesized in various tissues under the control of the ubiquitous IE1 promoter but accumulate mainly in the hemolymph with yields as high as 274 µg/ml. Additionally, transformed larvae and pupae show a strong red color easily distinguishable from wild-type animals. In experiments in which expression is controlled by the promoter of silk gland-specific gene, fibroin heavy-chain, betalains are found predominantly in the silk glands and can be secreted into cocoons through spinning. Betalains in transformed cocoons are easily recovered from cocoon shells in water with average yields reaching 14.4 µg/mg. These data provide evidence that insects can synthesize natural plant pigments through a complex, multiple enzyme-mediated synthesis pathway. Such pigments also can serve as dominant visible markers in insect transgenesis applications. This study provides an approach to producing valuable plant-derived compounds by using genetically engineered silkworms as a bioreactor.


Assuntos
Bombyx , Engenharia Genética , Animais Geneticamente Modificados , Animais , Pigmentos Biológicos/biossíntese , Betalaínas/biossíntese , Betalaínas/química , Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Cor
2.
Cell Mol Life Sci ; 81(1): 127, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472536

RESUMO

Reproduction, a fundamental feature of all known life, closely correlates with energy homeostasis. The control of synthesizing and mobilizing lipids are dynamic and well-organized processes to distribute lipid resources across tissues or generations. However, how lipid homeostasis is precisely coordinated during insect reproductive development is poorly understood. Here we describe the relations between energy metabolism and reproduction in the silkworm, Bombyx mori, a lepidopteran model insect, by using CRISPR/Cas9-mediated mutation analysis and comprehensively functional investigation on two major lipid lipases of Brummer (BmBmm) and hormone-sensitive lipase (BmHsl), and the sterol regulatory element binding protein (BmSrebp). BmBmm is a crucial regulator of lipolysis to maintain female fecundity by regulating the triglyceride (TG) storage among the midgut, the fat body, and the ovary. Lipidomics analysis reveals that defective lipolysis of females influences the composition of TG and other membrane lipids in the BmBmm mutant embryos. In contrast, BmHsl mediates embryonic development by controlling sterol metabolism rather than TG metabolism. Transcriptome analysis unveils that BmBmm deficiency significantly improves the expression of lipid synthesis-related genes including BmSrebp in the fat body. Subsequently, we identify BmSrebp as a key regulator of lipid accumulation in oocytes, which promotes oogenesis and cooperates with BmBmm to support the metabolic requirements of oocyte production. In summary, lipid homeostasis plays a vital role in supporting female reproductive success in silkworms.


Assuntos
Bombyx , Animais , Feminino , Bombyx/genética , Bombyx/metabolismo , Oogênese , Ovário , Desenvolvimento Embrionário , Lipídeos , Proteínas de Insetos/metabolismo
3.
BMC Biol ; 22(1): 118, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769528

RESUMO

BACKGROUND: The animal sperm shows high diversity in morphology, components, and motility. In the lepidopteran model insect, the silkworm Bombyx mori, two types of sperm, including nucleate fertile eupyrene sperm and anucleate unfertile apyrene sperm, are generated. Apyrene sperm assists fertilization by facilitating the migration of eupyrene spermatozoa from the bursa copulatrix to the spermatheca. During spermatogenesis, eupyrene sperm bundles extrude the cytoplasm by peristaltic squeezing, while the nuclei of the apyrene sperm bundles are discarded with the same process, forming matured sperm. RESULTS: In this study, we describe that a mechanoreceptor BmPiezo, the sole Piezo ortholog in B. mori, plays key roles in larval feeding behavior and, more importantly, is essential for eupyrene spermatogenesis and male fertility. CRISPR/Cas9-mediated loss of BmPiezo function decreases larval appetite and subsequent body size and weight. Immunofluorescence analyses reveal that BmPiezo is intensely localized in the inflatable point of eupyrene sperm bundle induced by peristaltic squeezing. BmPiezo is also enriched in the middle region of apyrene sperm bundle before peristaltic squeezing. Cytological analyses of dimorphic sperm reveal developmental arrest of eupyrene sperm bundles in BmPiezo mutants, while the apyrene spermatogenesis is not affected. RNA-seq analysis and q-RT-PCR analyses demonstrate that eupyrene spermatogenic arrest is associated with the dysregulation of the actin cytoskeleton. Moreover, we show that the deformed eupyrene sperm bundles fail to migrate from the testes, resulting in male infertility due to the absence of eupyrene sperm in the bursa copulatrix and spermatheca. CONCLUSIONS: In conclusion, our studies thus uncover a new role for Piezo in regulating spermatogenesis and male fertility in insects.


Assuntos
Bombyx , Mecanorreceptores , Espermatogênese , Animais , Espermatogênese/fisiologia , Bombyx/fisiologia , Bombyx/genética , Masculino , Mecanorreceptores/fisiologia , Mecanorreceptores/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Espermatozoides/fisiologia , Espermatozoides/metabolismo
4.
Proc Biol Sci ; 291(2015): 20232578, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38228178

RESUMO

In the silkmoth Bombyx mori, the role of male sensilla trichodea in pheromone detection is well established. Here we study the corresponding female sensilla, which contain two olfactory sensory neurons (OSNs) and come in two lengths, each representing a single physiological type. Only OSNs in medium trichoids respond to the scent of mulberry, the silkworm's exclusive host plant, and are more sensitive in mated females, suggesting a role in oviposition. In long trichoids, one OSN is tuned to (+)-linalool and the other to benzaldehyde and isovaleric acid, both odours emitted by silkworm faeces. While the significance of (+)-linalool detection remains unclear, isovaleric acid repels mated females and may therefore play a role in avoiding crowded oviposition sites. When we examined the underlying molecular components of neurons in female trichoids, we found non-canonical co-expression of Ir8a, the co-receptor for acid responses, and ORco, the co-receptor of odorant receptors, in long trichoids, and the unexpected expression of a specific odorant receptor in both trichoid sensillum types. In addition to elucidating the function of female trichoids, our results suggest that some accepted organizational principles of the insect olfactory system may not apply to the predominant sensilla on the antenna of female B. mori.


Assuntos
Monoterpenos Acíclicos , Bombyx , Hemiterpenos , Neurônios Receptores Olfatórios , Ácidos Pentanoicos , Receptores Odorantes , Animais , Feminino , Bombyx/metabolismo , Sensilas/fisiologia , Olfato , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo , Feromônios/metabolismo
5.
Microb Pathog ; 191: 106649, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636568

RESUMO

Bombyx mori nucleopolyhedrovirus (BmNPV) is a very common and infectious virus that affects silkworms and hinders silk production. To investigate the intestinal flora of BmNPV-resistant and BmNPV-sensitive silkworm varieties, 16 S rDNA high-throughput sequencing was performed. The results of the cluster analysis showed that the intestinal flora of the resistant silkworm variety was more abundant than that of the sensitive silkworm variety. This was found even when infection with BmNPV caused a sharp decline in the number of intestinal floral species in both resistant and sensitive silkworm varieties. The abundances of the intestinal flora, including Aureimonas, Ileibacterium, Peptostreptococcus, Pseudomonas, Enterococcus, and Halomonas, in the resistant variety were considerably greater after infection with BmNPV than those in the sensitive variety. After infection with BmNPV, four kinds of important intestinal bacteria, namely, f_Saccharimonadaceae, Peptostreptococcus, Aureirmonas, and f_Rhizobiaceae, were found in the resistant silkworm variety. In the sensitive silkworm variety, only Faecalibaculum was an important intestinal bacterium. The differential or important bacteria mentioned above might be involved in immunoreaction or antiviral activities, especially in the intestines of BmNPV-resistant silkworms. By conducting a functional enrichment analysis, we found that BmNPV infection did not change the abundance of important functional components of the intestinal flora in resistant or sensitive silkworm varieties. However, some functional factors, such as the biosynthesis, transport, and catabolism of secondary metabolites (e.g., terpenoids and polyketides) and lipid transport and metabolism, were more important in the resistant silkworm variety than in the sensitive variety; thus, these factors may increase the resistance of the host to BmNPV. To summarize, we found significant differences in the composition, abundance, and function of the intestinal flora between resistant and sensitive silkworm varieties, especially after infection with BmNPV, which might be closely related to the resistance of resistant silkworm varieties to BmNPV.


Assuntos
Bactérias , Bombyx , Microbioma Gastrointestinal , Nucleopoliedrovírus , RNA Ribossômico 16S , Animais , Bombyx/virologia , Bombyx/microbiologia , Nucleopoliedrovírus/fisiologia , Nucleopoliedrovírus/genética , Microbioma Gastrointestinal/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Sequenciamento de Nucleotídeos em Larga Escala , Resistência à Doença , DNA Ribossômico/genética , DNA Bacteriano/genética
6.
Insect Mol Biol ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728119

RESUMO

The prominent role of the P-element induced wimpy testis (PIWI)-interacting RNA (piRNA) pathway in animals is to silence transposable elements and maintain genome stability, ensuring proper gametogenesis in gonads. GASZ (Germ cell protein with Ankyrin repeats, Sterile alpha motif, and leucine Zipper) is an evolutionarily conserved protein located on the outer mitochondrial membrane of germ cells and plays vital roles in the piRNA pathway and spermatogenesis in mammals. In the model insect Drosophila melanogaster, GASZ is essential for piRNA biogenesis and oogenesis, whereas its biological functions in non-drosophilid insects are still unknown. Here, we describe a comprehensive investigation of GASZ functions in the silkworm, Bombyx mori, a lepidopteran model insect, by using a binary transgenic CRISPR/Cas9 system. The BmGASZ mutation did not affect growth and development, but led to sterility in both males and females. Eupyrene sperm bundles of mutant males exhibited developmental defects, while the apyrene sperm bundles were normal, which were further confirmed through double copulation experiments with sex-lethal mutants, which males possess functional eupyrene sperm and abnormal apyrene sperm. In female mutant moths, ovarioles were severely degenerated and the eggs in ovarioles were deformed compared with that of wild type (WT). Further RNA-seq and RT-qPCR analysis revealed that amounts of piRNAs and transposon expression were dysregulated in gonads of mutants. In summary, this study has demonstrated vital roles of BmGASZ in gametogenesis through regulating the piRNA pathway in B. mori.

7.
Insect Mol Biol ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38545681

RESUMO

The silkworm, Bombyx mori, is a complete metamorphosed economic insect, and the silk gland is a significant organ for silk protein synthesis and secretion. The silk gland completely degenerates during pupation, but the regulatory mechanism of programmed cell death (PCD) has not yet been understood. In the present study, we investigated the non-genetic pathway of 20E-induced PCD in the posterior silk gland (PSG) based on intracellular Ca2+ levels. Silk gland morphology and silk gland index indicated rapid degeneration of silk gland during metamorphosis from mature silkworm (MS) to pupal day 1 (P1), and Ca2+ levels within the PSG were found to peak during the pre-pupal day 1 (PP1) stage. Moreover, the results of autophagy and apoptosis levels within the PSG showed that autophagy was significantly increased in MS-PP1 periods, and significantly decreased in PP2 and P1 periods. Apoptosis was almost absent in MS-PP1 periods and significantly increased in PP2 and P1 periods. Additionally, western blotting results showed that autophagy preceded apoptosis, and the autophagy-promoting ATG5 was cleaved by calpain to the autophagy-inhibiting and apoptosis-promoting NtATG5 since PP1 period, while decreased autophagy was accompanied by increased apoptosis. Collectively, these findings suggest that Ca2+ is a key factor in the shift from autophagy to apoptosis.

8.
Insect Mol Biol ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970387

RESUMO

Insect reproductive capacity can affect effective pest control and infertility studies and has become an important focus in recent molecular genetic research. Nucleosome assembly protein (Nap) is highly conserved across multiple species and is involved in forming the sperm nucleus in many species. We used clustered regularly interspaced palindromic repeats/Cas9 technology to knockout BmNap in Bombyx mori and observed that the mutations caused female infertility, whereas male fertility was not affected. BmNap mutants grew and mated normally; however, female mutants laid smaller eggs that could not be fertilised and did not hatch. In addition, female sterility produced by the mutation could be inherited stably via male mutants; therefore, Nap could be used as a potential target for lepidopteran pest control through population regulation. In the current study, we elucidated a new function of BmNap, increased the understanding of the oogenesis regulation network in Lepidoptera and promoted the development of insect sterility technologies.

9.
Insect Mol Biol ; 33(3): 259-269, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38335442

RESUMO

The RNA interference pathway mediated by microRNAs (miRNAs) is one of the methods to defend against viruses in insects. Recent studies showed that miRNAs participate in viral infection by binding to target genes to regulate their expression. Here, we found that the Bombyx mori miRNA, miR-6498-5p was down-regulated, whereas its predicted target gene pyridoxal phosphate phosphatase PHOSPHO2 (BmPLPP2) was up-regulated upon Bombyx mori nucleopolyhedrovirus (BmNPV) infection. Both in vivo and in vitro experiments showed that miR-6498-5p targets BmPLPP2 and suppresses its expression. Furthermore, we found miR-6498-5p inhibits BmNPV genomic DNA (gDNA) replication, whereas BmPLPP2 promotes BmNPV gDNA replication. As a pyridoxal phosphate (PLP) phosphatase (PLPP), the overexpression of BmPLPP2 results in a reduction of PLP content, whereas the knockdown of BmPLPP2 leads to an increase in PLP content. In addition, exogenous PLP suppresses the replication of BmNPV gDNA; in contrast, the PLP inhibitor 4-deoxypyridoxine facilitates BmNPV gDNA replication. Taken together, we concluded that miR-6498-5p has a potential anti-BmNPV role by down-regulating BmPLPP2 to modulate PLP content, but BmNPV induces miR-6498-5p down-regulation to promote its proliferation. Our findings provide valuable insights into the role of host miRNA in B. mori-BmNPV interaction. Furthermore, the identification of the antiviral molecule PLP offers a novel perspective on strategies for preventing and managing viral infection in sericulture.


Assuntos
Bombyx , MicroRNAs , Nucleopoliedrovírus , Animais , Bombyx/virologia , Bombyx/genética , Bombyx/metabolismo , Regulação para Baixo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Larva/metabolismo , Larva/virologia , Larva/genética , Larva/crescimento & desenvolvimento , MicroRNAs/metabolismo , MicroRNAs/genética , Nucleopoliedrovírus/fisiologia , Fosfato de Piridoxal/metabolismo , Replicação Viral
10.
Insect Mol Biol ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613398

RESUMO

The silkworm (Bombyx mori) is an important model lepidopteran insect and can be used to identify pesticide resistance-related genes of great significance for biological control of pests. Uridine diphosphate glucosyltransferases (UGTs), found in all organisms, are the main secondary enzymes involved in the metabolism of heterologous substances. However, it remains uncertain if silkworm resistance to fenpropathrin involves UGT. This study observes significant variations in BmUGT expression among B. mori strains with variable fenpropathrin resistance post-feeding, indicating BmUGT's role in fenpropathrin detoxification. Knockdown of BmUGT with RNA interference and overexpression of BmUGT significantly decreased and increased BmN cell activity, respectively, indicating that BmUGT plays an important role in the resistance of silkworms to fenpropathrin. In addition, fenpropathrin residues were significantly reduced after incubation for 12 h with different concentrations of a recombinant BmUGT fusion protein. Finally, we verified the conservation of UGT to detoxify fenpropathrin in Spodoptera exigua: Its resistance to fenpropathrin decreased significantly after knocking down SeUGT. In a word, UGT plays an important role in silkworm resistance to fenpropathrin by directly degrading the compound, a function seen across other insects. The results of this study are of great significance for breeding silkworm varieties with high resistance and for biological control of pests.

11.
Insect Mol Biol ; 33(3): 246-258, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38323672

RESUMO

Molybdenum cofactor sulfurase (MoCoS) is a key gene involved in the uric acid metabolic pathway that activates xanthine dehydrogenase to synthesise uric acid. Uric acid is harmful to mammals but plays crucial roles in insects, one of which is the immune responses. However, the function of Bombyx mori MoCoS in response to BmNPV remains unclear. In this study, BmMoCoS was found to be relatively highly expressed in embryonic development, gonads and the Malpighian tubules. In addition, the expression levels of BmMoCoS were significantly upregulated in three silkworm strains with different levels of resistance after virus infection, suggesting a close link between them. Furthermore, RNAi and overexpression studies showed that BmMoCoS was involved in resistance to BmNPV infection, and its antivirus effects were found to be related to the regulation of uric acid metabolism, which was uncovered by inosine- and febuxostat-coupled RNAi and overexpression. Finally, the BmMoCoS-mediated uric acid pathway was preliminarily confirmed to be a potential target to protect silkworms from BmNPV infection. Overall, this study provides new evidence for elucidating the molecular mechanism of silkworms in response to BmNPV infection and new strategies for the prevention of viral infections in sericulture.


Assuntos
Bombyx , Proteínas de Insetos , Nucleopoliedrovírus , Animais , Bombyx/enzimologia , Bombyx/genética , Bombyx/virologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Larva/metabolismo , Larva/crescimento & desenvolvimento , Larva/virologia , Metaloproteínas/metabolismo , Metaloproteínas/genética , Cofatores de Molibdênio , Nucleopoliedrovírus/fisiologia , Interferência de RNA , Ácido Úrico/metabolismo
12.
Insect Mol Biol ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801334

RESUMO

Ribosomal protein L13 (RPL13) is highly conserved in evolution. At present, the properties and functions of RPL13 have not been characterised in insects. In this study, Bombyx mori RPL13 (BmRPL13) was first found to be specifically recruited to the sites of ultraviolet (UV)-induced DNA damage and contributed to UV damage repair. Escherichia coli expressing BmRPL13 showed better resistance to UV radiation. After knocking down the expression of BmRPL13 in BmN cells, the repair speed of UV-damaged DNA slowed down. The further results showed that BmRPL13 interacted with B. mori nucleopolyhedrovirus (BmNPV) ORF65 (Bm65) protein to locate at the UV-induced DNA damage sites of BmNPV and helped repair UV-damaged viral DNA.

13.
Insect Mol Biol ; 33(1): 29-40, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37738573

RESUMO

Nuclear receptors are ligand-regulated transcription factors that play important role in regulating insect metamorphosis through the ecdysone signalling pathway. In this study, we investigated the nuclear receptor HR38 gene in Bombyx mori (BmHR38), belonging to the NR4A subfamily. BmHR38 mRNA was highly expressed in the head and epidermis at the pupal stage. The expression of the BmHR38 gene was influenced by different doses of 20E at different times. A BmHR38 deletion mutant silkworm was generated using the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system. Compared with the wild-type B. mori, the BmHR38 deletion mutant resulted in abnormal development during the pupal stage, leading to either failed eclosion or the formation of abnormal adult wings. After silencing of BmHR38 in the pupal stage, the phenotype of pupa or moth had no significant change, but it did result in reduced egg production. The mRNA levels of USP, E75 and E74 were significantly increased, while the transcript levels of FTZ-F1 were suppressed after RNA interference. Furthermore, interference with BmHR38 also inhibited the expressions of chitin metabolism genes, including Chs1, Chs2, Chi, Chi-h and CDA. Our results suggest that BmHR38 is essential for pupal development and pupa-adult metamorphosis in B. mori by regulating the expression of NRs and chitin metabolism genes.


Assuntos
Bombyx , Animais , Bombyx/metabolismo , Interferência de RNA , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Pupa , Proteínas de Insetos/metabolismo , RNA Mensageiro/metabolismo , Quitina/metabolismo
14.
Insect Mol Biol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956869

RESUMO

Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are important metabolizing enzymes functioning by adding a sugar moiety to a small lipophilic substrate molecule and play critical roles in drug/toxin metabolism for all realms of life. In this study, the silkworm Bombyx mori UGT33D1 gene was characterized in detail. UGT33D1 was found localized in the endoplasmic reticulum (ER) compartment just like other animal UGTs and was mainly expressed in the silkworm midgut. We first reported that UGT33D1 was important to BmNPV infection, as silencing UGT33D1 inhibited the BmNPV infection in silkworm BmN cells, while overexpressing the gene promoted viral infection. The molecular pathways regulated by UGT33D1 were analysed via transcriptome sequencing upon UGT33D1 knockdown, highlighting the important role of the gene in maintaining a balanced oxidoreductive state of the organism. In addition, proteins that physically interact with UGT33D1 were identified through immunoprecipitation and mass spectrometry analysis, which includes tubulin, elongation factor, certain ribosomal proteins, histone proteins and zinc finger proteins that had been previously reported for human UGT-interacting proteins. This study provided preliminary but important functional information on UGT33D1 and is hoped to trigger deeper investigations into silkworm UGTs and their functional mechanisms.

15.
Insect Mol Biol ; 33(3): 206-217, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38180144

RESUMO

Parasitoids are important components of the natural enemy guild in the biological control of insect pests. They depend on host resources to complete the development of a specific stage or whole life cycle and thus have evolved towards optimal host exploitation strategies. In the present study, we report a specific survival strategy of a fly parasitoid Exorista sorbillans (Diptera: Tachinidae), which is a potential biological control agent for agricultural pests and a pest in sericulture. We found that the expression levels of nitric oxide synthase (NOS) and nitric oxide (NO) production in host Bombyx mori (Lepidoptera: Bombycidae) were increased after E. sorbillans infection. Reducing NOS expression and NO production with an NOS inhibitor (NG-nitro-L-arginine methyl ester hydrochloride) in infected B. mori significantly impeded the growth of E. sorbillans larvae. Moreover, the biosynthesis of 20-hydroxyecdysone (20E) in infected hosts was elevated with increasing NO production, and inhibiting NOS expression lowered 20E biosynthesis. More importantly, induced NO synthesis was required to eliminate intracellular bacterial pathogens that presumably competed for shared host resources. Inhibiting NOS expression down-regulated the transcription of antimicrobial peptide genes and increased the number of bacteria in parasitized hosts. Collectively, this study revealed a new perspective on the role of NO in host-parasitoid interactions and a novel mechanism for parasitoid regulation of host physiology to support its development.


Assuntos
Bombyx , Dípteros , Ecdisterona , Interações Hospedeiro-Parasita , Óxido Nítrico , Animais , Bombyx/genética , Bombyx/microbiologia , Bombyx/parasitologia , Dípteros/fisiologia , Ecdisterona/metabolismo , Larva/crescimento & desenvolvimento , Larva/parasitologia , Larva/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase/genética
16.
Insect Mol Biol ; 33(3): 173-184, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38238257

RESUMO

Paired box (Pax) genes are highly conserved throughout evolution, and the Pax protein is an important transcription factor of embryonic development. The Pax gene Bmgsb is expressed in the silk glands of silkworm, but its biological functions remain unclear. This study aimed to investigate the expression pattern of Bmgsb in the silk gland and explore its functions using RNA interference (RNAi). Here, we identified eight Pax genes in Bombyx mori. Phylogenetic analysis showed that the B. mori Pax genes were highly homologous to the Pax genes in other insects and highly evolutionarily conserved. The tissue expression profile showed that Bmgsb was expressed in the anterior silk gland and anterior part of the middle silk gland (AMSG). RNAi of Bmgsb resulted in defective development of the AMSG, and the larvae were mostly unable to cocoon in the wandering stage. RNA-seq analysis showed that the fibroin genes fib-l, fib-h and p25, cellular heat shock response-related genes and phenol oxidase genes were considerably upregulated upon Bmgsb knockdown. Furthermore, quantitative reverse transcription-PCR results showed that the fibroin genes and ubiquitin proteolytic enzyme-related genes were significantly upregulated in the AMSG after Bmgsb knockdown. This study provides a foundation for future research on the biological functions of B. mori Pax genes. In addition, it demonstrates the important roles of Bmgsb in the transcriptional regulation of fibroin genes and silk gland development.


Assuntos
Bombyx , Proteínas de Insetos , Fatores de Transcrição Box Pareados , Animais , Bombyx/classificação , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Bombyx/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Filogenia , Interferência de RNA , Seda/genética , Seda/metabolismo
17.
Insect Mol Biol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709468

RESUMO

Cordyceps cicadae (Hypocreales: Cordycipitaceae) is a renowned entomopathogenic fungus used as herbal medicine in China. However, wild C. cicadae resources have been threatened by heavy harvesting. We hypothesised that Bombyx mori L. (Lepidoptera: Bombycidae) could be a new alternative to cultivate C. cicadae due to the low cost of rearing. Bacterial communities are crucial for the formation of Cordyceps and for promoting the production of metabolites. To better understand the bacterial community structure associated with Cordyceps, three Claviciptaceae fungi were used to explore the pathogenicity of the silkworms. Here, fifth-instar silkworms were infected with C. cicadae, Cordyceps cateniannulata (Hypocreales: Cordycipitaceae) and Beauveria bassiana (Hypocreales: Cordycipitaceae). Subsequently, we applied high-throughput sequencing to explore the composition of bacterial communities in silkworms. Our results showed that all three fungi were highly pathogenic to silkworms, which suggests that silkworms have the potential to cultivate Cordyceps. After fungal infection, the diversity of bacterial communities in silkworms decreased significantly, and the abundance of Staphylococcus increased in mummified larvae, which may play a role in the death process when the host suffers infection by entomopathogenic fungi. Furthermore, there were high similarities in the bacterial community composition and function in the C. cicadae and C. cateniannulata infected samples, and the phylogenetic analysis suggested that these similarities may be related to the fungal phylogenetic relationship. Our findings reveal that infection with different entomopathogenic fungi affects the composition and function of bacterial communities in silkworms and that the bacterial species associated with Cordyceps are primarily host dependent, while fungal infection affects bacterial abundance.

18.
Mol Biol Rep ; 51(1): 666, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777963

RESUMO

BACKGROUND: Insect gut microbiomes play a fundamental role in various aspects of insect physiology, including digestion, nutrient metabolism, detoxification, immunity, growth and development. The wild Muga silkworm, Antheraea assamensis Helfer holds significant economic importance, as it produces golden silk. METHODS AND RESULTS: In the current investigation, we deciphered its intricate gut bacteriome through high-throughput 16S rRNA amplicon sequencing. Further, to understand bacterial community dynamics among silkworms raised under outdoor environmental conditions, we compared its gut bacteriomes with those of the domesticated mulberry silkworm, Bombyx mori L. Most abundant bacterial phyla identified in the gut of A. assamensis were Proteobacteria (78.1%), Bacteroidetes (8.0%) and Firmicutes (6.6%), whereas the most-abundant phyla in B. mori were Firmicutes (49-86%) and Actinobacteria (10-36%). Further, Gammaproteobacteria (57.1%), Alphaproteobacteria (10.47%) and Betaproteobacteria (8.28%) were the dominant bacterial classes found in the gut of A. assamensis. The predominant bacterial families in A. assamensis gut were Enterobacteriaceae (27.7%), Comamonadaceae (9.13%), Pseudomonadaceae (9.08%) Flavobacteriaceae (7.59%) Moraxellaceae (7.38%) Alteromonadaceae (6.8%) and Enterococcaceae (4.46%). In B. mori, the most-abundant bacterial families were Peptostreptococcaceae, Enterococcaceae, Lactobacillaceae and Bifidobacteriaceae, though all showed great variability among the samples. The core gut bacteriome of A. assamensis consisted of Pseudomonas, Acinetobacter, Variovorax, Myroides, Alteromonas, Enterobacter, Enterococcus, Sphingomonas, Brevundimonas, Oleispira, Comamonas, Oleibacter Vagococcus, Aminobacter, Marinobacter, Cupriavidus, Aeromonas, and Bacillus. Comparative gut bacteriome analysis revealed a more complex gut bacterial diversity in wild A. assamensis silkworms than in domesticated B. mori silkworms, which contained a relatively simple gut bacteriome as estimated by OTU richness. Predictive functional profiling of the gut bacteriome suggested that gut bacteria in A. assamensis were associated with a wide range of physiological, nutritional, and metabolic functions, including biodegradation of xenobiotics, lipid, amino acid, carbohydrate metabolism, and biosynthesis of secondary metabolites and amino acids. CONCLUSIONS: These results showed great differences in the composition and diversity of gut bacteria between the two silkworm species. Both insect species harbored core bacterial taxa commonly found in insects, but the relative abundance and composition of these taxa varied markedly.


Assuntos
Bactérias , Bombyx , Microbioma Gastrointestinal , RNA Ribossômico 16S , Animais , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Bombyx/microbiologia , Bombyx/genética , Bactérias/genética , Bactérias/classificação , Filogenia , Mariposas/microbiologia
19.
Zoolog Sci ; 41(2): 141-158, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587909

RESUMO

The silkworm Bombyx mori exhibits a photoperiodic response (PR) for embryonic diapause induction. This article provides a comprehensive review of literature on the silkworm PR, starting from early works on population to recent studies uncovering the molecular mechanism. Makita Kogure (1933) conducted extensive research on the PR, presenting a pioneering paper on insect photoperiodism. In the 1970s and 80s, artificial diets were developed, and the influence of nutrition on PR was well documented. The photoperiodic photoreceptor has been investigated from organ to molecular level in the silkworm. Culture experiments demonstrated that the photoperiodic induction can be programmed in an isolated brain (Br)-subesophageal ganglion (SG) complex with corpora cardiaca (CC)-corpora allata (CA). The requirement of dietary vitamin A for PR suggests the involvement of opsin pigment in the photoperiodic reception, and a cDNA encoding an opsin (Boceropsin) was cloned from the brain. The effector system concerning the production and secretion of diapause hormone (DH) has also been extensively investigated in the silkworm. DH is produced in a pair of posterior cells of SG, transported to CC by nervi corporis cardiaci, and ultimately released into the hemolymph. Possible involvement of GABAergic and corazonin (Crz) signal pathways was suggested in the control of DH secretion. Knockout (KO) experiments of GABA transporter (GAT) and circadian clock genes demonstrated that GAT plays a crucial role in PR through circadian control. A model outlining the PR mechanism, from maternal photoperiodic light reception to DH secretion, has been proposed.


Assuntos
Bombyx , Diapausa de Inseto , Diapausa , Animais , Bombyx/metabolismo , DNA Complementar , Gânglios , Opsinas/metabolismo
20.
Arch Insect Biochem Physiol ; 115(1): e22065, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38014596

RESUMO

Suppressors of cytokine signaling (SOCS) play important roles in the regulation of growth, development, and immunity of eukaryotic organisms. SOCS7 is an important member of the SOCS family, but its physiological and pathological functions remain largely unknown in invertebrates including insects. Here, we first report the cloning of a SOCS7 gene from a domesticated silkworm (Bombyx mori), named BmSOCS7. We have characterized BmSOCS7 expression profiles in silkworm varieties susceptible or resistant to the infection of Bombyx mori nucleopolyhedrovirus (BmNPV) using the real-time fluorescence quantitative PCR. BmSOCS7 expresses highly in embryogenesis and lowly in metamorphosis in resistant silkworms but does in opposite contrast in susceptible silkworms. Its expression is at very low level in the fat body of resistant silkworms but is relatively high in the fat body of susceptible ones. BmNPV inoculation induces a transient downregulation and then a general upregulation of BmSOCS7 expression in BmN cells, while it induces a general downregulation in silkworm midgut, fat body and hemolymph with more pronounced effect in resistant silkworms than susceptible ones and more prominent in the fat body and hemolymph than the midgut. Together, our work reveals that downregulation of BmSOCS7 expression may be an important strategy for silkworm anti-BmNPV immune response, and BmSOCS7 may mainly function in the fat body and hemolymph rather than the midgut to participate in BmNPV infection process.


Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Bombyx/metabolismo , Citocinas/metabolismo , Sistema Digestório , Clonagem Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA