Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Curr Atheroscler Rep ; 24(4): 235-242, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35107761

RESUMO

PURPOSE OF REVIEW: Calorie restriction (CR) has emerged as a non-pharmacological treatment to prevent cardiovascular disease (CVD). This article reviews recent progress regarding the role of CR in CVD prevention via reduction of cardiometabolic risk factors and promoting atherosclerotic stability. RECENT FINDINGS: Calorie restriction may be an approach to reduce the development of atherosclerosis. CR promotes eNOS activity and SIRT1 expression which in turn improves vasodilation resulting in greater regulation of blood pressure and blood flow. Modest CR in nonobese young and middle-aged adults results in improved cardiometabolic risk profile. The evidence for CR in CVD prevention has accumulated in the recent years. Most evidence, however, is from rodent or small human trials. Our understanding of the magnitude of calorie reduction that leads to the long-term therapeutic effects on cardiovascular health is limited. More well-designed controlled trials conducted in diverse populations with larger sample sizes and longer follow-ups are warranted.


Assuntos
Restrição Calórica , Doenças Cardiovasculares , Pressão Sanguínea , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Ingestão de Energia , Humanos , Pessoa de Meia-Idade , Vasodilatação
2.
Nutr Health ; 26(3): 253-262, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32552390

RESUMO

BACKGROUND: Finding ways to a healthier ageing are increasingly becoming the focus of geriatric research. One way to accomplish this could be calorie restriction, as this is known to positively influence the ageing of model organisms. AIM: The aim of this study was to investigate the influence of calorie reduction (F. X. Mayr therapy) and of the calorie restriction mimetics resveratrol and spermidine on the expression of ageing-associated genes. METHODS: mRNA expression in peripheral blood mononuclear cells (PBMCs) of 18 participants taking part in an F. X. Mayr therapy was analysed. The PBMCs of one additional participant were treated ex vivo with spermidine or resveratrol. mRNA expression of SIRT1, SIRT3, FOXO3 and SOD2 was determined for these two calorie restriction mimetics. For the F. X. Mayr therapy samples, mRNA of XPA was analysed additionally. RESULTS: mRNA expression of the ageing-associated genes showed a distinct donor variation during F. X. Mayr therapy, with a significant increase in mRNA expression of SIRT1. Expression of XPA was similar to SIRT1, with a significant correlation at the last time point tested. Spermidine treatment of PBMCs resulted in a significantly increased expression of all genes tested, whereas resveratrol treatment caused a significant increase of SIRT3, FOXO3 and SOD2 mRNA expression. CONCLUSIONS: By increasing SIRT1 and XPA mRNA expression, calorie reduction in the form of F. X. Mayr therapy could contribute to a healthier ageing; however, the donor variability observed showed that not everyone benefited from this. Calorie restriction mimetics may be an option for promote healthier ageing for those who do not benefit from calorie reduction.


Assuntos
Envelhecimento/genética , Doadores de Sangue , Restrição Calórica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , RNA Mensageiro/genética , Resveratrol/farmacologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espermidina/farmacologia
3.
Geroscience ; 45(6): 3475-3490, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37389698

RESUMO

Calorie restriction (CR) can prolong human lifespan, but enforcing long-term CR is difficult. Thus, a drug that reproduces the effects of CR without CR is required. More than 10 drugs have been listed as CR mimetics (CRM), and some of which are conventionally categorized as upstream-type CRMs showing glycolytic inhibition, whereas the others are categorized as downstream-type CRMs that regulate or genetically modulate intracellular signaling proteins. Intriguingly, recent reports have revealed the beneficial effects of CRMs on the body such as improving the host body condition via intestinal bacteria and their metabolites. This beneficial effect of gut microbiota may lead to lifespan extension. Thus, CRMs may have a dual effect on longevity. However, no reports have collectively discussed them as CRMs; hence, our knowledge about CRM and its physiological effects on the host remains fragmentary. This study is the first to present and collectively discuss the accumulative evidence of CRMs improving the gut environments for healthy lifespan extension, after enumerating the latest scientific findings related to the gut microbiome and CR. The conclusion drawn from this discussion is that CRM may partially extend the lifespan through its effect on the gut microbiota. CRMs increase beneficial bacteria abundance by decreasing harmful bacteria rather than increasing the diversity of the microbiome. Thus, the effect of CRMs on the gut could be different from that of conventional prebiotics and seemed similar to that of next-generation prebiotics.


Assuntos
Microbioma Gastrointestinal , Longevidade , Humanos , Restrição Calórica , Nível de Saúde
4.
Biol Futur ; 74(1-2): 221-229, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37247086

RESUMO

Curcumin, a strong natural compound with numerous health benefits, is extracted from the Curcuma longa. According to recent research findings, it also acts as a calorie restriction mimetic. We examined established aging biomarkers in erythrocytes and plasma and tested a persistent oral dietary dose of curcumin in young and D-galactose-induced accelerated rat aging models. For four weeks, D-gal (300 mg/kg b.w. subcutaneously) and curcumin (200 mg/kg b.w. oral) were administered simultaneously to test the protective effects of curcumin against D-galactose-induced accelerated aging and oxidative stress. In the accelerated senescent rat model, we discovered a significant rise in protein carbonyl, malonaldehyde (MDA), and advanced oxidation protein products. Increased levels of catalase, superoxide dismutase, ferric-reducing antioxidant potential, and reduced glutathione (GSH) were observed. Our findings reveal that curcumin has characteristics resembling a calorie restriction mimic and can successfully maintain redox equilibrium throughout the aging process in rat erythrocytes and plasma.


Assuntos
Restrição Calórica , Curcumina , Ratos , Animais , Curcumina/farmacologia , Galactose/farmacologia , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo
5.
Rejuvenation Res ; 26(1): 21-31, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36524249

RESUMO

Increasing age is the single largest risk factor for a variety of chronic illnesses. As a result, improving the capability to target the aging process leads to an increased health span. A lack of appropriate glucoregulatory control is a recurring issue associated with aging and chronic illness, even though many longevity therapies result in the preservation of glucoregulatory control. In this study, we suggest that targeting glucose metabolism to improve regulatory control can help slow the aging process. Male Wistar rats, both young (age 4 months) and old (age 24 months), were given acarbose (ACA) (30 mg/kg b.w.) for 6 weeks. An array of oxidative stress indicators was assessed after the treatment period, including plasma antioxidant capacity as determined by the ferric reducing ability of plasma (FRAP), reactive oxygen species (ROS), lipid peroxidation (malondialdehyde [MDA]), reduced glutathione (GSH), total plasma thiol (sulfhydryl [SH]), plasma membrane redox system (PMRS), protein carbonyl (PCO), advanced oxidation protein products (AOPPs), advanced glycation end products (AGEs), and sialic acid (SA) in control and treated groups. When compared with controls, ACA administration increased FRAP, GSH, SH, and PMRS activities in both age groups. The treated groups, on the contrary, showed substantial decreases in ROS, MDA, PCO, AOPP, AGE, and SA levels. The effect of ACA on almost all parameters was more evident in old-age rats. ACA significantly increased PMRS activity in young rats; here the effect was less prominent in old rats. Our data support the restoration of antioxidant levels in older rats after short-term ACA treatment. The findings corroborate the potential role of ACA as a putative calorie restriction mimetic.


Assuntos
Acarbose , Antioxidantes , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Acarbose/farmacologia , Acarbose/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ratos Wistar , Oxirredução , Estresse Oxidativo , Glutationa/metabolismo , Eritrócitos , Homeostase , Glucose/metabolismo
6.
Front Immunol ; 10: 1402, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293576

RESUMO

There is growing interest in harnessing lifestyle and pharmaceutical interventions to boost immune function, reduce tumor growth, and improve cancer treatment efficacy while reducing treatment toxicity. Interventions targeting glucose metabolism are particularly promising, as they have the potential to directly inhibit tumor cell proliferation. However, because anti-tumor immune effector cells also rely on glycolysis to sustain their clonal expansion and function, it remains unclear whether glucose-modulating therapies will support or hinder anti-tumor immunity. In this perspective, we summarize a growing body of literature that evaluates the effects of intermittent fasting, calorie restriction mimetics, and anti-hyperglycemic agents on anti-tumor immunity and immunotherapy outcomes. Based on the limited data currently available, we contend that additional pre-clinical studies and clinical trials are warranted to address the effects of co-administration of anti-hyperglycemic agents or glucose-lowering lifestyle modifications on anti-tumor immunity and cancer treatment outcomes. We stress that there is currently insufficient evidence to provide recommendations regarding these interventions to cancer patients undergoing immunotherapy. However, if found to be safe and effective in clinical trials, interventions targeting glucose metabolism could act as low-cost combinatorial adjuvants for cancer patients receiving immune checkpoint blockade or other immunotherapies.


Assuntos
Restrição Calórica , Jejum , Glicólise/imunologia , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Ensaios Clínicos como Assunto , Humanos , Neoplasias/patologia
7.
Diabetes Ther ; 10(5): 1645-1717, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31359367

RESUMO

The advent of incretin mimetics such as glucagon-like peptide-1 receptor agonists (GLP-1 RAs) has enriched the armamentarium for diabetes management owing to their glycaemic as well as extra-glycaemic benefits. The approval status and availability of this class of drugs vary widely across the globe. Being a relatively newer class of drug with numerous benefits, several national and international guidelines are working towards addressing clinical questions pertaining to the optimal use of GLP-1 RAs for the management of diabetes. Although the newer class of drugs are associated with significant benefits such as patient-centric approach, these drugs demand the providers to be vigilant and knowledgeable about the medication. The South Asian population is at higher risk of type 2 diabetes mellitus (T2DM) because of their genetic predisposition and lifestyle changes. Hence, prevention and management of T2DM and its associated complications in this population are of paramount importance. The current report aims to present an overview of current knowledge on GLP-1 RAs based on pragmatic review of the available clinical evidence. In addition, this report is a consensus of expert endocrinologists representing South Asian countries including India, Pakistan, Bangladesh, Nepal, Sri Lanka, Afghanistan and the Maldives on essential recommendations related to the use of GLP-1 RAs in a real-world scenario.

8.
Cells ; 9(1)2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906091

RESUMO

Dietary restriction (DR), which is defined as a reduction of particular or total nutrient intake without causing malnutrition, has been proved to be a robust way to extend both lifespan and health-span in various species from yeast to mammal. However, the molecular mechanisms by which DR confers benefits on longevity were not yet fully elucidated. The forkhead box O transcription factors (FOXOs), identified as downstream regulators of the insulin/IGF-1 signaling pathway, control the expression of many genes regulating crucial biological processes such as metabolic homeostasis, redox balance, stress response and cell viability and proliferation. The activity of FOXOs is also mediated by AMP-activated protein kinase (AMPK), sirtuins and the mammalian target of rapamycin (mTOR). Therefore, the FOXO-related pathways form a complex network critical for coordinating a response to environmental fluctuations in order to maintain cellular homeostasis and to support physiological aging. In this review, we will focus on the role of FOXOs in different DR interventions. As different DR regimens or calorie (energy) restriction mimetics (CRMs) can elicit both distinct and overlapped DR-related signaling pathways, the benefits of DR may be maximized by combining diverse forms of interventions. In addition, a better understanding of the precise role of FOXOs in different mechanistic aspects of DR response would provide clear cellular and molecular insights on DR-induced increase of lifespan and health-span.


Assuntos
Restrição Calórica , Fatores de Transcrição Forkhead/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Metabolismo Energético , Fatores de Transcrição Forkhead/genética , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Família Multigênica
9.
Cell Metab ; 27(3): 667-676.e4, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29514072

RESUMO

The role in longevity and healthspan of nicotinamide (NAM), the physiological precursor of NAD+, is elusive. Here, we report that chronic NAM supplementation improves healthspan measures in mice without extending lifespan. Untargeted metabolite profiling of the liver and metabolic flux analysis of liver-derived cells revealed NAM-mediated improvement in glucose homeostasis in mice on a high-fat diet (HFD) that was associated with reduced hepatic steatosis and inflammation concomitant with increased glycogen deposition and flux through the pentose phosphate and glycolytic pathways. Targeted NAD metabolome analysis in liver revealed depressed expression of NAM salvage in NAM-treated mice, an effect counteracted by higher expression of de novo NAD biosynthetic enzymes. Although neither hepatic NAD+ nor NADP+ was boosted by NAM, acetylation of some SIRT1 targets was enhanced by NAM supplementation in a diet- and NAM dose-dependent manner. Collectively, our results show health improvement in NAM-supplemented HFD-fed mice in the absence of survival effects.


Assuntos
Suplementos Nutricionais , Envelhecimento Saudável/metabolismo , Fígado , NAD/metabolismo , Niacinamida/farmacologia , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Fígado Gorduroso/tratamento farmacológico , Inflamação/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Longevidade , Camundongos Endogâmicos C57BL , Niacinamida/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Sirtuína 1/metabolismo
10.
Nutrients ; 10(12)2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30469486

RESUMO

Calorie restriction (CR) can prolong the human lifespan, but enforcing long-term CR is difficult. Therefore, a compound that reproduces the effect of CR without CR is needed. In this review, we summarize the current knowledge on compounds with CR mimetic (CRM) effects. More than 10 compounds have been listed as CRMs, some of which are conventionally categorized as upstream-type CRMs showing glycolytic inhibition, while the others are categorized as downstream-type CRMs that regulate or genetically modulate intracellular signaling proteins. Among these, we focus on upstream-type CRMs and propose their classification as compounds with energy metabolism inhibition effects, particularly glucose metabolism modulation effects. The upstream-type CRMs reviewed include chitosan, acarbose, sodium-glucose cotransporter 2 inhibitors, and hexose analogs such as 2-deoxy-d-glucose, d-glucosamine, and d-allulose, which show antiaging and longevity effects. Finally, we discuss the molecular definition of upstream-type CRMs.


Assuntos
Acarbose/farmacologia , Envelhecimento/efeitos dos fármacos , Glicemia/metabolismo , Quitosana/farmacologia , Glicólise/efeitos dos fármacos , Hexoses/farmacologia , Longevidade/efeitos dos fármacos , Animais , Restrição Calórica , Desoxiglucose/farmacologia , Glucosamina/farmacologia , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
11.
Age (Dordr) ; 27(1): 39-48, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23598602

RESUMO

There are two firmly established methods of prolonging life. Calorie restriction (CR) using nutrient-rich diets to prolong life in lower animals, and life saving medications in humans to delay the development of the major diseases of middle and old age. These two approaches have different mechanisms of action. In rats, CR at 40% below ad libitum intake begun soon after weaning and continued until death, reduces body weight by about 40% and increases lifespan. There have been no lifelong CR studies performed on humans. However, in healthy adult human subjects about 20% CR over a period of 2-15 years, lowers body weight by about 20% and decreases body mass index (BMI) to about 19. This CR treatment in humans reduces blood pressure and blood cholesterol to a similar extent as the specific drugs used to delay the onset of vascular disease and so extend human life. These same drugs may act by mechanisms that overlap with some of the mechanisms of CR in retarding these pathologies and thus may have similar antiaging and life prolonging actions. Such drugs may be regarded as CR mimetics which inhibit the development of certain life shortening diseases, without the need to lower calorie intake. In developed countries, better medical care, drug therapy, vaccinations, and other public health measures have extended human life by about 30 years during the 20th century without recourse to CR, which is so effective in the rat. The percentage gain in human life expectancy during the 20th century is twice that achieved by CR in rat survival. However, rat longevity studies now use specific pathogen-free animals and start CR after weaning or later, thereby excluding deaths from infectious diseases and those associated with birth and early life. There is a need to develop CR mimetics which can delay the development of life-threatening diseases in humans. In the 21st century due to the human epidemic of overeating with a sedentary lifestyle, it may necessary to utilize CR to counter the aging effects of overweight. Since the greatest life-extending effects of CR in the rodent occur when started early in life, long-term antiaging therapy in humans should be initiated soon after maturity, when physiological systems have developed optimally.

12.
Theor Med Bioeth ; 36(5): 321-40, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26246312

RESUMO

Biological studies have demonstrated that it is possible to slow the ageing process and extend lifespan in a wide variety of organisms, perhaps including humans. Making use of the findings of these studies, this article examines two problems concerning the effect of life extension on population size and welfare. The first--the problem of overpopulation--is that as a result of life extension too many people will co-exist at the same time, resulting in decreases in average welfare. The second--the problem of underpopulation--is that life extension will result in too few people existing across time, resulting in decreases in total welfare. I argue that overpopulation is highly unlikely to result from technologies that slow ageing. Moreover, I claim that the problem of underpopulation relies on claims about life extension that are false in the case of life extension by slowed ageing. The upshot of these arguments is that the population problems discussed provide scant reason to oppose life extension by slowed ageing.


Assuntos
Envelhecimento , Expectativa de Vida , Mortalidade , Crescimento Demográfico , Teoria Ética , Humanos , Longevidade , Mortalidade/tendências
13.
Exp Gerontol ; 48(10): 1096-100, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23588119

RESUMO

The morbidity of ocular diseases, including macular degeneration, diabetic retinopathy, and dry eye disease, has been gradually increasing worldwide. Because these diseases develop from age-associated ocular dysfunctions, interventions against the aging process itself may be a promising strategy for their management. Among the several approaches to interrupt aging processes, calorie restriction (CR) has been shown to recover and/or slow age-related functional declines in various organs, including the eye. Here, we review interventions against the aging process as potential therapeutic approaches to age-related ocular diseases. The effects of CR and CR mimetics in animal models of age-related eye diseases are explored. Furthermore, we discuss the possibilities of expanding this research to prospective studies to elucidate the molecular mechanisms by which CR and/or CR mimetics preserve ocular functions.


Assuntos
Antioxidantes/administração & dosagem , Restrição Calórica/métodos , Oftalmopatias/prevenção & controle , Administração Oral , Animais , Modelos Animais de Doenças , Ácido Eicosapentaenoico/administração & dosagem , Oftalmopatias/dietoterapia , Previsões , Humanos , Lactoferrina/administração & dosagem , Luteína/administração & dosagem , Camundongos , Camundongos Knockout , Polifenóis/administração & dosagem , Ratos
14.
Ann N Y Acad Sci ; 1290: 122-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23855474

RESUMO

Adipose tissue is an active endocrine organ that responds to changes in energy balance and influences whole-body physiology. Adipose tissue dysfunction with obesity is associated with metabolic disease, neurodegeneration, inflammation, and cancer, whereas calorie restriction (CR) decreases both adiposity and disease risk. Although resveratrol does not affect obesity, it mimics long-term CR by increasing both life span in model organisms and health span in rodents. Because resveratrol's benefits in experimental animals are reminiscent of improved adipose tissue function under CR, this review synthesizes existing data to assess if resveratrol's effects may be mediated by mimicking CR in adipose tissue. In metabolically unhealthy humans, resveratrol consumption recapitulates the health benefits of CR, whereas short-term resveratrol in otherwise healthy humans mimics CR at the transcriptional, but not physiological, level. This latter observation (neutral effect of short-term resveratrol) may be protective against future disease risk; however, long-term studies in healthy humans will be needed to support this hypothesis.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Materiais Biomiméticos/farmacologia , Restrição Calórica , Estilbenos/farmacologia , Tecido Adiposo/metabolismo , Adiposidade/efeitos dos fármacos , Adiposidade/fisiologia , Animais , Materiais Biomiméticos/uso terapêutico , Restrição Calórica/métodos , Humanos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Resveratrol , Estilbenos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA