Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(29): 12755-12762, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38984753

RESUMO

Due to the increasing number of chemicals released into the environment, nontarget screening (NTS) analysis is a necessary tool for providing comprehensive chemical analysis of environmental pollutants. However, NTS workflows encounter challenges in detecting both known and unknown pollutants with common chromatography high-resolution mass spectrometry (HRMS) methods. Identification of unknowns is hindered by limited elemental composition information, and quantification without identical reference standards is prone to errors. To address these issues, we propose the use of inductively coupled plasma mass spectrometry (ICP-MS) as an element-specific detector. ICP-MS can enhance the confidence of compound identification and improve quantification in NTS due to its element-specific response and unambiguous chemical composition information. Additionally, mass balance calculations for individual elements (F, Br, Cl, etc.) enable assessment of total recovery of those elements and evaluation of NTS workflows. Despite its benefits, implementing ICP-MS in NTS analysis and environmental regulation requires overcoming certain shortcomings and challenges, which are discussed herein.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais , Espectrometria de Massas , Monitoramento Ambiental/métodos , Espectrometria de Massas/métodos , Poluentes Ambientais/análise
2.
Environ Sci Technol ; 57(38): 14101-14112, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37704971

RESUMO

Non-targeted analysis (NTA) has emerged as a valuable approach for the comprehensive monitoring of chemicals of emerging concern (CECs) in the exposome. The NTA approach can theoretically identify compounds with diverse physicochemical properties and sources. Even though they are generic and have a wide scope, non-targeted analysis methods have been shown to have limitations in terms of their coverage of the chemical space, as the number of identified chemicals in each sample is very low (e.g., ≤5%). Investigating the chemical space that is covered by each NTA assay is crucial for understanding the limitations and challenges associated with the workflow, from the experimental methods to the data acquisition and data processing techniques. In this review, we examined recent NTA studies published between 2017 and 2023 that employed liquid chromatography-high-resolution mass spectrometry. The parameters used in each study were documented, and the reported chemicals at confidence levels 1 and 2 were retrieved. The chosen experimental setups and the quality of the reporting were critically evaluated and discussed. Our findings reveal that only around 2% of the estimated chemical space was covered by the NTA studies investigated for this review. Little to no trend was found between the experimental setup and the observed coverage due to the generic and wide scope of the NTA studies. The limited coverage of the chemical space by the reviewed NTA studies highlights the necessity for a more comprehensive approach in the experimental and data processing setups in order to enable the exploration of a broader range of chemical space, with the ultimate goal of protecting human and environmental health. Recommendations for further exploring a wider range of the chemical space are given.


Assuntos
Bioensaio , Saúde Ambiental , Humanos , Cromatografia Líquida , Espectrometria de Massas
3.
Environ Sci Technol ; 57(39): 14694-14706, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37734035

RESUMO

Persistent, mobile, and toxic (PMT) substances are affecting the safety of drinking water and are threatening the environment and human health. Many PMT substances are used in industrial processing or consumer products, but their sources and emissions mostly remain unclear. This study presents a long-term source distribution and emission estimation of melamine, a high-production-volume PMT substance of emerging global concern. The results indicate that in China, approximately 1858.7 kilotonnes (kt) of melamine were released into the water (∼58.9%), air (∼27.0%), and soil systems (∼14.1%) between 1995 and 2020, mainly from its production and use in the decorative panels, textiles, and paper industries. The textile and paper industries have the highest emission-to-consumption ratios, with more than 90% emissions per unit consumption. Sewage treatment plants are the largest source of melamine in the environment for the time being, but in-use products and their wastes will serve as significant melamine sources in the future. The study prompts priority action to control the risk of PMT substances internationally.


Assuntos
Monitoramento Ambiental , Triazinas , Humanos , China
4.
Environ Sci Technol ; 57(10): 4143-4152, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36862848

RESUMO

To assess the contamination and potential risk of snow melt with polar compounds, road and background snow was sampled during a melting event at 23 sites at the city of Leipzig and screened for 489 chemicals using liquid chromatography high-resolution mass spectrometry with target screening. Additionally, six 24 h composite samples were taken from the influent and effluent of the Leipzig wastewater treatment plant (WWTP) during the snow melt event. 207 compounds were at least detected once (concentrations between 0.80 ng/L and 75 µg/L). Consistent patterns of traffic-related compounds dominated the chemical profile (58 compounds in concentrations from 1.3 ng/L to 75 µg/L) and among them were 2-benzothiazole sulfonic acid and 1-cyclohexyl-3-phenylurea from tire wear and denatonium used as a bittern in vehicle fluids. Besides, the analysis unveiled the presence of the rubber additive 6-PPD and its transformation product N-(1.3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) at concentrations known to cause acute toxicity in sensitive fish species. The analysis also detected 149 other compounds such as food additives, pharmaceuticals, and pesticides. Several biocides were identified as major risk contributors, with a more site-specific occurrence, to acute toxic risks to algae (five samples) and invertebrates (six samples). Ametryn, flumioxazin, and 1,2-cyclohexane dicarboxylic acid diisononyl ester are the main compounds contributing to toxic risk for algae, while etofenprox and bendiocarb are found as the main contributors for crustacean risk. Correlations between concentrations in the WWTP influent and flow rate allowed us to discriminate compounds with snow melt and urban runoff as major sources from other compounds with other dominant sources. Removal rates in the WWTP showed that some traffic-related compounds were largely eliminated (removal rate higher than 80%) during wastewater treatment and among them was 6-PPDQ, while others persisted in the WWTP.


Assuntos
Neve , Águas Residuárias , Poluentes Químicos da Água , Animais , Crustáceos , Monitoramento Ambiental , Peixes , Congelamento , Medição de Risco , Neve/química , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Purificação da Água , Fenilenodiaminas/análise , Fenilenodiaminas/toxicidade , Benzoquinonas/análise , Benzoquinonas/toxicidade
5.
Anal Bioanal Chem ; 412(23): 5563-5581, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32648103

RESUMO

This manuscript presents the development, validation and application of a multi-residue supercritical fluid chromatography coupled with tandem mass spectrometry method for the analysis of 140 chiral and non-chiral chemicals of emerging concern in environmental samples, with 81 compounds being fully quantitative, 14 semi-quantitative and 45 qualitative, validated according to European Medicine Agency (EMA) guidelines (European Medicines Agency 2019). One unified LC-MS method was used to analyse all analytes, which were split into three injection methods to ensure sufficient peak resolution. The unified method provided an average of 113% accuracy and 4.5% precision across the analyte range. Limits of detection were in the range of 35 pg L-1-0.7 µg L-1, in both river water and wastewater, with an average LOD of 33 ng L-1. The method was combined with solid-phase extraction and applied in environmental samples, showing very good accuracy and precision, as well as excellent chromatographic resolution of a range of chiral enantiomers including beta-blockers, benzodiazepines and antidepressants. The method resulted in quantification of 75% of analytes in at least two matrices, and 56% in the trio of environmental matrices of river water, effluent wastewater and influent wastewater, enabling its use in monitoring compounds of environmental concern, from their sources of origin through to their discharge into the environment.

6.
Bull Environ Contam Toxicol ; 105(2): 205-210, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32556687

RESUMO

Wastewater treatment plants (WTTPs) contribute to anthropogenic chemical contamination through the release of treated effluent. A constructed wetland (CW) interfaced with a WTTP could potentially purify and naturalize effluent water. This pilot study aimed to acquire baseline chemical data on the fate and distribution of phthalates in the water, sediment, and vegetation (Typha spp.) of a fully operational horizontal subsurface flow CW adjoined to a WWTP in Oregon, USA. Sample collection followed the flow of water from entrance to exit of the CW. Dibutyl phthalate (DBP) and bis(2-ethylhexyl) phthalate (DEHP) were the most abundant analogs in all matrices. Results indicate reduction of phthalates in water exiting the CW. Significant concentrations of DBP, DEHP, and other water-soluble phthalates were found in the shoots of Typha, indicating plant uptake as a potentially important removal mechanism.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Ácidos Ftálicos/análise , Typhaceae/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Áreas Alagadas , Oregon , Projetos Piloto , Inquéritos e Questionários , Águas Residuárias/análise
7.
Anal Bioanal Chem ; 411(27): 7061-7086, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31494686

RESUMO

This paper presents a new multi-residue method for the quantification of more than 142 anthropogenic compounds of emerging concern (CECs) in various environmental matrices. These CECs are from a wide range of major classes including pharmaceuticals, household, industrial and agricultural. This method utilises ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) for analysis of five matrices (three liquid and two solid) from wastewater treatment processes and the surrounding environment. Relative recoveries were predominantly between 80 and 120%; however, due to the complexity of the matrices used in this work, not all compounds were recovered in all matrices, from 138/142 analytes in surface water to 96/142 analytes in digested solids. Method quantification limits (MQLs) ranged from 0.004 ng L-1 (bisoprolol in surface water) to 3118 ng L-1 (creatinine in wastewater treatment work (WwTW) influent). The overall method accuracy was 107.0%, and precision was 13.4%. To test its performance, the method was applied to the range of environmental matrices at WwTWs in South West England. Overall, this method was found to be suitable for application in catchment-based exposure-driven studies, as, of the total number of analytes quantifiable in each matrix, 61% on average was found to be above their corresponding MQL. The results confirm the need for analysing both the liquid and solid compartments within a WwTW to prevent under-reporting of concentrations.

8.
Environ Res ; 142: 720-30, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26406977

RESUMO

In the Laurentian Great Lakes basin of North America, an increasing number of chemicals of emerging concern (CECs) are being investigated, including legacy and replacement flame retardants (FRs). In the present study, 14 polybrominated diphenyl ethers (PBDEs), 23 non-PBDEs halogenated FRs (NPHFRs) and 16 organophosphate ester FRs (OPE-FRs) were analyzed in 100 individual eggs collected in 2012 and 2013 and in 15 egg pools of herring gulls collected in 2012 from 20 colonies across the entire Laurentian Great Lakes basin. For CEC-FRs in eggs from all colonies, 14 PBDEs, 12 NPHFRs and 9 OPE-FRs were quantifiable in at least one of the 115 analyzed samples. The mean sum PBDE (Σ14PBDE) concentrations ranged from 244 to 657 ng/g wet weight (ww), and on average were 1-2 orders of magnitude greater than the Σ12NPHFR concentrations (13.8-35.6 ng/g ww), and 2-3 orders of magnitude greater than Σ9OPE-FR concentrations (0.31-2.14 ng/g ww). Mean Σ14PBDE and sum of syn- and anti-Dechlorane Plus isomer (Σ2DDC-CO) concentrations in eggs from colonies within Laurentian Great Lakes Areas of Concern (AOCs) were in most cases greater than in eggs from nearby colonies outside of AOCs. Comparing CEC-FR concentrations in eggs collected in 2012-2013 to those previously measured in eggs collected approximately 7 years earlier (2006 and 2008) showed that Σ7PBDE (BDE-28, -47, -100, -99, -154,-153 and -183) mean concentrations in eggs from 6 colonies were approximately 30% less than they were in eggs from the same colonies from the earlier time period, whereas 3 current-use FR (BDE-209, HBCDD and Σ2DDC-CO) concentrations were significantly greater (p<0.05) than previously measured. Between 2006 and 2013 there were significant changes in individual PBDE patterns for BDE-71, -138, -153, -203, -206 and -207. Among all of the examined CEC-FRs, concentrations of Σ4PBDE (BDE-47, -99, -100 and -153) and HBCDD in gull eggs from all colonies were greater than or comparable to their lowest observed effect concentrations (LOECs) based on in ovo egg injection studies. Overall, the current profiles of a broad suite of FRs in Laurentian Great Lakes herring gull eggs highlights the need to better understand e.g., exposure-effect implications and metabolism of FRs, i.e. OPE-FRs, and emphasizes the importance of continued monitoring of CEC-FRs whose concentrations appear to be increasing, including BDE-209, HBCDD and DDC-COs.


Assuntos
Aves , Ovos/análise , Poluentes Ambientais/análise , Retardadores de Chama/análise , Animais , Canadá , Lagos , Controle de Qualidade , Estados Unidos
9.
Integr Environ Assess Manag ; 20(3): 846-863, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37526115

RESUMO

Fish serve as indicators of exposure to contaminants of emerging concern (CECs)-chemicals such as pharmaceuticals, hormones, and personal care products-which are often designed to impact vertebrates. To investigate fish health and CECs in situ, we evaluated the health of wild fish exposed to CECs in waterbodies across northeastern Minnesota with varying anthropogenic pressures and CEC exposures: waterbodies with no human development along their shorelines, those with development, and those directly receiving treated wastewater effluent. Then, we compared three approaches to evaluate the health of fish exposed to CECs in their natural environment: a refined fish health assessment index, a histopathological index, and high-throughput (ToxCast) in vitro assays. Lastly, we mapped adverse outcome pathways (AOPs) associated with identified ToxCast assays to determine potential impacts across levels of biological organization within the aquatic system. These approaches were applied to subsistence fish collected from the Grand Portage Indian Reservation and 1854 Ceded Territory in 2017 and 2019. Overall, 24 CECs were detected in fish tissues, with all but one of the sites having at least one detection. The combined implementation of these tools revealed that subsistence fish exposed to CECs had histological and macroscopic tissue and organ abnormalities, although a direct causal link could not be established. The health of fish in undeveloped sites was as poor, or sometimes poorer, than fish in developed and wastewater effluent-impacted sites based on gross and histologic tissue lesions. Adverse outcome pathways revealed potential hazardous pathways of individual CECs to fish. A better understanding of how the health of wild fish harvested for consumption is affected by CECs may help prioritize risk management research efforts and can ultimately be used to guide fishery management and public health decisions. Integr Environ Assess Manag 2024;20:846-863. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

10.
Sci Total Environ ; 945: 174078, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38906279

RESUMO

This paper investigates the potential of graphene-coated sand (GCS) as an advanced filtration medium for improving water quality and mitigating chemicals of emerging concern (CECs) in treated municipal wastewater, aiming to enhance water reuse. The study utilizes three types of sand (Ottawa, masonry, and concrete) coated with graphene to assess the impact of surface morphology, particle shape, and chemical composition on coating and filtration efficiency. Additionally, sand coated with graphene and activated graphene coated sand were both tested to understand the effect of coating and activation on the filtration process. The materials were characterized using digital microscopy, Raman spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction analysis. The material's efficiency in removing turbidity, nutrients, chemical oxygen demand (COD), bacteria, and specific CECs (Aciclovir, Diatrizoic acid, Levodopa, Miconazole, Carbamazepine, Diphenhydramine, Irbesartan, Lidocaine, Losartan, and Sulfamethoxazole) was studied. Our findings indicate that GCS significantly improves water quality parameters, with notable efficiency in removing turbidity, COD (14.1 % and 69.1 % removal), and bacterial contaminants (64.9 % and 99.9 % removal). The study also highlights the material's capacity to remove challenging CECs like Sulfamethoxazole (up to 80 % removal) and Diphenhydramine (up to 90 % removal), showcasing its potential as a sustainable solution for water reuse applications. This research contributes to the field by providing a comprehensive evaluation of GCS in water treatment, suggesting its potential for removing CECs from treated municipal wastewater.

11.
Sci Total Environ ; 953: 175945, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39218108

RESUMO

In the US, private well users are responsible for their own water quality testing, but local health officials are often uncertain what tests to recommend, particularly for regulated organic chemical contaminants. This study evaluated the utility of suspect and non-target screening (NTS) high resolution mass spectrometry (HRMS) as a tool to identify a wide range of organic chemicals of emerging concern in private well water and to inform well water management decisions. Qualitative NTS, which detects chemicals without providing concentrations, was used to analyze 25 private well water samples from Wake County, North Carolina. Using the NIST 20 mass spectral database (M1), NTS tentatively identified 106 unique organic chemicals across the 25 samples and an average of 11 organic chemicals per sample. At least one USEPA ToxCast chemical was identified in each private well water sample. Private well water users were interviewed prior to and after their sample's NTS results were reported back; four county groundwater managers were interviewed after aggregated results for all 25 water samples were reported back. All but one well user participant chose to participate in the reporting-back post-interview. The 24 private well users found NTS results useful and valued the contextualization of their results using NTS results for other well users and a local municipal water sample. Most private well users (67%) were surprised by their well water results, especially regarding the number of tentatively identified organic chemicals detected. All the groundwater managers believed the NTS results were useful and could help improve their testing recommendations to private well users. Even with qualitative limitations, NTS results can be an effective and valuable tool to inform the public and governance stakeholders in decisions around groundwater quality management.

12.
Sci Total Environ ; 901: 165729, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37499829

RESUMO

Groundwater is a primary potable water supply for coastal North Carolina (NC), but the increased intensity of extreme rainfall events and floods may exacerbate surface and subsurface processes that contribute anthropogenic chemicals to wells in the major confined aquifers of this region. We evaluated groundwater for organic chemicals of emerging concern (CEC) and the presence of tritium using flooded and not-flooded wells in the NC Department of Environmental Quality well monitoring network across the NC Coastal Plain. Flooded wells experienced standing water around the well casing at least once during the study period. Tritium concentrations, which indicate modern water presence (water recharged after 1953), were significantly greater in groundwater from flooded wells than not-flooded wells. In confined aquifers, modern water was detected at greater depths in flooded wells (206 m) than not-flooded wells (100 m). Suspect-screening high resolution mass spectrometry (HRMS) analysis of 150 groundwater samples yielded a total of 382 unique organic chemicals. Each groundwater sample contained, on average, 19 tentatively identified chemicals from the NIST 20 mass spectral database (M1) and 9 USEPA ToxCast chemicals. The number of tentatively-identified chemicals per sample was not significantly different among aquifers demonstrating the pervasive presence of the detected CECs in unconfined and confined aquifers. The presence of modern water in groundwater from flooded wells coincided with higher detection frequencies of certain organic contaminant classes, particularly pharmaceuticals, food additives, and regulated aromatic hydrocarbons. These results indicate that wells in both unconfined and confined aquifers are susceptible to modern water contamination during flood events; this finding has critical public health implications for coastal communities.

13.
Data Brief ; 50: 109600, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37780467

RESUMO

Chemical pollution caused by synthetic organic chemicals at low concentrations in the environment poses a growing threat to the ecological status of aquatic ecosystems. These chemicals are regularly released into surface waters through both treated and untreated effluents from wastewater treatment plants (WWTPs), agricultural runoff, and industrial discharges. Consequently, they accumulate in surface waters, distribute amongst environmental compartments according to their physicochemical properties, and cause adverse effects on aquatic organisms. Unfortunately, there is a lack of data regarding the occurrence of synthetic organic chemicals, henceforth micropollutants, in South American freshwater ecosystems, especially in Chile. To address this research gap, we present a comprehensive dataset comprising concentrations of 153 emerging chemicals, including pesticides, pharmaceutical and personal care products (PPCPs), surfactants, and industrial chemicals. These chemicals were found to co-occur in surface waters within Central Chile, specifically in the River Aconcagua Basin. Our sampling strategy involved collecting surface water samples from streams and rivers with diverse land uses, such as agriculture, urban areas, and natural reserves. For sample extraction, we employed an on-site large-volume solid phase extraction (LVSPE) device. The resulting environmental extracts were then subjected to wide-scope chemical target screening using gas chromatography and liquid chromatography high-resolution mass spectrometry (GC- and LC-HRMS). The dataset we present holds significant value in assessing the chemical status of water bodies. It enables comparative analysis of pollution fingerprints associated with emerging chemicals across different freshwater systems. Moreover, the data can be reused for environmental risk assessment studies. Its utilisation will contribute to a better understanding of the impact and extent of chemical pollution in aquatic ecosystems, facilitating the development of effective mitigation strategies.

14.
Chemosphere ; 345: 140451, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839752

RESUMO

Indoor dust is a sink of hundreds of organic chemicals, and humans may potentially be exposed to these via indoor activities. This study investigated potentially harmful semi-volatile organic contaminants in indoor dust from Danish kindergartens using suspect and non-target screening on gas chromatography (GC)-Orbitrap, supported by target analyses using GC-low resolution mass spectrometry (LRMS). A suspect list of 41 chemicals with one or more toxicological endpoints, i.e. endocrine disruption, carcinogenicity, neurotoxicity and allergenicity, known or suspected to be present in indoor dust, was established including phthalate and non-phthalate plasticizers, flame retardants, bisphenols, biocides, UV filters and other plastic additives. Of these, 29 contaminants were detected in the indoor dust samples, also including several compounds that had been banned or restricted for years. In addition, 22 chemicals were tentatively identified via non-target screening. Several chemicals have not previously been detected in Danish indoor dust. Most of the detected chemicals are known to be potentially harmful for human health while hazard assessment of the remaining compounds indicated limited risks to human. However, children were not specifically considered in this hazard assessment.


Assuntos
Poluição do Ar em Ambientes Fechados , Retardadores de Chama , Criança , Humanos , Poeira/análise , Poluição do Ar em Ambientes Fechados/análise , Cromatografia Gasosa-Espectrometria de Massas , Instituições Acadêmicas , Retardadores de Chama/análise , Dinamarca
15.
Sci Total Environ ; 859(Pt 1): 160034, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36356746

RESUMO

Chemical pollution (including chemicals of emerging concern - CECs) continues to gain increasing attention as a global threat to human health and the environment, with numerous reports on the adverse and sometimes devastating effects upon ecosystems the presence of these chemicals can have. Whilst many studies have investigated presence of CECs in aquatic environments, these studies have been often focused on higher income countries, leaving significant knowledge gaps for many low-middle income countries. This study proposes a new integrated powerless, in-situ multi-mode extraction (iMME) sampler for the analysis of chemicals (105 CECs) and biological (5 genes) markers in water in contrasting settings: an urbanized Avon River in the UK and remote Olifants River in Kruger National Park in South Africa. The overarching goal was to develop a sampling device that maintains integrity of a diverse range of analytes via analyte immobilization using polymeric and glass fibre materials, without access to power supply or cold chain (continuous chilled storage) for sample transportation. Chemical analysis was achieved using ultra-performance liquid chromatography coupled with tandem mass spectrometry. Several mobile CECs showed low stability in river water, at room temperature and typical 24 h sampling/transport time. It is therefore recommended that, in the absence of cooling, environmental water samples are spiked with internal standards on site, immediately after collection and analyte immobilization option is considered, in order to allow fully quantitative analysis. iMME has proven effective in immobilization, concentration and increased stability of CECs at room temperature (and at least 7 days storage) allowing for sample collection at remote locations. The results from the River Avon and Olifants River sampling indicate that the pristine environment of Olifants catchment is largely unaffected by CECs common in the urbanized River Avon in the UK with a few exceptions: lifestyle chemicals (e.g., caffeine, nicotine and their metabolites), paracetamol and UV filters due to tourism and carbamazepine due to its persistent nature. iMME equipped with an additional gene extraction capability provides an exciting new opportunity of comprehensive biochemical profiling of aqueous samples with one powerless in-situ device. Further work is required to provide full integration of the device and comprehensive assessment of performance in both chemical and biological targets.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Humanos , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Água/análise , Ecossistema , Cromatografia Gasosa-Espectrometria de Massas
16.
Sci Total Environ ; 864: 161056, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36565880

RESUMO

Although increasing, there is still limited knowledge of the presence of 'contaminants of emerging concern' in Arctic marine biota, particularly in lower trophic species. In the present study, we have applied a novel pipeline to investigate the presence of contaminants in a variety of benthic and pelagic low-trophic organisms: amphipods, copepods, arrow worms and krill. Samples collected in Kongsfjorden in Svalbard in 2018 were subject to extraction and two-dimensional gas chromatography coupled to high-resolution mass spectrometry (GC×GC-HRMS). Tentatively identified compounds included plastic additives, antioxidants, antimicrobials, flame retardants, precursors, production solvents and chemicals, insecticides, and pharmaceuticals. Both legacy contaminants (PAHs, PCBs, PBDEs, hexachlorobenzene) as well as novel and emerging contaminants (triclosan, bisphenol A, and ibuprofen) were quantified in several species using target analysis by GC-MS/MS. The significance of these discoveries is discussed considering the potential for detrimental effects caused by these chemicals, as well as suggested local and distant sources of the components to the Arctic environment.


Assuntos
Bifenilos Policlorados , Espectrometria de Massas em Tandem , Animais , Zooplâncton , Monitoramento Ambiental/métodos , Bifenilos Policlorados/análise , Cromatografia Gasosa-Espectrometria de Massas , Regiões Árticas
17.
Water Res ; 238: 120002, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37148692

RESUMO

Natural sunlight can reduce the chemicals of emerging concern (CECs) and biological effects from the discharged domestic wastewater. But the aquatic photolysis and biotoxic variations of specific CECs detected in secondary effluent (SE) were not clear. In this study, 29 CECs were detected in the SE, and 13 medium- and high-risk CECs were identified as target chemicals based on their ecological risk assessment. To comprehensively explore the photolysis properties of the identified target chemicals, the direct and self-sensitized photodegradation of the target chemicals, even the indirect photodegradation in the mixture, were investigated and compared with these photodegradation in the SE. Of the 13 target chemicals, only five chemicals (including dichlorvos (DDVP), mefenamic acid (MEF), diphenhydramine hydrochloride (DPH), chlorpyrifos (CPF), and imidacloprid (IMI)) underwent direct and self-sensitized photodegradation processes. The removal of DDVP, MEF, and DPH was attributed to self-sensitized photodegradation, which was mainly mediated by •OH; CPF and IMI primarily relied on direct photodegradation. Synergistic and/or antagonistic actions that occurred in the mixture improved/decreased the rate constants of five photodegradable target chemicals. Meanwhile, the biotoxicities (acute toxicity and genotoxicity) of the target chemicals (including individual chemicals and the mixture) were significantly reduced, which can explain the reduction of biotoxicities from SE. For the two refractory high-risk chemicals, atrazine (ATZ) and carbendazim (MBC), algae-derived intracellular dissolved organic matter (IOM) on ATZ, and IOM and extracellular dissolved organic matter (EOM) on MBC had slightly promotion for their photodegradation; while peroxysulfate, and peroxymonosulfate served as sensitizers were activated by natural sunlight and effectively improved their photodegradation rate, and then reduced their biotoxicities. These findings will promote the development of CECs treatment technologies based on sunlight irradiation.


Assuntos
Luz Solar , Poluentes Químicos da Água , Fotólise , Matéria Orgânica Dissolvida , Diclorvós , Poluentes Químicos da Água/química
18.
Chemosphere ; 327: 138530, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37001758

RESUMO

Polar regions should be given greater consideration with respect to the monitoring, risk assessment, and management of potentially harmful chemicals, consistent with requirements of the precautionary principle. Protecting the vulnerable polar environments requires (i) raising political and public awareness and (ii) restricting and preventing global emissions of harmful chemicals at their sources. The Berlin Statement is the outcome of an international workshop with representatives of the European Commission, the Arctic Council, the Antarctic Treaty Consultative Meeting, the Stockholm Convention on Persistent Organic Pollutants (POPs), environmental specimen banks, and data centers, as well as scientists from various international research institutions. The statement addresses urgent chemical pollution issues in the polar regions and provides recommendations for improving screening, monitoring, risk assessment, research cooperation, and open data sharing to provide environmental policy makers and chemicals management decision-makers with relevant and reliable contaminant data to better protect the polar environments. The consensus reached at the workshop can be summarized in just two words: "Act now!" Specifically, "Act now!" to reduce the presence and impact of anthropogenic chemical pollution in polar regions by. •Establishing participatory co-development frameworks in a permanent multi-disciplinary platform for Arctic-Antarctic collaborations and establishing exchanges between the Arctic Monitoring and Assessment Program (AMAP) of the Arctic Council and the Antarctic Monitoring and Assessment Program (AnMAP) of the Scientific Committee on Antarctic Research (SCAR) to increase the visibility and exchange of contaminant data and to support the development of harmonized monitoring programs. •Integrating environmental specimen banking, innovative screening approaches and archiving systems, to provide opportunities for improved assessment of contaminants to protect polar regions.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais , Regiões Antárticas , Regiões Árticas , Clima Frio , Poluentes Ambientais/análise , Poluição Ambiental/prevenção & controle , Medição de Risco
19.
Environ Int ; 181: 108259, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37839268

RESUMO

Indoor pollutants change over time and place. Exposure to hazardous organics is associated with adverse health effects. This work sampled gaseous organics by Tenax TA tubes in two indoor rooms, i.e., an office set as samples, and the room of chassis dynamometer (RCD) set as backgrounds. Compounds are analyzed by a thermal desorption comprehensive two-dimensional gas chromatography-quadrupole mass spectrometer (TD-GC × GC-qMS). Four new chemicals of emerging concern (CECs) are screened in 469 organics quantified. We proposed a three-step pipeline for CECs screening utilizing GC × GC including 1) non-target scanning of organics with convincing molecular structures and quantification results, 2) statistical analysis between samples and backgrounds to extract useful information, and 3) pixel-based property estimation to evaluate the contamination potential of addressed chemicals. New CECs spotted in this work are all intermediate volatility organic compounds (IVOCs), containing mintketone, isolongifolene, ß-funebrene, and (5α)-androstane. Mintketone and sesquiterpenes may be derived from the use of volatile chemical products (VCPs), while (5α)-androstane is probably human-emitted. The occurrence and contamination potential of the addressed new CECs are reported for the first time. Non-target scanning and the measurement of IVOCs are of vital importance to get a full glimpse of indoor organics.


Assuntos
Androstanos , Gases , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas
20.
J Hazard Mater ; 455: 131486, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37172382

RESUMO

Non-target analysis (NTA) employing high-resolution mass spectrometry (HRMS) coupled with liquid chromatography is increasingly being used to identify chemicals of biological relevance. HRMS datasets are large and complex making the identification of potentially relevant chemicals extremely challenging. As they are recorded in vendor-specific formats, interpreting them is often reliant on vendor-specific software that may not accommodate advancements in data processing. Here we present InSpectra, a vendor independent automated platform for the systematic detection of newly identified emerging chemical threats. InSpectra is web-based, open-source/access and modular providing highly flexible and extensible NTA and suspect screening workflows. As a cloud-based platform, InSpectra exploits parallel computing and big data archiving capabilities with a focus for sharing and community curation of HRMS data. InSpectra offers a reproducible and transparent approach for the identification, tracking and prioritisation of emerging chemical threats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA