RESUMO
De novo variants affecting monoubiquitylation of histone H2B (H2Bub1) are enriched in human congenital heart disease. H2Bub1 is required in stem cell differentiation, cilia function, post-natal cardiomyocyte maturation and transcriptional elongation. However, how H2Bub1 affects cardiogenesis is unknown. We show that the H2Bub1-deposition complex (RNF20-RNF40-UBE2B) is required for mouse cardiogenesis and for differentiation of human iPSCs into cardiomyocytes. Mice with cardiac-specific Rnf20 deletion are embryonic lethal and have abnormal myocardium. We then analyzed H2Bub1 marks during differentiation of human iPSCs into cardiomyocytes. H2Bub1 is erased from most genes at the transition from cardiac mesoderm to cardiac progenitor cells but is preserved on a subset of long cardiac-specific genes. When H2Bub1 is reduced in iPSC-derived cardiomyocytes, long cardiac-specific genes have fewer full-length transcripts. This correlates with H2Bub1 accumulation near the center of these genes. H2Bub1 accumulation near the center of tissue-specific genes was also observed in embryonic fibroblasts and fetal osteoblasts. In summary, we show that normal H2Bub1 distribution is required for cardiogenesis and cardiomyocyte differentiation, and suggest that H2Bub1 regulates tissue-specific gene expression by increasing the amount of full-length transcripts.
Assuntos
Cardiopatias Congênitas , Histonas , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , Coração/embriologia , Histonas/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/metabolismo , UbiquitinaçãoRESUMO
Heart development is a complex process that requires asymmetric positioning of the heart, cardiac growth and valve morphogenesis. The mechanisms controlling heart morphogenesis and valve formation are not fully understood. The pro-convertase FurinA functions in heart development across vertebrates. How FurinA activity is regulated during heart development is unknown. Through computational analysis of the zebrafish transcriptome, we identified an RNA motif in a variant FurinA transcript harbouring a long 3' untranslated region (3'UTR). The alternative 3'UTR furina isoform is expressed prior to organ positioning. Somatic deletions in the furina 3'UTR lead to embryonic left-right patterning defects. Reporter localisation and RNA-binding assays show that the furina 3'UTR forms complexes with the conserved RNA-binding translational repressor, Ybx1. Conditional ybx1 mutant embryos show premature and increased Furin reporter expression, abnormal cardiac morphogenesis and looping defects. Mutant ybx1 hearts have an expanded atrioventricular canal, abnormal sino-atrial valves and retrograde blood flow from the ventricle to the atrium. This is similar to observations in humans with heart valve regurgitation. Thus, the furina 3'UTR element/Ybx1 regulon is important for translational repression of FurinA and regulation of heart development.
Assuntos
Regulon , Peixe-Zebra , Animais , Humanos , Regiões 3' não Traduzidas , Regulon/genética , Morfogênese/genética , Valvas Cardíacas , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismoRESUMO
Congenital heart defects are associated with significant health challenges, demanding a deep understanding of the underlying biological mechanisms and, thus, better devices or platforms that can recapitulate human cardiac development. The discovery of human pluripotent stem cells has substantially reduced the dependence on animal models. Recent advances in stem cell biology, genetic editing, omics, microfluidics, and sensor technologies have further enabled remarkable progress in the development of in vitro platforms with increased fidelity and efficiency. In this review, we provide an overview of advancements in in vitro cardiac development platforms, with a particular focus on technological innovation. We categorize these platforms into four areas: two-dimensional solid substrate cultures, engineered substrate architectures that enhance cellular functions, cardiac organoids, and embryos/explants-on-chip models. We conclude by addressing current limitations and presenting future perspectives.
Assuntos
Avaliação Pré-Clínica de Medicamentos , Coração , Engenharia Tecidual , Humanos , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Engenharia Tecidual/métodos , Organoides/metabolismo , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Cardiopatias Congênitas/genética , Dispositivos Lab-On-A-ChipRESUMO
BACKGROUND: Essential patterning processes transform the heart tube into a compartmentalized organ with distinct chambers separated by an atrioventricular canal (AVC). This transition involves the refinement of expression of genes that are first found broadly throughout the heart tube and then become restricted to the AVC. Despite the importance of cardiac patterning, we do not fully understand the mechanisms that limit gene expression to the AVC. RESULTS: We show that the zebrafish gene smarcc1a, encoding a BAF chromatin remodeling complex subunit homologous to mammalian BAF155, is critical for cardiac patterning. In smarcc1a mutants, myocardial differentiation and heart tube assembly appear to proceed normally. Subsequently, the smarcc1a mutant heart fails to exhibit refinement of gene expression patterns to the AVC, and the persistence of broad gene expression is accompanied by failure of chamber expansion. In addition to their cardiac defects, smarcc1a mutants lack pectoral fins, indicating similarity to tbx5a mutants. However, comparison of smarcc1a and tbx5a mutants suggests that perturbation of tbx5a function is not sufficient to cause the smarcc1a mutant phenotype. CONCLUSIONS: Our data indicate an important role for Smarcc1a-containing chromatin remodeling complexes in regulating the changes in gene expression and morphology that distinguish the AVC from the cardiac chambers.
Assuntos
Coxins Endocárdicos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Peixe-Zebra/metabolismo , Coração , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/metabolismoRESUMO
The developing heart is formed of two tissue layers separated by an extracellular matrix (ECM) that provides chemical and physical signals to cardiac cells. While deposition of specific ECM components creates matrix diversity, the cardiac ECM is also dynamic, with modification and degradation playing important roles in ECM maturation and function. In this Review, we discuss the spatiotemporal changes in ECM composition during cardiac development that support distinct aspects of heart morphogenesis. We highlight conserved requirements for specific ECM components in human cardiac development, and discuss emerging evidence of a central role for the ECM in promoting heart regeneration.
Assuntos
Matriz Extracelular/metabolismo , Coração/crescimento & desenvolvimento , Animais , Proteínas da Matriz Extracelular/metabolismo , Coração/fisiologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Organogênese , Pericárdio/metabolismo , RegeneraçãoRESUMO
That the highly trabeculated ventricular walls of the developing embryos transform to the arrangement during the fetal stages, when the mural architecture is dominated by the thickness of the compact myocardium, has been explained by the coalescence of trabeculations, often erroneously described as 'compaction'. Recent data, however, support differential rates of growth of the trabecular and compact layers as the major driver of change. Here, these processes were assessed quantitatively and visualized in standardized views. We used a larger dataset than has previously been available of mouse hearts, covering the period from embryonic day 10.5 to postnatal day 3, supported by images from human hearts. The volume of the trabecular layer increased throughout development, in contrast to what would be expected had there been 'compaction'. During the transition from embryonic to fetal life, the rapid growth of the compact layer diminished the proportion of trabeculations. Similarly, great expansion of the central cavity reduced the proportion of the total cavity made up of intertrabecular recesses. Illustrations of the hearts with the median value of left ventricular trabeculation confirm a pronounced growth of the compact wall, with prominence of the central cavity. This corresponds, in morphological terms, to a reduction in the extent of the trabecular layer. Similar observations were made in the human hearts. We conclude that it is a period of comparatively slow growth of the trabecular layer, rather than so-called compaction, that is the major determinant of the changing morphology of the ventricular walls of both mouse and human hearts.
Assuntos
Ventrículos do Coração , Animais , Humanos , Camundongos , Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/embriologia , Idade GestacionalRESUMO
The slmap gene is alternatively spliced to generate many isoforms that are abundant in developing myocardium. The largest protein isoform SLMAP3 is ubiquitously expressed and has been linked to cardiomyopathy, Brugada syndrome and Hippo signaling. To examine any role in cardiogenesis, mice homozygous for floxed slmap allele were crossed with Nkx2.5-cre mice to nullify its expression in cardiac progenitors. Targeted deletion of the slmap gene resulted in the specific knockout (KO) of the SLMAP3 (~91 KDa) isoform without any changes in the expression of the SLMAP2 (~43 kDa) or the SLMAP1 (~35 kDa) isoforms which continued to accumulate to similar levels as seen in Wt embryonic hearts. The loss of SLMAP3 from cardiac progenitors resulted in decreased size of the developing embryonic hearts evident at E9.5 to E16.5 with four small chambers and significantly thinner left ventricles. The proliferative capacity assessed with the phosphorylation of histone 3 or with Ki67 in E12.5 hearts was not significantly altered due to SLMAP3 deficiency. The size of embryonic cardiomyocytes, marked with anti-Troponin C, revealed significantly smaller cells, but their hypertrophic response (AKT1 and MTOR1) was not significantly affected by the specific loss of SLMAP3 protein. Further, no changes in phosphorylation of MST1/2 or YAP were detected in SLMAP3-KO embryonic myocardium, ruling out any impact on Hippo signaling. Rat embryonic cardiomyocytes express the three SLMAP isoforms and their knockdown (KD) with sh-RNA, resulted in decreased proliferation and enhanced senescence but without any impact on Hippo signaling. Collectively, these data show that SLMAP is critical for normal cardiac development with potential for the various isoforms to serve compensatory roles. Our data imply novel mechanisms for SLMAP action in cardiac growth independent of Hippo signaling.
Assuntos
Via de Sinalização Hippo , Miocárdio , Camundongos , Ratos , Animais , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas de Membrana/metabolismo , Isoformas de Proteínas/metabolismoRESUMO
Protein tyrosine phosphatase receptor-ζ1 (PTPRZ1) is a transmembrane tyrosine phosphatase receptor highly expressed in embryonic stem cells. In the present work, gene expression analyses of Ptprz1-/- and Ptprz1+/+ mice endothelial cells and hearts pointed to an unidentified role of PTPRZ1 in heart development through the regulation of heart-specific transcription factor genes. Echocardiography analysis in mice identified that both systolic and diastolic functions are affected in Ptprz1-/- compared with Ptprz1+/+ hearts, based on a dilated left ventricular (LV) cavity, decreased ejection fraction and fraction shortening, and increased angiogenesis in Ptprz1-/- hearts, with no signs of cardiac hypertrophy. A zebrafish ptprz1-/- knockout was also generated and exhibited misregulated expression of developmental cardiac markers, bradycardia, and defective heart morphogenesis characterized by enlarged ventricles and defected contractility. A selective PTPRZ1 tyrosine phosphatase inhibitor affected zebrafish heart development and function in a way like what is observed in the ptprz1-/- zebrafish. The same inhibitor had no effect in the function of the adult zebrafish heart, suggesting that PTPRZ1 is not important for the adult heart function, in line with data from the human cell atlas showing very low to negligible PTPRZ1 expression in the adult human heart. However, in line with the animal models, Ptprz1 was expressed in many different cell types in the human fetal heart, such as valvar, fibroblast-like, cardiomyocytes, and endothelial cells. Collectively, these data suggest that PTPRZ1 regulates cardiac morphogenesis in a way that subsequently affects heart function and warrant further studies for the involvement of PTPRZ1 in idiopathic congenital cardiac pathologies.NEW & NOTEWORTHY Protein tyrosine phosphatase receptor ζ1 (PTPRZ1) is expressed in fetal but not adult heart and seems to affect heart development. In both mouse and zebrafish animal models, loss of PTPRZ1 results in dilated left ventricle cavity, decreased ejection fraction, and fraction shortening, with no signs of cardiac hypertrophy. PTPRZ1 also seems to be involved in atrioventricular canal specification, outflow tract morphogenesis, and heart angiogenesis. These results suggest that PTPRZ1 plays a role in heart development and support the hypothesis that it may be involved in congenital cardiac pathologies.
Assuntos
Coração/embriologia , Miocárdio/metabolismo , Organogênese , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Proteínas de Peixe-Zebra/genética , Animais , Deleção de Genes , Camundongos , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismoRESUMO
A basic helix-loop-helix transcription factor Hey2 is expressed in the ventricular myocardium and endocardium of mouse embryos, and Hey2 null mice die perinatally showing ventricular septal defect, dysplastic tricuspid valve and hypoplastic right ventricle. In order to understand region-specific roles of Hey2 during cardiac morphogenesis, we generated Hey2 conditional knockout (cKO) mice using Mef2c-AHF-Cre, which was active in the anterior part of the second heart field and the right ventricle and outflow tract of the heart. Hey2 cKO neonates reproduced three anomalies commonly observed in Hey2 null mice. An earliest morphological defect was the lack of right ventricular extension along the apico-basal axis at midgestational stages. Underdevelopment of the right ventricle was present in all cKO neonates including those without apparent atresia of right-sided atrioventricular connection. RNA sequencing analysis of cKO embryos identified that the gene expression of a non-chamber T-box factor Tbx2 was ectopically induced in the chamber myocardium of the right ventricle. Consistently, mRNA expression of the Mycn transcription factor, which was a cell cycle regulator transcriptionally repressed by Tbx2, was down regulated, and the number of S-phase cells was significantly decreased in the right ventricle of cKO heart. These results suggest that Hey2 plays an important role in right ventricle development during cardiac morphogenesis, at least in part, through mitigating Tbx2-dependent inhibition of Mycn expression.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ventrículos do Coração/crescimento & desenvolvimento , Coração/crescimento & desenvolvimento , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteínas Repressoras/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Feminino , Ventrículos do Coração/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Morfogênese , Proteína Proto-Oncogênica N-Myc/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/deficiência , Proteínas com Domínio T/genética , Função Ventricular DireitaRESUMO
Cardiac dysfunction secondary to cancer may exert a negative impact in patients' tolerance to therapeutics, quality of life, and survival. The aim of this study was to evaluate the potential therapeutic effect of exercise training on the heart in the setting of cancer, after diagnosis. Thus, the molecular pathways harbored in heart mitochondria from a murine model of chemically-induced urothelial carcinoma submitted to 8-weeks of high intensity treadmill exercise were characterized using mass spectrometry-based proteomics. Data highlight the protective effects of high intensity exercise training in preventing left ventricle diastolic dysfunction, fibrosis, and structural derangement observed in tumor-bearing mice. At the mitochondrial level, exercise training counteracted the lower ability to produce ATP observed in the heart of animals with urothelial carcinoma and induced the up-regulation of fatty acid oxidation and down-regulation of the biological process "cardiac morphogenesis". Taken together, our data support the prescription of exercise training after cancer diagnosis for the management of disease-related cardiac dysfunction.
Assuntos
Carcinoma/complicações , Mitocôndrias Cardíacas/metabolismo , Condicionamento Físico Animal/métodos , Proteoma/metabolismo , Neoplasias da Bexiga Urinária/complicações , Disfunção Ventricular Esquerda/prevenção & controle , Animais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Miócitos Cardíacos/metabolismo , Proteoma/genética , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/metabolismoRESUMO
Signal transduction through multiple distinct pathways regulates and orchestrates the numerous biological processes comprising heart development. This review outlines the roles of the FGFR, EGFR, Wnt, BMP, Notch, Hedgehog, Slit/Robo, and other signaling pathways during four sequential phases of Drosophila cardiogenesis-mesoderm migration, cardiac mesoderm establishment, differentiation of the cardiac mesoderm into distinct cardiac cell types, and morphogenesis of the heart and its lumen based on the proper positioning and cell shape changes of these differentiated cardiac cells-and illustrates how these same cardiogenic roles are conserved in vertebrates. Mechanisms bringing about the regulation and combinatorial integration of these diverse signaling pathways in Drosophila are also described. This synopsis of our present state of knowledge of conserved signaling pathways in Drosophila cardiogenesis and the means by which it was acquired should facilitate our understanding of and investigations into related processes in vertebrates. Developmental Dynamics 246:641-656, 2017. © 2017 Wiley Periodicals, Inc.
Assuntos
Proteínas de Drosophila/metabolismo , Coração/embriologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Drosophila , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologiaRESUMO
Numb family proteins (NFPs), including Numb and numb-like (Numbl), are cell fate determinants for multiple progenitor cell types. Their functions in cardiac progenitor differentiation and cardiac morphogenesis are unknown. To avoid early embryonic lethality and study NFP function in later cardiac development, Numb and Numbl were deleted specifically in heart to generate myocardial double-knockout (MDKO) mice. MDKOs were embryonic lethal and displayed a variety of defects in cardiac progenitor differentiation, cardiomyocyte proliferation, outflow tract (OFT) and atrioventricular septation, and OFT alignment. By ablating NFPs in different cardiac populations followed by lineage tracing, we determined that NFPs in the second heart field (SHF) are required for OFT and atrioventricular septation and OFT alignment. MDKOs displayed an SHF progenitor cell differentiation defect, as revealed by a variety of methods including mRNA deep sequencing. Numb regulated cardiac progenitor cell differentiation in an endocytosis-dependent manner. Studies including the use of a transgenic Notch reporter line showed that Notch signaling was upregulated in the MDKO. Suppression of Notch1 signaling in MDKOs rescued defects in p57 expression, proliferation and trabecular thickness. Further studies showed that Numb inhibits Notch1 signaling by promoting the degradation of the Notch1 intracellular domain in cardiomyocytes. This study reveals that NFPs regulate trabecular thickness by inhibiting Notch1 signaling, control cardiac morphogenesis in a Notch1-independent manner, and regulate cardiac progenitor cell differentiation in an endocytosis-dependent manner. The function of NFPs in cardiac progenitor differentiation and cardiac morphogenesis suggests that NFPs might be potential therapeutic candidates for cardiac regeneration and congenital heart diseases.
Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Coração/embriologia , Proteínas de Membrana/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem da Célula , Proliferação de Células , Feminino , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Morfogênese/genética , Morfogênese/fisiologia , Miocárdio/citologia , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Gravidez , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transdução de SinaisRESUMO
Myocardin-Related Transcription Factors A and B (MRTF-A and MRTF-B) are highly homologous proteins that function as powerful coactivators of serum response factor (SRF), a ubiquitously expressed transcription factor essential for cardiac development. The SRF/MRTF complex binds to CArG boxes found in the control regions of genes that regulate cytoskeletal dynamics and muscle contraction, among other processes. While SRF is required for heart development and function, the role of MRTFs in the developing or adult heart has not been explored. Through cardiac-specific deletion of MRTF alleles in mice, we show that either MRTF-A or MRTF-B is dispensable for cardiac development and function, whereas deletion of both MRTF-A and MRTF-B causes a spectrum of structural and functional cardiac abnormalities. Defects observed in MRTF-A/B null mice ranged from reduced cardiac contractility and adult onset heart failure to neonatal lethality accompanied by sarcomere disarray. RNA-seq analysis on neonatal hearts identified the most altered pathways in MRTF double knockout hearts as being involved in cytoskeletal organization. Together, these findings demonstrate redundant but essential roles of the MRTFs in maintenance of cardiac structure and function and as indispensible links in cardiac cytoskeletal gene regulatory networks.
Assuntos
Redes Reguladoras de Genes/fisiologia , Coração/embriologia , Morfogênese/fisiologia , Sarcômeros/fisiologia , Fator de Resposta Sérica/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Citoesqueleto/fisiologia , Ecocardiografia , Coração/fisiologia , Técnicas Histológicas , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Sarcômeros/metabolismo , Análise de Sequência de RNA , Transativadores/deficiência , Fatores de Transcrição/deficiênciaRESUMO
BACKGROUND: Truncus arteriosus (TA) is characterised by failure of septation of the outflow tract into aortic and pulmonary trunks and is associated with high morbidity and mortality. Although ranked among the least common congenital heart defects, TA provides an excellent model for the role of individual genes in cardiac morphogenesis as exemplified by TBX1 deficiency caused by point mutations or, more commonly, hemizygosity as part of the 22q11.2 deletion syndrome. The latter genetic lesion, however, is only observed in a proportion of patients with TA, which suggests the presence of additional disease genes. OBJECTIVE: To identify novel genes that cause Mendelian forms of TA. METHODS AND RESULTS: We exploited the occurrence of monogenic forms of TA in the Saudi population, which is characterised by high consanguinity, a feature conducive to the occurrence of Mendelian phenocopies of complex phenotypes as we and others have shown. Indeed, we demonstrate in two multiplex consanguineous families that we are able to map TA to regions of autozygosity in which whole-exome sequencing revealed homozygous truncating mutations in PRKD1 (encoding a kinase derepressor of MAF2) and NRP1 (encoding a coreceptor of vascular endothelial growth factor (VEGFA)). Previous work has demonstrated that Prkd1(-/-) is embryonic lethal and that its tissue-specific deletion results in abnormal heart remodelling, whereas Nrp1(-/-) develops TA. Surprisingly, molecular karyotyping to exclude 22q11.2 deletion syndrome in the replication cohort of 17 simplex TA cases revealed a de novo hemizygous deletion that encompasses PRDM1, deficiency of which also results in TA phenotype in mouse. CONCLUSIONS: Our results expand the repertoire of molecular lesions in chromatin remodelling and transcription factors that are implicated in the pathogenesis of congenital heart disease in humans and attest to the power of monogenic forms of congenital heart diseases as a complementary approach to dissect the genetics of these complex phenotypes.
Assuntos
Mapeamento Cromossômico , Estudos de Associação Genética , Neuropilina-1/genética , Proteína Quinase C/genética , Proteínas Repressoras/genética , Persistência do Tronco Arterial/genética , Criança , Consanguinidade , Ecocardiografia , Exoma , Evolução Fatal , Feminino , Genes Recessivos , Loci Gênicos , Estudo de Associação Genômica Ampla , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Linhagem , Polimorfismo de Nucleotídeo Único , Fator 1 de Ligação ao Domínio I Regulador Positivo , Persistência do Tronco Arterial/diagnósticoRESUMO
BACKGROUND: Yin Yang 1 (YY1), the only DNA binding polycomb group protein, was reported to regulate cardiomyocyte differentiation during early cardiac mesoderm development. However, whether it contributes to cardiac morphogenesis at later developmental stage(s) during embryogenesis is unknown. RESULTS: We excised YY1 in murine hearts during embryogenesis using two temporal-spatially controlled cre activation approaches, and revealed critical roles of YY1 in cardiac structural formation. Alpha-myosin heavy chain-cre (α-MHC-cre)-mediated cardiomyocyte-specific ablation of YY1 (MHC-YY1) resulted in perinatal death of mutant mice, and Nkx2.5-cre-mediated YY1 null embryos (Nkx2.5-YY1) died embryonically. In the Nkx2.5-YY1 mutants, the endocardial cushions (ECs) of both atrioventricular canal (AVC) and outflow tract (OFT) were hypoplastic due to decreased proliferation and increased apoptosis. Endothelial-to-mesenchymal transition (EMT) progress was also compromised in ECs. Nkx2.5-YY1 mutant hearts had normal formation of extracellular matrix, suggesting that the impaired EMT resulted from the direct loss of YY1. We further uncovered that a number of factors that are involved in normal cardiogenesis were downstream targets of YY1. CONCLUSIONS: YY1 plays a critical role in cardiac development and occupies a high-level position within the hierarchy of the cardiac transcriptional network that governs normal cardiogenesis.
Assuntos
Embrião de Mamíferos/embriologia , Coração/embriologia , Organogênese , Fator de Transcrição YY1/metabolismo , Animais , Proliferação de Células/genética , Embrião de Mamíferos/citologia , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Knockout , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo , Fator de Transcrição YY1/genéticaRESUMO
The endocardium forms the inner lining of the heart tube, where it enables blood flow and also interacts with the myocardium during the formation of valves and trabeculae. Although a number of studies have identified regulators in the morphogenesis of the myocardium, relatively little is known about the molecules that control endocardial morphogenesis. Prior work has implicated the bHLH transcription factor Tal1 in endocardial tube formation: in zebrafish embryos lacking Tal1, endocardial cells form a disorganized mass within the ventricle and do not populate the atrium. Through blastomere transplantation, we find that tal1 plays a cell-autonomous role in regulating endocardial extension, suggesting that Tal1 activity influences the behavior of individual endocardial cells. The defects in endocardial behavior in tal1-deficient embryos originate during the earliest steps of endocardial morphogenesis: tal1-deficient endocardial cells fail to generate a cohesive monolayer at the midline and instead pack tightly together into a multi-layered aggregate. Moreover, the tight junction protein ZO-1 is mislocalized in the tal1-deficient endocardium, indicating a defect in intercellular junction formation. In addition, we find that the tal1-deficient endocardium fails to maintain its identity; over time, a progressively increasing number of tal1-deficient endocardial cells initiate myocardial gene expression. However, the onset of defects in intercellular junction formation precedes the onset of ectopic myocardial gene expression in the tal1-deficient endocardium. We therefore propose a model in which Tal1 has distinct roles in regulating the formation of endocardial intercellular junctions and maintaining endocardial identity.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Endocárdio/embriologia , Endocárdio/metabolismo , Junções Intercelulares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Embrião não Mamífero/metabolismo , Endocárdio/patologia , Endocárdio/transplante , Regulação da Expressão Gênica no Desenvolvimento , Átrios do Coração/embriologia , Átrios do Coração/metabolismo , Morfogênese , Miocárdio/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Peixe-Zebra/embriologiaRESUMO
During human embryonic development the early establishment of a functional heart is vital to support the growing fetus. However, forming the embryonic heart is an extremely complex process, requiring spatiotemporally controlled cell specification and differentiation, tissue organization, and coordination of cardiac function. These complexities, in concert with the early and rapid development of the embryonic heart, mean that understanding the intricate interplay between these processes that help shape the early heart remains highly challenging. In this review I focus on recent insights from animal models that have shed new light on the earliest stages of heart development. This includes specification and organization of cardiac progenitors, cell and tissue movements that make and shape the early heart tube, and the initiation of the first beat in the developing heart. In addition I highlight relevant in vitro models that could support translation of findings from animal models to human heart development. Finally I discuss challenges that are being addressed in the field, along with future considerations that together may help move us towards a deeper understanding of how our hearts are made.
Assuntos
Coração , Animais , Diferenciação CelularRESUMO
Heart development begins with the formation of a tube as cardiac progenitors migrate from opposite sides of the embryo. Abnormal cardiac progenitor movements cause congenital heart defects. However, the mechanisms of cell migration during early heart development remain poorly understood. Using quantitative microscopy, we found that in Drosophila embryos, cardiac progenitors (cardioblasts) migrated through a sequence of forward and backward steps. Cardioblast steps were associated with oscillatory non-muscle myosin II waves that induced periodic shape changes and were necessary for timely heart tube formation. Mathematical modeling predicted that forward cardioblast migration required a stiff boundary at the trailing edge. Consistent with this, we found a supracellular actin cable at the trailing edge of the cardioblasts that limited the amplitude of the backward steps, thus biasing the direction of cell movement. Our results indicate that periodic shape changes coupled with a polarized actin cable produce asymmetrical forces that promote cardioblast migration.
Assuntos
Proteínas de Drosophila , Drosophila , Animais , Proteínas de Drosophila/fisiologia , Actinas , Coração , Miosinas , Morfogênese , Drosophila melanogasterRESUMO
The heart is the first organ to form and function during the development of an embryo. Heart development consists of a series of events believed to be highly conserved in vertebrates. Development of heart begins with the formation of the cardiac fields followed by a linear heart tube formation. The straight heart tube then undergoes a ventral bending prior to further bending and helical torsion to form a looped heart. The looping phase is then followed by ballooning, septation, and valve formation giving rise to a four-chambered heart in avians and mammals. The looping phase plays a central role in heart development. Successful looping is essential for proper alignment of the future cardiac chambers and tracts. As aberrant looping results in various congenital heart diseases, the mechanisms of cardiac looping have been studied for several decades by various disciplines. Many groups have studied anatomy, biology, genetics, and mechanical processes during heart looping, and have proposed multiple mechanisms. Computational modeling approaches have been utilized to examine the proposed mechanisms of the looping process. Still, the exact underlying mechanism(s) controlling the looping phase remain poorly understood. Although further experimental measurements are obviously still required, the need for more integrative computational modeling approaches is also apparent in order to make sense of the vast amount of experimental data and the complexity of multiscale developmental systems. Indeed, there needs to be an iterative interaction between experimentation and modeling in order to properly find the gap in the existing data and to validate proposed hypotheses. This article is categorized under: Cardiovascular Diseases > Genetics/Genomics/Epigenetics Cardiovascular Diseases > Computational Models Cardiovascular Diseases > Molecular and Cellular Physiology.
Assuntos
Cardiopatias Congênitas , Organogênese , Animais , Simulação por Computador , Coração , Cardiopatias Congênitas/genética , MorfogêneseRESUMO
We have previously identified a Hand1 transcriptional enhancer that drives expression within the septum transversum, the origin of the cells that contribute to the epicardium. This enhancer directly overlaps a common exon of a predicted family of long non-coding RNAs (lncRNA) that are specific to mice. To interrogate the necessity of this Hand1 enhancer, as well as the importance of these novel lncRNAs, we deleted the enhancer sequences, including the common exon shared by these lncRNAs, using genome editing. Resultant homozygous Hand1 enhancer mutants (Hand1ΔST/ΔST) present with no observable phenotype. Assessment of lncRNA expression reveals that Hand1ΔST/ΔST mutants effectively eliminate detectable lncRNA expression. Expression analysis within Hand1ΔST/ΔST mutant hearts indicates higher levels of Hand1 than in controls. The generation of Hand1 compound heterozygous mutants with the Hand1LacZ null allele (Hand1ΔST/LacZ) also did not reveal any observable phenotypes. Together these data indicate that deletion of this Hand1 enhancer and by consequence a family of murine-specific lncRNAs does not impact embryonic development in observable ways.