Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(26): e2309868, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38259052

RESUMO

Critical-sized segmental long bone defects represent a challenging clinical dilemma in the management of battlefield and trauma-related injuries. The residual bone marrow cavity of damaged long bones contains many bone marrow mesenchymal stem cells (BMSCs), which provide a substantial source of cells for bone repair. Thus, a three-dimensional (3D) vertically aligned nanofiber scaffold (VAS) is developed with long channels and large pore size. The pore of VAS toward the bone marrow cavity after transplantation, enables the scaffolds to recruit BMSCs from the bone marrow cavity to the defect area. In vivo, it is found that VAS can significantly shorten gap distance and promote new bone formation compared to the control and collagen groups after 4 and 8 weeks of implantation. The single-cell sequencing results discovered that the 3D nanotopography of VAS can promote BMSCs differentiation to chondrocytes and osteoblasts, and up-regulate related gene expression, resulting in enhancing the activities of bone regeneration, endochondral ossification, bone trabecula formation, bone mineralization, maturation, and remodeling. The Alcian blue and bone morphogenetic protein 2 (BMP-2) immunohistochemical staining verified significant cartilage formation and bone formation in the VAS group, corresponding to the single-cell sequencing results. The study can inspire the design of next-generation scaffolds for effective long-bone regeneration is expected by the authors.


Assuntos
Regeneração Óssea , Diferenciação Celular , Condrogênese , Células-Tronco Mesenquimais , Nanofibras , Osteogênese , Alicerces Teciduais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Nanofibras/química , Alicerces Teciduais/química , Animais
2.
Mol Biol Rep ; 51(1): 719, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824271

RESUMO

BACKGROUND: Promoting the balance between bone formation and bone resorption is the main therapeutic goal for postmenopausal osteoporosis (PMOP), and bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation plays an important regulatory role in this process. Recently, several long non-coding RNAs (lncRNAs) have been reported to play an important regulatory role in the occurrence and development of OP and participates in a variety of physiological and pathological processes. However, the role of lncRNA tissue inhibitor of metalloproteinases 3 (lncTIMP3) remains to be investigated. METHODS: The characteristics of BMSCs isolated from the PMOP rat model were verified by flow cytometry assay, alkaline phosphatase (ALP), alizarin red and Oil Red O staining assays. Micro-CT and HE staining assays were performed to examine histological changes of the vertebral trabeculae of the rats. RT-qPCR and western blotting assays were carried out to measure the RNA and protein expression levels. The subcellular location of lncTIMP3 was analyzed by FISH assay. The targeting relationships were verified by luciferase reporter assay and RNA pull-down assay. RESULTS: The trabecular spacing was increased in the PMOP rats, while ALP activity and the expression levels of Runx2, Col1a1 and Ocn were all markedly decreased. Among the RNA sequencing results of the clinical samples, lncTIMP3 was the most downregulated differentially expressed lncRNA, also its level was significantly reduced in the OVX rats. Knockdown of lncTIMP3 inhibited osteogenesis of BMSCs, whereas overexpression of lncTIMP3 exhibited the reverse results. Subsequently, lncTIMP3 was confirmed to be located in the cytoplasm of BMSCs, implying its potential as a competing endogenous RNA for miRNAs. Finally, the negative targeting correlations of miR-214 between lncTIMP3 and Smad4 were elucidated in vitro. CONCLUSION: lncTIMP3 may delay the progress of PMOP by promoting the activity of BMSC, the level of osteogenic differentiation marker gene and the formation of calcium nodules by acting on the miR-214/Smad4 axis. This finding may offer valuable insights into the possible management of PMOP.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais , MicroRNAs , Osteogênese , Osteoporose Pós-Menopausa , RNA Longo não Codificante , Proteína Smad4 , Animais , Feminino , Humanos , Ratos , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Modelos Animais de Doenças , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Osteoporose Pós-Menopausa/genética , Osteoporose Pós-Menopausa/metabolismo , Osteoporose Pós-Menopausa/patologia , Ratos Sprague-Dawley , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Smad4/metabolismo , Proteína Smad4/genética , Inibidor Tecidual de Metaloproteinase-3/genética
3.
J Nanobiotechnology ; 22(1): 220, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698449

RESUMO

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) can differentiate into Schwann cells (SCs) during peripheral nerve injury; in our previous research, we showed that SC-derived exosomes (SC-exos) played a direct induction role while fibroblast-derived exosomes (Fb-exos) had no obvious induction role. The induction role of neural stem cell (NSC)-derived exosomes (NSC-exos) has also been widely confirmed. However, no studies have compared the induction effects of these three types of cells at the same time. Therefore, by investigating the effect of these three cell-derived exosomes upon the induction of BMSCs to differentiate into SCs, this study explored the role of different exosomes in promoting the differentiation of stem cells into SCs cells, and conducted a comparison between the two groups by RNA sequencing to further narrow the range of target genes and related gene pathways in order to study their related mechanisms. MATERIALS AND METHODS: We extracted exosomes from SCs, fibroblasts (Fb) and neural stem cells (NSC) and then investigated the ability of these exosomes to induce differentiation into BMSCs under different culture conditions. The expression levels of key proteins and gene markers were detected in induced cells by fluorescence immunoassays, western blotting and polymerase chain reaction (PCR); then, we statistically compared the relative induction effects under different conditions. Finally, we analyzed the three types of exosomes by RNA-seq to predict target genes and related gene pathways. RESULTS: BMSCs were cultured by three media: conventional (no induction), pre-induction or pre-induction + original induction medium (ODM) with exosomes of the same cell origin under different culture conditions. When adding the three different types of exosomes separately, the overall induction of BMSCs to differentiate into SCs was significantly increased (P < 0.05). The induction ability was ranked as follows: pre-induction + ODM + exosome group > pre-induction + exosome group > non-induction + exosome group. Using exosomes from different cell sources under the same culture conditions, we observed the following trends under the three culture conditions: RSC96-exos group ≥ NSC-exos group > Fb-exos group. The overall ability to induce BMSCs into SCs was significantly greater in the RSC96-exos group and the NSC-exos group. Although there was no significant difference in induction efficiency when comparing these two groups, the overall induction ability of the RSC96-exos group was slightly higher than that of the NSC-exos group. By combining the differentiation induction results with the RNA-seq data, the three types of exosomes were divided into three comparative groups: RSC vs. NSC, RSC vs. Fb and NSC vs. Fb. We identified 203 differentially expressed mRNA target genes in these three groups. Two differentially expressed genes were upregulated simultaneously, namely riboflavin kinase (RFK, ENSRNOG00000022273) and ribosomal RNA processing 36 (Rrp36, ENSRNOG00000017836). We did not identify any co-upregulated target genes for the miRNAs, but did identify one target gene of the lncRNAs, namely ENSRNOG00000065005. Analysis identified 90 GO terms related to nerves and axons in the mRNAs; in addition, KEGG enrichment and GASA analysis identified 13 common differential expression pathways in the three groups. CONCLUSIONS: Our analysis found that pre-induction + ODM + RSC96/NSC-exos culture conditions were most conducive with regards to induction and differentiation. RSC96-exos and NSC-exos exhibited significantly greater differentiation efficiency of BMSCs into SCs. Although there was no statistical difference, the data indicated a trend for RSC96-exos to be advantageous We identified 203 differentially expressed mRNAs between the three groups and two differentially expressed target mRNAs were upregulated, namely riboflavin kinase (RFK, ENSRNOG00000022273) and ribosomal RNA processing 36 (Rrp36, ENSRNOG00000017836). 90 GO terms were related to nerves and axons. Finally, we identified 13 common differentially expressed pathways across our three types of exosomes. It is hoped that the efficiency of BMSCs induction differentiation into SCs can be improved, bringing hope to patients and more options for clinical treatment.


Assuntos
Diferenciação Celular , Exossomos , Células-Tronco Mesenquimais , Células de Schwann , Exossomos/metabolismo , Células de Schwann/citologia , Células de Schwann/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Ratos , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Ratos Sprague-Dawley , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo
4.
Oral Dis ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501359

RESUMO

OBJECTIVES: To investigate the effect of liraglutide on osteogenesis in human alveolar bone marrow mesenchymal stem cells (BMSCs) and the influence of liraglutide on implant-bone integration in rats with T2DM. SUBJECTS AND METHODS: Extracting BMSCs from the alveoli of diabetic patients treated with insulin. BMSCs were treated with different concentrations of liraglutide. Osteogenesis and the underlying mechanism were investigated via ALP detection, ALP staining, Alizarin Red S staining, Western blotting, and RT-PCR. Liraglutide was given to Wistar and GK rats after implantation, and new bone formation around the implants was analyzed via micro-CT. Implant-bone integration in rats was investigated via toluidine blue staining. RESULTS: Liraglutide enhanced osteogenesis in BMSCs via the BMP2/Smad/Runx2 signaling pathway. The optimal concentration of liraglutide that promoted osteogenesis was 10-8 mol/L. At concentrations higher than 10-7 mol/L, liraglutide had a negative effect on BMSCs. At a concentration of 10-8 mol/L liraglutide, BMSCs and diabetes mellitus-bone marrow stromal cells (DM-BMSCs) showed optimal osteogenesis. Liraglutide promoted implant-bone integration and new bone formation in Wistar and GK rats. CONCLUSIONS: Liraglutide not only promotes osteogenesis of BMSCs in normoglycemic individuals but also enhances osteogenesis of BMSCs in diabetic patients treated with insulin and enhances osseointegration in rats.

5.
Oral Dis ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716779

RESUMO

OBJECT: Mesenchymal stem cell (MSC) therapy is a potential strategy for promoting alveolar bone regeneration. This study evaluated the effects and mechanisms of transplanted MSCs on alveolar bone repair. METHODS: Mouse alveolar bone defect model was treated using mouse bone marrow mesenchymal stem cell (BMSC) transplantation. The bone repair was evaluated by micro-CT and Masson staining. The conditioned medium of hypoxia-treated BMSCs was co-cultured with normal BMSCs in vitro to detect the regulatory effect of transplanted MSCs on the chemotactic and migratory functions of host cells. The mechanisms were investigated using Becn siRNA transfection and western blotting. RESULTS: BMSC transplantation promoted bone defect regeneration. The hypoxic microenvironment induces BMSCs to release multiple extracellular vesicle (EV)-mediated regulatory proteins that promote the migration of host stem cells. Protein array analysis, western blotting, GFP-LC3 detection, and Becn siRNA transfection confirmed that autophagy activation in BMSCs plays a key role during this process. CONCLUSION: The local hypoxic microenvironment induces transplanted MSCs to secrete a large number of EV-mediated regulatory proteins, thereby upregulating the migration function of the host stem cells and promoting alveolar bone defect regeneration. This process depends on the autophagy-related mechanism of the transplanted MSCs.

6.
Am J Physiol Cell Physiol ; 325(5): C1212-C1227, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721001

RESUMO

Ferroptosis has been proven critical for survival following bone marrow mesenchymal stem cells (BMSCs) explantation. Suppression of ferroptosis in BMSCs will be a valid tactic to elevate the therapeutic potential of engrafted BMSCs. Prominin2 is a pentaspanin protein involved in mediating iron efflux and thus modulates resistance to ferroptosis, but its role in tert-butyl hydroperoxide (TBHP)-induced BMSCs ferroptosis remains elusive. We examined the biological effect of prominin2 in vitro and in vivo by using cell proliferation assay, iron assay, reactive oxygen species (ROS) examination, malondialdehyde assay, glutathione (GSH) examination, Western blot, quantitative reverse transcription-PCR, immunofluorescence staining assay, gene expression inhibition and activation, co-immunoprecipitation (CO-IP) assay, radiographic analysis, and histopathological analysis. Our study demonstrated that prominin2 activity was impaired in TBHP-induced BMSCs ferroptosis. We found that PROM2 (encoding the protein prominin2) activation delayed the onset of ferroptosis and PROM2 knockdown deteriorated the course of ferroptosis. CO-IP, Western blot, and immunofluorescence demonstrated that prominin2 exerts antiferroptosis effects by inhibiting BTB and CNC homology 1 (BACH1) that promotes ROS generation, and thus exerts potent antioxidant effects in oxidative stress (OS)-induced BMSCs ferroptosis, including elevating BMSCs' survival rate and enhancing GSH contents. BMSCs with PROM2 overexpression also partially delayed the progression of intervertebral disk degeneration in vivo, as illustrated by less loss of disk height and lower histological scores. Our findings revealed a mechanism that the prominin2/BACH1/ROS axis participates in BMSCs ferroptosis and the strengthening of this axis is promising to maintain BMSCs' survival after explantation.NEW & NOTEWORTHY We found that prominin2 might be a potential biomarker and is expected to be utilized to augment engrafted bone marrow mesenchymal stem cells (BMSCs) survival rate. The prominin2/BTB and CNC homology 1 (BACH1)/reactive oxygen species (ROS) axis, which participates in the regulation of BMSCs ferroptosis induced by tert-butyl hydroperoxide (TBHP), is uncovered in our study. The therapeutic targeting of the prominin2/BACH1/ROS axis components is promising to elevate the survival of transplanted BMSCs in clinical practice.

7.
Cell Commun Signal ; 21(1): 274, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798762

RESUMO

BACKGROUND: Our previous study found that bone marrow-derived mesenchymal stem cells (BMSCs) promote Helicobacter pylori (H pylori)-associated gastric cancer (GC) progression by secreting thrombospondin-2 (THBS2). Extracellular vesicles (EVs) are important carriers for intercellular communication, and EVs secreted by BMSCs have been shown to be closely related to tumor development. The aim of this study was to investigate whether BMSC-derived microvesicles (MVs, a main type of EV) play a role in H. pylori-associated GC by transferring THBS2. METHODS: BMSCs and THBS2-deficient BMSCs were treated with or without the supernatant of H. pylori for 12 h at a multiplicity of infection of 50, and their EVs were collected. Then, the effects of BMSC-derived MVs and THBS2-deficient BMSC-derived MVs on the GC cell line MGC-803 were assessed by in vitro proliferation, migration, and invasion assays. In addition, a subcutaneous xenograft tumor model, a nude mouse intraperitoneal metastasis model, and a tail vein injection metastasis model were constructed to evaluate the effects of BMSC-derived MVs and THBS2-deficient BMSC-derived MVs on GC development and metastasis in vivo. RESULTS: BMSC-derived MVs could be readily internalized by MGC-803 cells. BMSC-derived MVs after H. pylori treatment significantly promoted their proliferation, migration and invasion in vitro (all P < 0.05) and promoted tumor development and metastasis in a subcutaneous xenograft tumor model, a nude mouse intraperitoneal metastasis model, and a tail vein injection metastasis model in vivo (all P < 0.05). The protein expression of THBS2 was significantly upregulated after H. pylori treatment in BMSC-derived MVs (P < 0.05). Depletion of the THBS2 gene reduces the tumor-promoting ability of BMSC-MVs in an H. pylori infection microenvironment both in vitro and in vivo. CONCLUSION: Overall, these findings indicate that MVs derived from BMSCs can promote H. pylori-associated GC development and metastasis by delivering the THBS2 protein. Video Abstract.


Assuntos
Vesículas Extracelulares , Helicobacter pylori , Células-Tronco Mesenquimais , MicroRNAs , Neoplasias Gástricas , Camundongos , Animais , Humanos , Neoplasias Gástricas/metabolismo , Helicobacter pylori/genética , Medula Óssea , Camundongos Nus , Trombospondinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Microambiente Tumoral
8.
Oral Dis ; 28(4): 1170-1180, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33606350

RESUMO

OBJECTIVES: This study aimed to explore the effects of metformin on osteogenic differentiation of alveolar bone marrow mesenchymal stem cells (BMSCs) from type-2 diabetes mellitus (T2DM) patients (DM-BMSCs) and implant osseointegration in rats, screen the optimal concentration, and investigate whether metformin could protect against the adverse impact of T2DM on BMSC osteogenic capacity. SUBJECTS AND METHODS: Different concentrations of metformin were administered to human-derived BMSCs and Wistar rats receiving implants. ALP detection, alizarin red staining, real-time RT-PCR and Western blotting were performed to detect osteogenesis and investigate the mechanism. Toluidine blue staining was performed to analyse bone-implant contact in rats. RESULTS: Metformin increased implant osseointegration in a rat model and promoted the osteogenic capacity of DM-BMSCs via the AMPK/BMP/Smad signalling pathway, and 125 µM was the optimal concentration; however, concentrations over 200 µM, metformin showed an inhibitory effect on DM-BMSCs. Additionally, metformin at the optimal concentration (125 µM) identified in this study could compensate for the negative impacts of T2DM on the osteogenic differentiation of BMSCs. CONCLUSIONS: Metformin can promote the osteogenesis of BMSCs from T2DM patients and osseointegration in rats, and it might be an effective drug for increasing the success rate of T2DM-associated implants.


Assuntos
Diabetes Mellitus Tipo 2 , Células-Tronco Mesenquimais , Metformina , Animais , Diferenciação Celular , Células Cultivadas , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Metformina/farmacologia , Osseointegração , Osteogênese , Ratos , Ratos Wistar
9.
Mol Med ; 27(1): 153, 2021 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-34865619

RESUMO

BACKGROUND: Dysfunctional osteogenesis of bone marrow mesenchymal stem cells (BMSCs) plays an important role in osteoporosis occurrence and development. However, the molecular mechanisms of osteogenic differentiation remain unclear. This study explored whether microfibrillar-associated protein 5 (MFAP5) regulated BMSCs osteogenic differentiation. METHODS: We used shRNA or cDNA to knock down or overexpress MFAP5 in C3H10 and MC3T3-E1 cells. AR-S- and ALP-staining were performed to quantify cellular osteogenic differentiation. The mRNA levels of the classical osteogenic differentiation biomarkers Runx2, Col1α1, and OCN were quantified by qRT-PCR. Finally, we employed Western blotting to measure the levels of Wnt/ß-catenin and AMPK signaling proteins. RESULTS: At days 0, 3, 7, and 14 after osteogenic induction, AR-S- and ALP-staining was lighter in MFAP5 knockdown compared to control cells, as were the levels of Runx2, Col1α1 and OCN. During osteogenesis, the levels of ß-catenin, p-GSK-3ß, AMPK, and p-AMPK were upregulated, while that of GSK-3ß was downregulated, indicating that Wnt/ß-catenin and AMPK signaling were activated. The relevant molecules were expressed at lower levels in the knockdown than control group; the opposite was seen for overexpressing cell lines. CONCLUSIONS: MFAP5 regulates osteogenesis via Wnt/ß­catenin- and AMPK-signaling; MFAP5 may serve as a therapeutic target in patients with osteoporosis.


Assuntos
Proteínas Contráteis/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Osteogênese/genética , Osteoporose/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Linhagem Celular , Proteínas Contráteis/metabolismo , Feminino , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Transdução de Sinais , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
10.
Clin Exp Immunol ; 205(1): 53-62, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33735518

RESUMO

High expression of the inhibitory receptor programmed cell death ligand 1 (PD-L1) on tumor cells and tumor stromal cells have been found to play a key role in tumor immune evasion in several human malignancies. However, the expression of PD-L1 on bone marrow mesenchymal stem cells (BMSCs) and whether the programmed cell death 1 (PD-1)/PD-L1 signal pathway is involved in the BMSCs versus T cell immune response in multiple myeloma (MM) remains poorly defined. In this study, we explored the expression of PD-L1 on BMSCs from newly diagnosed MM (NDMM) patients and the role of PD-1/PD-L1 pathway in BMSC-mediated regulation of CD8+ T cells. The data showed that the expression of PD-L1 on BMSCs in NDMM patients was significantly increased compared to that in normal controls (NC) (18·81 ± 1·61 versus 2·78± 0·70%; P < 0·001). Furthermore, the PD-1 expression on CD8+ T cells with NDMM patients was significantly higher than that in normal controls (43·22 ± 2·98 versus 20·71 ± 1·08%; P < 0·001). However, there was no significant difference in PD-1 expression of CD4+ T cells and natural killer (NK) cells between the NDMM and NC groups. Additionally, the co-culture assays revealed that BMSCs significantly suppressed CD8+ T cell function. However, the PD-L1 inhibitor effectively reversed BMSC-mediated suppression in CD8+ T cells. We also found that the combination of PD-L1 inhibitor and pomalidomide can further enhance the killing effect of CD8+ T cells on MM cells. In summary, our findings demonstrated that BMSCs in patients with MM may induce apoptosis of CD8+ T cells through the PD-1/PD-L1 axis and inhibit the release of perforin and granzyme B from CD8+ T cells to promote the immune escape of MM.


Assuntos
Antígeno B7-H1/imunologia , Medula Óssea/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunidade/imunologia , Células-Tronco Mesenquimais/imunologia , Mieloma Múltiplo/imunologia , Receptor de Morte Celular Programada 1/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD4-Positivos/imunologia , Feminino , Granzimas/imunologia , Humanos , Células Matadoras Naturais/imunologia , Masculino , Pessoa de Meia-Idade , Perforina/imunologia , Transdução de Sinais/imunologia , Talidomida/análogos & derivados , Talidomida/imunologia , Evasão Tumoral/imunologia
11.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502232

RESUMO

Cellular senescence and its senescence-associated secretory phenotype (SASP) are widely regarded as promising therapeutic targets for aging-related diseases, such as osteoporosis. However, the expression pattern of cellular senescence and multiple SASP secretion remains unclear, thus leaving a large gap in the knowledge for a desirable intervention targeting cellular senescence. Therefore, there is a critical need to understand the molecular mechanism of SASP secretion in the bone microenvironment that can ameliorate aging-related degenerative pathologies including osteoporosis. In this study, osteocyte-like cells (MLO-Y4) were induced to cellular senescence by 2 Gy γ-rays; then, senescence phenotype changes and adverse effects of SASP on bone marrow mesenchymal stem cell (BMSC) differentiation potential were investigated. The results revealed that 2 Gy irradiation could hinder cell viability, shorten cell dendrites, and induce cellular senescence, as evidenced by the higher expression of senescence markers p16 and p21 and the elevated formation of senescence-associated heterochromatin foci (SAHF), which was accompanied by the enhanced secretion of SASP markers such as IL-1α, IL-6, MMP-3, IGFBP-6, resistin, and adiponectin. When 0.8 µM JAK1 inhibitors were added to block SASP secretion, the higher expression of SASP was blunted, but the inhibition in osteogenic and adipogenic differentiation potential of BMSCs co-cultured with irradiated MLO-Y4 cell conditioned medium (CM- 2 Gy) was alleviated. These results suggest that senescent osteocytes can perturb BMSCs' differential potential via the paracrine signaling of SASP, which was also demonstrated by in vivo experiments. In conclusion, we identified the SASP factor partially responsible for the degenerative differentiation of BMSCs, which allowed us to hypothesize that senescent osteocytes and their SASPs may contribute to radiation-induced bone loss.


Assuntos
Reabsorção Óssea/patologia , Diferenciação Celular , Senescência Celular , Raios gama/efeitos adversos , Células-Tronco Mesenquimais/patologia , Osteócitos/patologia , Comunicação Parácrina , Animais , Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Masculino , Células-Tronco Mesenquimais/efeitos da radiação , Camundongos , Camundongos Endogâmicos BALB C , Osteócitos/efeitos da radiação , Osteogênese
12.
J Musculoskelet Neuronal Interact ; 20(4): 591-599, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33265088

RESUMO

OBJECTIVES: To investigate the effect of neurotrophin-3 (NT-3) on osteogenic/adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). METHODS: Osteogenic differentiation was detected by alkaline phosphatase (ALP) staining and alizarin red staining (ARS). Adipogenic differentiation was detected by oil red O (ORO) staining. The expression of bone-related genes (Runx2, Osterix, OCN, ALP) and lipogenic genes (FABP4, PPAR, CEBP, LPL) was detected by real-time quantitative polymerase chain reaction (real-time qPCR). The expression of p-Akt and Akt protein was detected by Western blot assay. RESULTS: ALP staining and ARS staining showed that the overexpression of NT-3 could promote the differentiation into osteoblasts, while knockdown of NT-3 could inhibit that. Real-time qPCR showed that the overexpression of NT-3 could increase the expression of osteoblast genes, while knockdown of NT-3 could inhibit that. ORO staining showed that the overexpression of NT-3 could inhibit the differentiation into adipogenesis, while knockdown of NT-3 can promote that. Real-time qPCR showed that the overexpression of NT-3 could reduce the expression of lipogenic genes. while knockdown NT-3 could increase that. In addition, the overexpression of NT-3 increased p-Akt/Akt levels significantly, while knockdown NT-3 reduced that significantly. CONCLUSION: NT-3 could promote the differentiation of mouse BMSCs into osteoblasts and inhibit their differentiation into adipogenesis.


Assuntos
Células da Medula Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neurotrofina 3/metabolismo , Osteogênese/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia/fisiologia , Animais , Diferenciação Celular/fisiologia , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo
13.
J Cell Biochem ; 120(5): 8754-8763, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30485526

RESUMO

Bone morphogenetic protein (BMP)2/7 heterodimer shows greater efficacy in enhancing bone regeneration. However, the precise mechanism and the role of mitogen-activated protein kinase (MAPK) signaling network in BMP2/7-driven osteogenesis remain ambiguous. In this study, we evaluated the effects of BMP2/7 heterodimers on osteoblastic differentiation in rat bone marrow mesenchymal stem cells (BMSCs), with the aim to elaborate how MAPKs might be involved in this cellular process by treatment of rat BMSCs with BMP2/-7 with a special signal-pathway inhibitor. We found that BMP2/7 heterodimer induced a much stronger osteogenic response in rat BMSCs compared with either homodimer. Most interestingly, extracellular signal-regulated kinase (ERK) demonstrated a highly sustained phosphorylation and activation in the BMP2/7 heterodimer treatment groups, and inhibition of ERK cascades using U0126 special inhibitor that significantly reduced the activity of ALP and calcium mineralization to a substantial degree in rat BMSCs treated with BMP2/7 heterodimers. Collectively, we demonstrate that BMP2/7 heterodimer shows a potent ability to stimulate osteogenesis in rat BMSCs. The activated ERK signaling pathway involved in this process may contribute partially to an increased osteogenic potency of heterodimeric BMP2/7 growth factors.

14.
J Cell Biochem ; 120(2): 1350-1361, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30335895

RESUMO

The purpose of this study was to investigate the underlying molecular mechanisms of fracture healing mediated by bone marrow mesenchymal stem cells. Differentially expressed microRNAs in acutely injured subjects and healthy volunteers were screened by microarray analysis. The dual luciferase reporter system was used to verify whether insulin-like growth factor 1 (IGF1) was the direct target gene regulated by miR-148a. The expression level of miR-148a and IGF1 after osteogenic differentiation was detected by quantitative real-time polymerase chain reaction. Western blot was used to determine the protein expression of bone markers, including IGF1, runt-related transcription factor 2 (Runx2), osteocalcin, and osteopontin in rat bone marrow-derived mesenchymal stem cells. Alkaline phosphatase and alizarin red staining was used to detect alkaline phosphatase activity and calcium deposition. An animal fracture model was used for in vivo experiments. MiR-148a was highly expressed in acutely injured subjects compared with healthy volunteers, and IGF1 was a target of miR-148a. Moreover, compared with the negative control group, IGF1 messenger RNA expression was significantly increased in the miR-148a antagomir group. During osteogenic differentiation, the expression of IGF1, Runx2, osteocalcin, and osteopontin was higher in the miR-148a antagomir group than other groups. In vivo experiments further confirmed that upregulation of IGF1 enhanced fracture healing efficiently by decreasing callus width and area and improving bone mineral density, maximum load, stiffness, and energy absorption. It was proved that IGF1 was the direct target gene of miR-148a, and the use of rat bone marrow-derived mesenchymal stem cells with low expression of miR-148a could improve fracture healing by upregulating IGF1.

15.
Mol Cell Biochem ; 450(1-2): 199-207, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29931518

RESUMO

Bone marrow mesenchymal stem cells (BMSCs) are multipotential differentiation cells which can differentiate into different cell types such as osteoblasts, chondrocytes, adipocytes, cardiomyocytes, hepatocytes, endothelial cells, and neuronal cells. Such multipotential differentiation makes them attractive for stem cell-based therapy aimed at treating previously incurable disorders. In the present work, we encapsulated BMSCs into a hydrogel with a three-dimensional (3D) network of nanofibers, formed from self-assembling of peptide amphiphile. The self-assembling of peptide amphiphile into hydrogel was triggered by mixing cell suspensions with dilute aqueous solutions of amphipathic peptide. Moreover, this hydrogel was designed to present cells the neurite-promoting laminin epitope IKVAV at nearly van der Waals density, which induced the successful differentiation of BMSCs into neural cells.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Hidrogéis/química , Laminina/farmacologia , Células-Tronco Mesenquimais/metabolismo , Nanofibras/química , Fragmentos de Peptídeos/farmacologia , Animais , Células da Medula Óssea/citologia , Células-Tronco Mesenquimais/citologia , Ratos , Ratos Sprague-Dawley
16.
Lasers Med Sci ; 34(1): 169-178, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30456535

RESUMO

The aim of this in vitro study was to evaluate the effects of low-level laser therapy (LLLT) at different energy intensities on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) under healthy and inflammatory microenvironments. Human BMSCs and BMSCs from inflammatory conditions (i-BMSCs, BMSCs treated with tumor necrosis factor α; TNF-α) were subject to LLLT (Nd:YAG;1064 nm) at different intensities. We designed one control group (without irradiation) and four testing groups (irradiation at 2, 4, 8, and 16 J/cm2) for both BMSCs and i-BMSCs. Cell proliferation was measured using colony-forming unit fibroblast assay and 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay. Osteogenic capacity of cells was determined by alkaline phosphatase (ALP) staining, ALP activity assay, Alizarin Red S staining and the mRNA transcript levels of genes runt-related transcription factor 2 (Runx2), ALP, and osteocalcin. Moreover, the effects of LLLT on secretion of TNF-α in BMSCs and i-BMSCs were measured by enzyme-linked immunosorbent assay. Our results demonstrated LLLT could significantly promote BMSC proliferation and osteogenesis at densities of 2 and 4 J/cm2. LLLT at density of 8 J/cm2 could promote the proliferation and osteogenesis of i-BMSCs. However, LLLT at 16 J/cm2 significantly suppressed the proliferation and osteogenesis of BMSCs both in healthy and in inflammatory microenvironment. Moreover, we also found that the expression of TNF-α was obviously inhibited by LLLT at 4, 8, and 16 J/cm2, in an inflammatory microenvironment. Considering these findings, LLLT could improve current in vitro methods of differentiating BMSCs under healthy and inflammatory microenvironments prior to transplantation.


Assuntos
Diferenciação Celular/efeitos da radiação , Inflamação/patologia , Terapia com Luz de Baixa Intensidade , Células-Tronco Mesenquimais/patologia , Células-Tronco Mesenquimais/efeitos da radiação , Osteogênese/efeitos da radiação , Células da Medula Óssea/citologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Células Cultivadas , Humanos , Interleucina-1/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
17.
Int J Mol Sci ; 20(3)2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30682874

RESUMO

Simvastatin (SVS) promotes the osteogenic differentiation of mesenchymal stem cells (MSCs) and has been studied for MSC-based bone regeneration. However, the mechanism underlying SVS-induced osteogenesis is not well understood. We hypothesize that α5 integrin mediates SVS-induced osteogenic differentiation. Bone marrow MSCs (BMSCs) derived from BALB/C mice, referred to as D1 cells, were used. Alizarin red S (calcium deposition) and alkaline phosphatase (ALP) staining were used to evaluate SVS-induced osteogenesis of D1 cells. The mRNA expression levels of α5 integrin and osteogenic marker genes (bone morphogenetic protein-2 (BMP-2), runt-related transcription factor 2 (Runx2), collagen type I, ALP and osteocalcin (OC)) were detected using quantitative real-time PCR. Surface-expressed α5 integrin was detected using flow cytometry analysis. Protein expression levels of α5 integrin and phosphorylated focal adhesion kinase (p-FAK), which is downstream of α5 integrin, were detected using Western blotting. siRNA was used to deplete the expression of α5 integrin in D1 cells. The results showed that SVS dose-dependently enhanced the gene expression levels of osteogenic marker genes as well as subsequent ALP activity and calcium deposition in D1 cells. Upregulated p-FAK was accompanied by an increased protein expression level of α5 integrin after SVS treatment. Surface-expressed α5 integrin was also upregulated after SVS treatment. Depletion of α5 integrin expression significantly suppressed SVS-induced osteogenic gene expression levels, ALP activity, and calcium deposition in D1 cells. These results identify a critical role of α5 integrin in SVS-induced osteogenic differentiation of BMSCs, which may suggest a therapeutic strategy to modulate α5 integrin/FAK signaling to promote MSC-based bone regeneration.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular , Integrina alfa5/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células Cultivadas , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Integrina alfa5/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais , Sinvastatina/farmacologia , Regulação para Cima
18.
Cell Physiol Biochem ; 48(1): 361-370, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30016780

RESUMO

BACKGROUND/AIMS: Tissue engineering bone transplantation with bone marrow mesenchymal stem cells (BMSCs) is an effective technology to treat massive bone loss, while molecular regulation of the bone regeneration processes remains poorly understood. Here, we aimed to assess the role of interleukin-8 (IL-8) in the recruitment of host cells by seeded BMSCs and in the bone regeneration. METHODS: A transwell assay was performed to examine the role of IL-8/CXCR1/CXCR2/PI3k/Akt on the migration potential of hBMSCs. The in vitro chondrogenic differentiation of hBMSCs was assessed by examination of 2 chondrogenic markers, Sox9 and type 2 collagen (COL2). mBMSCs were used in tissue engineered bone (TEB) with/without IL-8 implanted into bone defect area with CXCR2 or Akt inhibitors. Density and Masson staining of the regenerated bone were assessed. The chondrogenesis was assessed by expression levels of associated proteins, Sox9 and COL2, by RT-qPCR and by immunohistochemistry. RESULTS: IL-8 may trigger in vitro migration of hBMSCs via CXCR2-mediated PI3k/Akt signaling pathway. IL-8 enhances osteogenesis in the TEB-implanted bone defect in mice. IL-8 induces chondrogenic differentiation of hBMSCs via CXCR2-mediated PI3k/Akt signaling pathway in vitro and in vivo. CONCLUSIONS: IL-8 enhances therapeutic effects of MSCs on bone regeneration via CXCR2-mediated PI3k/Akt signaling pathway.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Interleucina-8/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Células da Medula Óssea/citologia , Osso e Ossos/patologia , Osso e Ossos/fisiologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Condrogênese/efeitos dos fármacos , Colágeno Tipo II/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Compostos de Fenilureia/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Receptores de Interleucina-8B/antagonistas & inibidores , Engenharia Tecidual
19.
Molecules ; 23(12)2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30563251

RESUMO

Osteoporosis is the second most-prevalent epidemiologic disease in the aging population worldwide. Cross-sectional and retrospective evidence indicates that tea consumption can mitigate bone loss and reduce risk of osteoporotic fractures. Tea polyphenols enhance osteoblastogenesis and suppress osteoclastogenesis in vitro. Previously, we showed that (-)-epigallocatechin-3-gallate (EGCG), one of the green tea polyphenols, increased osteogenic differentiation of murine bone marrow mesenchymal stem cells (BMSCs) by increasing the mRNA expression of osteogenesis-related genes, alkaline phosphatase activity and, eventually, mineralization. We also found that EGCG could mitigate bone loss and improve bone microarchitecture in ovariectomy-induced osteopenic rats, as well as enhancing bone defect healing partially via bone morphogenetic protein 2 (BMP2). The present study investigated the effects of EGCG in human BMSCs. We found that EGCG, at concentrations of both 1 and 10 µmol/L, can increase mRNA expression of BMP2, Runx2, alkaline phosphatase (ALP), osteonectin and osteocalcin 48 h after treatment. EGCG increased ALP activity both 7 and 14 days after treatment. Furthermore, EGCG can also enhance mineralization two weeks after treatment. EGCG without antioxidants also can enhance mineralization. In conclusion, EGCG can increase mRNA expression of BMP2 and subsequent osteogenic-related genes including Runx2, ALP, osteonectin and osteocalcin. EGCG further increased ALP activity and mineralization. Loss of antioxidant activity can still enhance mineralization of human BMSCs (hBMSCs).


Assuntos
Antioxidantes/farmacologia , Catequina/análogos & derivados , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Catequina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos
20.
Asian-Australas J Anim Sci ; 27(12): 1783-93, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25358373

RESUMO

Capsaicin is a major constituent of hot chili peppers that influences lipid metabolism in animals. In this study, we explored the effects of capsaicin on adipogenic differentiation of bovine bone marrow mesenchymal stem cells (BMSCs) in a dose- and time-dependent manner. The BMSCs were treated with various concentrations of capsaicin (0, 0.1, 1, 5, and 10 µM) for 2, 4, and 6 days. Capsaicin suppressed fat deposition significantly during adipogenic differentiation. Peroxisome proliferator-activated receptor gamma, cytosine-cytosine-adenosine-adenosine-thymidine/enhancer binding protein alpha, fatty acid binding protein 4, and stearoyl-CoA desaturase expression decreased after capsaicin treatment. We showed that the number of apoptotic cells increased in dose- and time-dependent manners. Furthermore, we found that capsaicin increased the expression levels of apoptotic genes, such as B-cell lymphoma 2-associated X protein and caspase 3. Overall, capsaicin inhibits fat deposition by triggering apoptosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA