RESUMO
The Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a central regulator of learning and memory, which poses a problem for targeting it therapeutically. Indeed, our study supports prior conclusions that long-term interference with CaMKII signaling can erase pre-formed memories. By contrast, short-term pharmacological CaMKII inhibition with the neuroprotective peptide tatCN19o interfered with learning in mice only mildly and transiently (for less than 1 h) and did not at all reverse pre-formed memories. These results were obtained with ≥500-fold of the dose that protected hippocampal neurons from cell death after a highly clinically relevant pig model of transient global cerebral ischemia: ventricular fibrillation followed by advanced life support and electrical defibrillation to induce the return of spontaneous circulation. Of additional importance for therapy development, our preliminary cardiovascular safety studies in mice and pig did not indicate any concerns with acute tatCN19o injection. Taken together, although prolonged interference with CaMKII signaling can erase memory, acute short-term CaMKII inhibition with tatCN19o did not cause such retrograde amnesia that would pose a contraindication for therapy.
Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Memória , Animais , Camundongos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Hipocampo/metabolismo , Memória/efeitos dos fármacos , Memória/fisiologia , Neurônios/metabolismo , Fosforilação/fisiologia , Suínos , Peptídeos/farmacologiaRESUMO
Long QT syndrome (LQTS) is a human inherited heart condition that can cause life-threatening arrhythmia including sudden cardiac death. Mutations in the ubiquitous Ca2+-sensing protein calmodulin (CaM) are associated with LQTS, but the molecular mechanism by which these mutations lead to irregular heartbeats is not fully understood. Here, we use a multidisciplinary approach including protein biophysics, structural biology, confocal imaging, and patch-clamp electrophysiology to determine the effect of the disease-associated CaM mutation E140G on CaM structure and function. We present novel data showing that mutant-regulated CaMKIIδ kinase activity is impaired with a significant reduction in enzyme autophosphorylation rate. We report the first high-resolution crystal structure of a LQTS-associated CaM variant in complex with the CaMKIIδ peptide, which shows significant structural differences, compared to the WT complex. Furthermore, we demonstrate that the E140G mutation significantly disrupted Cav1.2 Ca2+/CaM-dependent inactivation, while cardiac ryanodine receptor (RyR2) activity remained unaffected. In addition, we show that the LQTS-associated mutation alters CaM's Ca2+-binding characteristics, secondary structure content, and interaction with key partners involved in excitation-contraction coupling (CaMKIIδ, Cav1.2, RyR2). In conclusion, LQTS-associated CaM mutation E140G severely impacts the structure-function relationship of CaM and its regulation of CaMKIIδ and Cav1.2. This provides a crucial insight into the molecular factors contributing to CaM-mediated arrhythmias with a central role for CaMKIIδ.
Assuntos
Canais de Cálcio Tipo L , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Calmodulina , Síndrome do QT Longo , Humanos , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Síndrome do QT Longo/genética , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Mutação , Estrutura Secundária de Proteína/genética , Ligação Proteica/genética , CristalografiaRESUMO
Learning, memory, and cognition are thought to require synaptic plasticity, specifically including hippocampal long-term potentiation and depression (LTP and LTD). LTP versus LTD is induced by high-frequency stimulation versus low-frequency, but stimulating ß-adrenergic receptors (ßARs) enables LTP induction also by low-frequency stimulation (1 Hz) or theta frequencies (â¼5 Hz) that do not cause plasticity by themselves. In contrast to high-frequency stimulation-LTP, such ßAR-LTP requires Ca2+-flux through L-type voltage-gated Ca2+-channels, not N-methyl-D-aspartate-type glutamate receptors. Surprisingly, we found that ßAR-LTP still required a nonionotropic scaffolding function of the N-methyl-D-aspartate-type glutamate receptor: the stimulus-induced binding of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) to its GluN2B subunit that mediates CaMKII movement to excitatory synapses. In hippocampal neurons, ß-adrenergic stimulation with isoproterenol (Iso) transformed LTD-type CaMKII movement to LTP-type movement, resulting in CaMKII movement to excitatory instead of inhibitory synapses. Additionally, Iso enabled induction of a major cell-biological feature of LTP in response to LTD stimuli: increased surface expression of GluA1 fused with super-ecliptic pHluorein. Like for ßAR-LTP in hippocampal slices, the Iso effects on CaMKII movement and surface expression of GluA1 fused with super-ecliptic pHluorein involved L-type Ca2+-channels and specifically required ß2-ARs. Taken together, these results indicate that Iso transforms LTD stimuli to LTP signals by switching CaMKII movement and GluN2B binding to LTP mode.
Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Potenciação de Longa Duração , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Receptores Adrenérgicos beta/metabolismo , Ácido D-Aspártico/metabolismo , Ácido D-Aspártico/farmacologia , Depressão Sináptica de Longo Prazo/fisiologia , Hipocampo/metabolismo , Sinapses/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismoRESUMO
The Ca2+/calmodulin-dependent protein kinase II (CaMKII) mediates long-term potentiation or depression (LTP or LTD) after distinct stimuli of hippocampal NMDA-type glutamate receptors (NMDARs). NMDAR-dependent LTD prevails in juvenile mice, but a mechanistically different form of LTD can be readily induced in adults by instead stimulating metabotropic glutamate receptors (mGluRs). However, the role that CaMKII plays in the mGluR-dependent form of LTD is not clear. Here we show that mGluR-dependent LTD also requires CaMKII and its T286 autophosphorylation (pT286), which induces Ca2+-independent autonomous kinase activity. In addition, we compared the role of pT286 among three forms of long-term plasticity (NMDAR-dependent LTP and LTD, and mGluR-dependent LTD) using simultaneous live imaging of endogenous CaMKII together with synaptic marker proteins. We determined that after LTP stimuli, pT286 autophosphorylation accelerated CaMKII movement to excitatory synapses. After NMDAR-LTD stimuli, pT286 was strictly required for any movement to inhibitory synapses. Similar to NMDAR-LTD, we found the mGluR-LTD stimuli did not induce CaMKII movement to excitatory synapses. However, in contrast to NMDAR-LTD, we demonstrate that the mGluR-LTD did not involve CaMKII movement to inhibitory synapses and did not require additional T305/306 autophosphorylation. Thus, despite its prominent role in LTP, we conclude that CaMKII T286 autophosphorylation is also required for both major forms of hippocampal LTD, albeit with differential requirements for the heterosynaptic communication of excitatory signals to inhibitory synapses.
Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Hipocampo , Depressão Sináptica de Longo Prazo , Receptores de Glutamato Metabotrópico , Sinapses , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Camundongos , N-Metilaspartato/metabolismo , Fosforilação , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Sinapses/fisiologiaRESUMO
Ca2+ /calmodulin-dependent protein kinase II alpha (CaMKIIα) is a key regulator of neuronal signaling and synaptic plasticity. Synaptic activity and neurotransmitter homeostasis are closely coupled to the energy metabolism of both neurons and astrocytes. However, whether CaMKIIα function is implicated in brain energy and neurotransmitter metabolism remains unclear. Here, we explored the metabolic consequences of CaMKIIα deletion in the cerebral cortex using a genetic CaMKIIα knockout (KO) mouse. Energy and neurotransmitter metabolism was functionally investigated in acutely isolated cerebral cortical slices using stable 13 C isotope tracing, whereas the metabolic function of synaptosomes was assessed by the rates of glycolytic activity and mitochondrial respiration. The oxidative metabolism of [U-13 C]glucose was extensively reduced in cerebral cortical slices of the CaMKIIα KO mice. In contrast, metabolism of [1,2-13 C]acetate, primarily reflecting astrocyte metabolism, was unaffected. Cellular uptake, and subsequent metabolism, of [U-13 C]glutamate was decreased in cerebral cortical slices of CaMKIIα KO mice, whereas uptake and metabolism of [U-13 C]GABA were unaffected, suggesting selective metabolic impairments of the excitatory system. Synaptic metabolic function was maintained during resting conditions in isolated synaptosomes from CaMKIIα KO mice, but both the glycolytic and mitochondrial capacities became insufficient when the synaptosomes were metabolically challenged. Collectively, this study shows that global deletion of CaMKIIα significantly impairs cellular energy and neurotransmitter metabolism, particularly of neurons, suggesting a metabolic role of CaMKIIα signaling in the brain.
RESUMO
Post-stroke depression, a common complication after stroke, severely affects the recovery and quality of life of patients with stroke. Owing to its complex mechanisms, post-stroke depression treatment remains highly challenging. Hippocampal synaptic plasticity is one of the key factors leading to post-stroke depression; however, the precise molecular mechanisms remain unclear. Numerous studies have found that neurotrophic factors, protein kinases and neurotransmitters influence depressive behaviour by modulating hippocampal synaptic plasticity. This review further elaborates on the role of hippocampal synaptic plasticity in post-stroke depression by summarizing recent research and analysing possible molecular mechanisms. Evidence for the correlation between hippocampal mechanisms and post-stroke depression helps to better understand the pathological process of post-stroke depression and improve its treatment.
Assuntos
Depressão , Qualidade de Vida , Humanos , Depressão/etiologia , Plasticidade Neuronal/fisiologia , Hipocampo/metabolismo , Fatores de Crescimento Neural/metabolismoRESUMO
We previously demonstrated that fatty acid-binding protein 3 null (FABP3-/-) mice exhibit resistance to nicotine-induced conditioned place preference (CPP). Here, we confirm that the FABP3 inhibitor, MF1 ((4-(2-(1-(2-chlorophenyl)-5-phenyl-1H-pyrazol-3-yl)phenoxy) butanoic acid), successfully reduces nicotine-induced CPP scores in mice. MF1 (0.3 or 1.0 mg/kg) was orally administered 30 min before nicotine, and CPP scores were assessed in the conditioning, withdrawal, and relapse phases. MF1 treatment decreased CPP scores in a dose-dependent manner. Failure of CPP induction by MF1 (1.0 mg/kg, p.o.) was associated with the inhibition of both CaMKII and ERK activation in the nucleus accumbens (NAc) and hippocampal CA1 regions. MF1 treatment reduced nicotine-induced increases in phosphorylated CaMKII and cAMP-response element-binding protein (CREB)-positive cells. Importantly, the increase in dopamine D2 receptor (D2R) levels following chronic nicotine exposure was inhibited by MF1 treatment. Moreover, the quinpirole (QNP)-induced increase in the level of CaMKII and ERK phosphorylation was significantly inhibited by MF1 treatment of cultured NAc slices from wild type (WT) mice; however, QNP treatment had no effect on CaMKII and ERK phosphorylation levels in the NAc of D2R null mice. Taken together, these results show that MF1 treatment suppressed D2R/FABP3 signaling, thereby preventing nicotine-induced CPP induction. Hence, MF1 can be used as a novel drug to block addiction to nicotine and other drugs by inhibiting the dopaminergic system.
Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Nicotina , Camundongos , Animais , Nicotina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Núcleo Accumbens/metabolismo , Transdução de Sinais , Camundongos Knockout , Proteína 3 Ligante de Ácido Graxo/metabolismoRESUMO
INTRODUCTION: Cancer-associated fibroblasts (CAFs), as the activated fibroblasts in tumor stroma, are important modifiers of tumor progression. TGFß1 has been the mostly accepted factor to fuel normal fibroblasts transformation into CAFs. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is thought to play an important role in fibroblasts activation induced by TGFß1. The aim of this study is to investigate the potential role of CaMKII in TGFß1-induced fibroblasts activation and CAF-like differentiation. Cross talk between CaMKII-dependent fibroblasts and colon cancer in colon cancer progression also was addressed RESULTS: Immunostaining demonstrated that in colon cancer stroma, CaMKII overexpressed in stromal CAFs. In vitro, TGFß1 increased CAF markers expression in human colon fibroblasts CCD-18Co, but not in CaMKII depletion fibroblasts. CaMKII knockdown by CaMKII shRNA significantly inhibited TGFß1-induced fibroblasts activation and CAF-like differentiation. Smad3, AKT, and MAPK were targeted in TGFß1-CaMKII-mediated pathway. Human colon cancer cell line HCT-116 activated fibroblasts directly, whereas CaMKII depletion dragged CCD-18Co fibroblasts undergoing CAF-associated trans-differentiation. Furthermore, increased proliferation, migration, and invasion of colon cancer cells were stimulated when co-cultured with normal fibroblasts, but not with CaMKII depletion fibroblasts. CONCLUSIONS: These findings provide evidence that CaMKII is a critical mediator in TGFß1-induced fibroblasts activation and is involved in the cross talk with colon cancer cells. CaMKII is a potentially effective target for future treatment of colon cancer.
Assuntos
Fibroblastos Associados a Câncer/metabolismo , Transformação Celular Neoplásica/metabolismo , Neoplasias do Colo , Fator de Crescimento Transformador beta1/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Diferenciação Celular , Movimento Celular , Transformação Celular Neoplásica/efeitos dos fármacos , Microambiente Celular , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Descoberta de Drogas , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , RNA Interferente Pequeno/metabolismoRESUMO
Excess synaptic glutamate release has pathological consequences, and the inhibition of glutamate release is crucial for neuroprotection. Kaempferol 3-rhamnoside (KR) is a flavonoid isolated from Schima superba with neuroprotective properties, and its effecton the release of glutamate from rat cerebrocortical nerve terminals was investigated. KR produced a concentration-dependent inhibition of 4-aminopyridine (4-AP)-evoked glutamate release with half-maximal inhibitory concentration value of 17 µM. The inhibition of glutamate release by KR was completely abolished by the omission of external Ca2+ or the depletion of glutamate in synaptic vesicles, and it was unaffected by blocking carrier-mediated release. In addition, KR reduced the 4-AP-evoked increase in Ca2+ concentration, while it did not affect 4-AP-evoked membrane potential depolarization. The application of selective antagonists of voltage-dependent Ca2+ channels revealed that the KR-mediated inhibition of glutamate release involved the suppression of P/Q-type Ca2+ channel activity. Furthermore, the inhibition of release was abolished by the calmodulin antagonist, W7, and Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor, KN62, but not by the protein kinase A (PKA) inhibitor, H89, or the protein kinase C (PKC) inhibitor, GF109203X. We also found that KR reduced the 4-AP-induced increase in phosphorylation of CaMKII and its substrate synapsin I. Thus, the effect of KR on evoked glutamate release is likely linked to a decrease in P/Q-type Ca2+ channel activity, as well as to the consequent reduction in the CaMKII/synapsin I pathway.
Assuntos
Canais de Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Córtex Cerebral/metabolismo , Ácido Glutâmico/metabolismo , Quempferóis/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Córtex Cerebral/citologia , Relação Dose-Resposta a Droga , Quempferóis/química , Potenciais da Membrana/efeitos dos fármacos , Estrutura Molecular , Fosforilação , Ratos , Transdução de Sinais/efeitos dos fármacos , Sinapsinas/metabolismoRESUMO
Nav1.6 is the primary voltage-gated sodium channel isoform expressed in mature axon initial segments and nodes, making it critical for initiation and propagation of neuronal impulses. Thus, Nav1.6 modulation and dysfunction may have profound effects on input-output properties of neurons in normal and pathological conditions. Phosphorylation is a powerful and reversible mechanism regulating ion channel function. Because Nav1.6 and the multifunctional Ca2+/CaM-dependent protein kinase II (CaMKII) are independently linked to excitability disorders, we sought to investigate modulation of Nav1.6 function by CaMKII signaling. We show that inhibition of CaMKII, a Ser/Thr protein kinase associated with excitability, synaptic plasticity, and excitability disorders, with the CaMKII-specific peptide inhibitor CN21 reduces transient and persistent currents in Nav1.6-expressing Purkinje neurons by 87%. Using whole-cell voltage clamp of Nav1.6, we show that CaMKII inhibition in ND7/23 and HEK293 cells significantly reduces transient and persistent currents by 72% and produces a 5.8-mV depolarizing shift in the voltage dependence of activation. Immobilized peptide arrays and nanoflow LC-electrospray ionization/MS of Nav1.6 reveal potential sites of CaMKII phosphorylation, specifically Ser-561 and Ser-641/Thr-642 within the first intracellular loop of the channel. Using site-directed mutagenesis to test multiple potential sites of phosphorylation, we show that Ala substitutions of Ser-561 and Ser-641/Thr-642 recapitulate the depolarizing shift in activation and reduction in current density. Computational simulations to model effects of CaMKII inhibition on Nav1.6 function demonstrate dramatic reductions in spontaneous and evoked action potentials in a Purkinje cell model, suggesting that CaMKII modulation of Nav1.6 may be a powerful mechanism to regulate neuronal excitability.
Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Neurônios/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Técnicas de Patch-Clamp , Células de Purkinje/metabolismoRESUMO
Calcium homeostasis in the cardiomyocyte is critical to the regulation of normal cardiac function. Abnormal calcium dynamics such as altered uptake by the sarcoplasmic reticulum (SR) Ca2+-ATPase and increased diastolic SR calcium leak are involved in the development of maladaptive cardiac remodeling under pathological conditions. Ca2+/calmodulin-dependent protein kinase II-δ (CaMKIIδ) is a well-recognized key molecule in calcium dysregulation in cardiomyocytes. Elevated cellular stress is known as a common feature during pathological remodeling, and c-jun N-terminal kinase (JNK) is an important stress kinase that is activated in response to intrinsic and extrinsic stress stimuli. Our lab recently identified specific actions of JNK isoform 2 (JNK2) in CaMKIIδ expression, activation, and CaMKIIδ-dependent SR Ca2+ mishandling in the stressed heart. This review focuses on the current understanding of cardiac SR calcium handling under physiological and pathological conditions as well as the newly identified contribution of the stress kinase JNK2 in CaMKIIδ-dependent SR Ca2+ abnormal mishandling. The new findings identifying dual roles of JNK2 in CaMKIIδ expression and activation are also discussed in this review.
Assuntos
Sinalização do Cálcio/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/enzimologia , Retículo Sarcoplasmático/enzimologia , Animais , HumanosRESUMO
We examined the effects of neurotensin (NTS) on the excitability of type II neurons in the rat dorsolateral bed nucleus of the stria terminalis (dlBNST) using whole-cell patch-clamp electrophysiology. Bath-application of NTS depolarized type II dlBNST neurons. Analyses of the steady-state I-V relationships implied that the depolarizing effect of NTS is due to potassium conductance blocking. The depolarizing effect of NTS was abolished in the presence of a PLC inhibitor, but not affected by a protein kinase C inhibitor. In the presence of a CaMKII inhibitor, NTS showed depolarizing effects via the increase in non-selective cation conductance in addition to the decrease in potassium conductance. Unexpectedly, in the presence of a PKA inhibitor, NTS hyperpolarized type II dlBNST neurons. These results reveal that diverse signaling pathways mediate the effects of NTS on the excitability of type II dlBNST neurons. The elevation of intracellular Ca2+ levels via the inositol phosphate-mediated signaling activates both Ca2+-dependent adenylate cyclase (AC) and CaMKII. Activation of the AC-cAMP-PKA pathway exerts depolarizing effects on type II dlBNST neurons by decreasing potassium conductance and increasing non-selective cation conductance, whereas activation of the CaMKII pathway exerts hyperpolarizing effects on dlBNST neurons by decreasing non-selective cation conductance.
Assuntos
Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neurotensina/farmacologia , Núcleos Septais/citologia , Transdução de Sinais/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Masculino , Técnicas de Patch-Clamp/métodos , Ratos Sprague-DawleyRESUMO
Testosterone deficiency is associated with poor prognosis among patients with chronic heart failure (HF). Physiological testosterone improves the exercise capacity of patients with HF. In this study, we evaluated whether treatment with physiological testosterone contributes to anti-fibrogenesis by modifying calcium homeostasis in cardiac fibroblasts and we studied the underlying mechanisms. Nitric oxide (NO) analyses, calcium (Ca2+) fluorescence, and Western blotting were performed in primary isolated rat cardiac fibroblasts with or without (control cells) testosterone (10, 100, 1,000 nmol/L) treatment for 48 hours. Physiological testosterone (10 nmol/L) increased NO production and phosphorylation at the inhibitory site of the inositol trisphosphate (IP3) receptor, thereby reducing Ca2+ entry, phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII) expression, type I and type III pro-collagen production. Non-physiological testosterone-treated fibroblasts exhibited similar NO and collagen production capabilities as compared to control (testosterone deficient) fibroblasts. These effects were blocked by co-treatment with NO inhibitor (L-NG-nitro arginine methyl ester [L-NAME], 100 µmol/L). In the presence of the IP3 receptor inhibitor (2-aminoethyl diphenylborinate [2-APB], 50 µmol/L), testosterone-deficient and physiological testosterone-treated fibroblasts exhibited similar phosphorylated CaMKII expression. When treated with 2-APB or CaMKII inhibitor (KN93, 10 µmol/L), testosterone-deficient and physiological testosterone-treated fibroblasts exhibited similar type I, and type III collagen production. In conclusion, physiological testosterone activates NO production, and attenuates the IP3 receptor/Ca2+ entry/CaMKII signaling pathway, thereby inhibiting the collagen production capability of cardiac fibroblasts.
Assuntos
Androgênios/farmacologia , Cálcio/metabolismo , Fibroblastos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Testosterona/farmacologia , Androgênios/fisiologia , Animais , Western Blotting , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Colágeno Tipo I/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Colágeno Tipo III/efeitos dos fármacos , Colágeno Tipo III/metabolismo , Fibroblastos/metabolismo , Fibrose , Receptores de Inositol 1,4,5-Trifosfato/efeitos dos fármacos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Miocárdio/citologia , Ratos , Testosterona/fisiologiaRESUMO
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional protein kinase and has been recently recognized to play a vital role in pathological events in the pulmonary system. CaMKII has diverse downstream targets that promote vascular disease, asthma, and cancer, so improved understanding of CaMKII signaling has the potential to lead to new therapies for lung diseases. Multiple studies have demonstrated that CaMKII is involved in redox modulation of ryanodine receptors (RyRs). CaMKII can be directly activated by reactive oxygen species (ROS) which then regulates RyR activity, which is essential for Ca2+-dependent processes in lung diseases. Furthermore, both CaMKII and RyRs participate in the inflammation process. However, their role in the pulmonary physiology in response to ROS is still an ambiguous one. Because CaMKII and RyRs are important in pulmonary biology, cell survival, cell cycle control, and inflammation, it is possible that the relationship between ROS and CaMKII/RyRs signal complex will be necessary for understanding and treating lung diseases. Here, we review roles of CaMKII/RyRs in lung diseases to understand with how CaMKII/RyRs may act as a transduction signal to connect prooxidant conditions into specific downstream pathological effects that are relevant to rare and common forms of pulmonary disease.
Assuntos
Pneumopatias , Canal de Liberação de Cálcio do Receptor de Rianodina , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Humanos , Inflamação , Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina/genéticaRESUMO
Nicotine is the predominant addictive compound of tobacco and causes the acquisition of dependence through its interactions with nicotinic acetylcholine receptors and various neurotransmitter releases in the central nervous system. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) play a pivotal role in synaptic plasticity in the hippocampus. CaMKII is involved in long-term potentiation induction, which underlies the consolidation of learning and memory; however, the roles of CaMKII in nicotine and other psychostimulant-induced addiction still require further investigation. This article reviews the molecular mechanisms and crucial roles of CaMKII and ERK in nicotine and other stimulant drug-induced addiction. We also discuss dopamine (DA) receptor signaling involved in nicotine-induced addiction in the brain reward circuitry. In the last section, we introduce the association of polyunsaturated fatty acids and cellular chaperones of fatty acid-binding protein 3 in the context of nicotine-induced addiction in the mouse nucleus accumbens and provide a novel target for the treatment of drug abuse affecting dopaminergic systems.
Assuntos
Transdução de Sinais , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Suscetibilidade a Doenças , Dopamina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína 3 Ligante de Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Humanos , Nicotina/efeitos adversos , Nicotina/metabolismo , Transtornos Relacionados ao Uso de Substâncias/etiologia , Transtornos Relacionados ao Uso de Substâncias/metabolismoRESUMO
BACKGROUND: Myeloid differentiation protein 1 (MD1) is expressed in the human heart and is a negative regulator of Toll-like receptor 4 (TLR4) signalling. MD1 exerts anti-arrhythmic effects. AIM: The aim of this study was to determine the role of MD1 in myocardial infarction (MI)-related ventricular arrhythmias (VAs). METHOD: Myocardial infarction was induced by surgical ligation of the left anterior coronary artery in MD1 knockout (KO) mice and their wild-type littermates. Myocardial infarction-induced vulnerability to VAs and its underlying mechanisms were evaluated. RESULTS: Myeloid differentiation protein 1 was downregulated in the MI mice. Myeloid differentiation protein 1 deficiency decreased post-MI left ventricular (LV) function and increased the infarct size. The MI mice exhibited prolonged action potential duration (APD), enhanced APD alternans thresholds, and a higher incidence of VAs. Myocardial infarction-induced LV fibrosis and inflammation decreased the expression levels of Kv4.2, Kv4.3, Kv1.5, and Kv2.1, increased Cav1.2 expression, and disturbed Ca2+ handling protein expression. These MI-induced adverse effects were further exacerbated in KO mice. Mechanistically, MD1 deletion markedly enhanced the activation of the TLR4/calmodulin-dependent protein kinase II (CaMKII) signalling pathway in post-MI mice. CONCLUSIONS: Myeloid differentiation protein 1 deletion increases the vulnerability to VAs in post-MI mice. This is mainly caused by the aggravated maladaptive LV fibrosis and inflammation and interference with the expressions of ion channels and Ca2+ handling proteins, which is related to enhanced activation of the TLR4/CaMKII signalling pathway.
Assuntos
Infarto do Miocárdio , Animais , Arritmias Cardíacas/genética , Fibrose , Camundongos , Camundongos Knockout , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Função Ventricular EsquerdaRESUMO
The study examines the problem whether pyroptosis of U87-MG glioblastoma cells can result from activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) by a local anesthetic. Glioblastoma cells exposed to various concentrations of typical local anesthetic lidocaine demonstrated augmented cytosolic flux of Ca2+, while suppression of CaMKII expression with the corresponding siRNA significantly inhibited this effect in cells treated with 2 mM lidocaine. Lidocaine up-regulated the expression of mRNA caspase-3 and gasdermin GSDME proteins, whereas silencing of CaMKII gene with siRNA significantly moderated this effect. In addition, lidocaine inhibited proliferation of U87-MG cells, and this effect was prevented by silencing CaMKII gene. Thus, lidocaine activated protein kinase CaMKII, which phosphorylated TRPV1 ion channels and induced calcium overload of U87-MG glioblastoma cells, thereby provoking their pyroptosis.
Assuntos
Anestésicos Locais/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Lidocaína/farmacologia , Neuroglia/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Cálcio/metabolismo , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Transporte de Íons/efeitos dos fármacos , Neuroglia/citologia , Neuroglia/metabolismo , Fosforilação/efeitos dos fármacos , Piroptose/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismoRESUMO
Ca2+ oscillations and consequent Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation are required for embryogenesis, as well as neuronal, immunological, and cardiac signaling. Fertilization directly results in Ca2+ oscillations, but the resultant pattern of CaMKII activity remains largely unclear. To address this gap, we first employed the one existing biosensor for CaMKII activation. This sensor, Camui, comprises CaMKIIα and therefore solely reports on the activation of this CaMKII variant. Additionally, to detect the activity of all endogenous CaMKII variants simultaneously, we constructed a substrate-based sensor for CaMKII activity, FRESCA (FRET-based sensor for CaMKII activity). To examine the differential responses of the Camui and FRESCA sensors, we used several approaches to stimulate Ca2+ release in mouse eggs, including addition of phospholipase Cζ cRNA, which mimics natural fertilization. We found that the Camui response is delayed or terminates earlier than the FRESCA response. FRESCA enables assessment of endogenous CaMKII activity in real-time by both fertilization and artificial reagents, such as Sr2+, which also leads to CaMKII activation. FRESCA's broad utility will be important for optimizing artificial CaMKII activation for clinical use to manage infertility. Moreover, FRESCA provides a new view on CaMKII activity, and its application in additional biological systems may reveal new signaling paradigms in eggs, as well as in neurons, cardiomyocytes, immune cells, and other CaMKII-expressing cells.
Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Animais , Técnicas Biossensoriais/métodos , Fertilização , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Ionomicina/farmacologia , Camundongos , Óvulo/efeitos dos fármacos , Óvulo/metabolismo , Fosfoinositídeo Fosfolipase C/metabolismoRESUMO
Temporal lobe epilepsy (TLE) is a prevalent neurological disorder with many patients experiencing poor seizure control with existing anti-epileptic drugs. Thus, novel insights into the mechanisms of epileptogenesis and identification of new drug targets can be transformative. Changes in ion channel function have been shown to play a role in generating the aberrant neuronal activity observed in TLE. Previous work demonstrates that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate neuronal excitability and are mislocalized within CA1 pyramidal cells in a rodent model of TLE. The subcellular distribution of HCN channels is regulated by an auxiliary subunit, tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b), and disruption of this interaction correlates with channel mislocalization. However, the molecular mechanisms responsible for HCN channel dysregulation in TLE are unclear. Here we investigated whether changes in TRIP8b phosphorylation are sufficient to alter HCN channel function. We identified a phosphorylation site at residue Ser237 of TRIP8b that enhances binding to HCN channels and influences channel gating by altering the affinity of TRIP8b for the HCN cytoplasmic domain. Using a phosphospecific antibody, we demonstrate that TRIP8b phosphorylated at Ser237 is enriched in CA1 distal dendrites and that phosphorylation is reduced in the kainic acid model of TLE. Overall, our findings indicate that the TRIP8b-HCN interaction can be modulated by changes in phosphorylation and suggest that loss of TRIP8b phosphorylation may affect HCN channel properties during epileptogenesis. These results highlight the potential of drugs targeting posttranslational modifications to restore TRIP8b phosphorylation to reduce excitability in TLE.
Assuntos
Epilepsia do Lobo Temporal/metabolismo , Proteínas de Membrana/metabolismo , Peroxinas/metabolismo , Subunidades Proteicas/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Dendritos/metabolismo , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Ativação do Canal Iônico , Ácido Caínico , Proteínas de Membrana/química , Camundongos Endogâmicos C57BL , Peroxinas/química , Fosforilação , Fosfosserina/metabolismo , Subunidades Proteicas/química , Ratos Sprague-Dawley , Reprodutibilidade dos TestesRESUMO
Intracellular calcium is related to cardiac hypertrophy. The CaV1.2 channel and Ca2+/calmodulin-dependent protein kinase II (CaMKII) and CaM regulate the intracellular calcium content. However, the differences in CaMKII and CaM in cardiac hypertrophy are still conflicting and are worthy of studying as drug targets. Therefore, in this study, we aim to investigate the roles and mechanism of CaM and CaMKII on CaV1.2 in pathological myocardial hypertrophy. The results showed that ISO stimulation caused SD rat heart and cardiomyocyte hypertrophy. In vivo, the HW/BW, LVW/BW, cross-sectional area, fibrosis ratio and ANP expression were all increased. There were no differences in CaV1.2 channel expression in the in vivo model or the in vitro model, but the ISO stimulation induced channel activity, and the [Ca2+]i increased. The protein expression levels of CaMKII and p-CaMKII were all increased in the ISO group, but the CaM expression level decreased. AIP inhibited ANP, CaMKII and p-CaMKII expression, and ISO-induced [Ca2+]i increased. AIP also reduced HDAC4, p-HDAC and MEF2C expression. However, CMZ did not play a cardiac hypertrophy reversal role in vitro. In conclusion, we considered that compared with CaM, CaMKII may be a much more important drug target in cardiac hypertrophy reversal.