RESUMO
Recurrent hormone receptor-positive (HR+) breast cancer kills more than 600,000 women annually. Although HR+ breast cancers typically respond well to therapies, approximately 30% of patients relapse. At this stage, the tumors are usually metastatic and incurable. Resistance to therapy, particularly endocrine therapy is typically thought to be tumor intrinsic (e.g., estrogen receptor mutations). However, tumor-extrinsic factors also contribute to resistance. For example, stromal cells, such as cancer-associated fibroblasts (CAFs), residing in the tumor microenvironment, are known to stimulate resistance and disease recurrence. Recurrence in HR+ disease has been difficult to study due to the prolonged clinical course, complex nature of resistance, and lack of appropriate model systems. Existing HR+ models are limited to HR+ cell lines, a few HR+ organoid models, and xenograft models that all lack components of the human stroma. Therefore, there is an urgent need for more clinically relevant models to study the complex nature of recurrent HR+ breast cancer, and the factors contributing to treatment relapse. Here, we present an optimized protocol that allows a high take-rate, and simultaneous propagation of patient-derived organoids (PDOs) and matching CAFs, from primary and metastatic HR+ breast cancers. Our protocol allows for long-term culturing of HR+ PDOs that retain estrogen receptor expression and show responsiveness to hormone therapy. We further show the functional utility of this system by identifying CAF-secreted cytokines, such as growth-regulated oncogene α , as stroma-derived resistance drivers to endocrine therapy in HR+ PDOs.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Recidiva Local de Neoplasia/patologia , Fibroblastos/metabolismo , Organoides/metabolismo , Microambiente TumoralRESUMO
Astrocytes transfer extracellular functional mitochondria into neurons to rescue injured neurons after a stroke. However, there are no reports on drugs that interfere with intercellular mitochondrial transfer. Chrysophanol (CHR) was an effective drug for the treatment of cerebral ischemia-reperfusion injury (CIRI) and was selected as the test drug. The oxygen-glucose deprivation/reoxygenation (OGD/R) cell model and the middle cerebral artery occlusion animal model were established to investigate the effect of CHR on CIRI. The result showed that astrocytes could act as mitochondrial donors to ameliorate neuronal injury. Additionally, the neuroprotective effect of astrocytes was enhanced by CHR, the CHR improved the neuronal mitochondrial function, decreased the neurological deficit score and infarction volume, recovered cell morphology in ischemic penumbra. The mitochondrial fluorescence probe labeling technique has shown that the protective effect of CHR is associated with accelerated astrocytic mitochondrial transfer to neurons. The intercellular mitochondrial transfer may be an important way to ameliorate ischemic brain injury and be used as a key target for drug treatment.
Assuntos
Antraquinonas , Isquemia Encefálica , Traumatismo por Reperfusão , Ratos , Animais , Isquemia Encefálica/metabolismo , Astrócitos/metabolismo , Traumatismo por Reperfusão/metabolismo , Neurônios/metabolismo , MitocôndriasRESUMO
INTRODUCTION: Multiple sclerosis (MS) is the most common chronic inflammatory, demyelinating disease of the central nervous system. Dimethyl fumarate (DMF) and monomethyl fumarate (MMF) belong to the disease-modifying drugs in treatment of MS. There is evidence that astrocytes and microglia are involved in MS pathology, but few studies are available about MMF and DMF effects on astrocytes and microglia. The aim of this study was to investigate the effects of MMF and DMF on microglial activation and morphology as well as potential effects on glial viability, Cx43, and AQP4 expressions in different set-ups of an in vitro astrocyte-microglia co-culture model of inflammation. METHODS: Primary rat glial co-cultures of astrocytes containing 5% (M5, mimicking "physiological" conditions) or 30% (M30, mimicking "pathological, inflammatory" conditions) of microglia were treated with different concentrations of MMF (0.1, 0.5, and 2 µg/mL) or DMF (1.5, 5, and 15 µM) for 24 h. Viability, proliferation, and cytotoxicity of glial cells were examined using MTT assay. Immunocytochemistry was performed to analyze the microglial phenotypes. Connexin 43 (Cx43) and aquaporin 4 (AQP4) expressions were quantified by immunoblot analysis. RESULTS: Treatment with different concentrations of MMF or DMF for 24 h did not change the glial cell viability in M5 and M30 co-cultures. Microglial phenotypes were not altered by DMF under physiological M5 conditions, but treatment with higher concentration of DMF (15 µM) induced microglial activation under inflammatory M30 conditions. Incubation with different concentrations of MMF had no effects on microglial phenotypes. The Cx43 expression in M5 and M30 co-cultures was not changed significantly by immunoblot analysis after incubation with different concentrations of DMF or MMF for 24 h. The AQP4 expression was significantly increased in M5 co-cultures after incubation with 5 µm DMF. Under the other conditions, AQP4 expression was not affected by DMF or MMF. DISCUSSION: In different set-ups of the astrocyte-microglia co-culture model of inflammation, MMF has not shown significant effects. DMF had only limited effects on microglia phenotypes and AQP4 expression. In summary, mechanisms of action of fumarates probably do not involve direct effects on microglia phenotypes as well as Cx43 and AQP4 expression.
Assuntos
Fumarato de Dimetilo , Microglia , Ratos , Animais , Fumarato de Dimetilo/metabolismo , Fumarato de Dimetilo/farmacologia , Microglia/metabolismo , Astrócitos , Conexina 43/metabolismo , Conexina 43/farmacologia , Técnicas de Cocultura , Inflamação/metabolismoRESUMO
The intestinal epithelium constitutes a selectively permeable barrier between the internal and external environment that allows the absorption of nutrients, electrolytes, and water, as well as an effective defense against intraluminal bacteria, toxins, and potentially antigenic material. Experimental evidence suggest that intestinal inflammation is critically dependent on an imbalance of homeostasis between the gut microbiota and the mucosal immune system. In this context, mast cells play a crucial role. The intake of specific probiotic strains can prevent the development of gut inflammatory markers and activation of the immune system. Here, the effect of a probiotic formulation containing L. rhamnosus LR 32, B. lactis BL04, and B. longum BB 536 on intestinal epithelial cells and mast cells was investigated. To mimic the natural host compartmentalization, Transwell co-culture models were set up. Co-cultures of intestinal epithelial cells interfaced with the human mast cell line HMC-1.2 in the basolateral chamber were challenged with lipopolysaccharide (LPS), and then treated with probiotics. In the HT29/HMC-1.2 co-culture, the probiotic formulation was able to counteract the LPS-induced release of interleukin 6 from HMC-1.2, and was effective in preserving the epithelial barrier integrity in the HT29/Caco-2/ HMC-1.2 co-culture. The results suggest the potential therapeutic effect of the probiotic formulation.
Assuntos
Mastócitos , Probióticos , Humanos , Técnicas de Cocultura , Células CACO-2 , Lipopolissacarídeos , Células Epiteliais , Mucosa Intestinal , Probióticos/farmacologiaRESUMO
OBJECTIVE: There is a need to incorporate multiple tissues into in vitro OA models to evaluate novel therapeutics. This approach is limited by inherent donor variability. We present an optimized research tool: a human OA cartilage-synovium explant co-culture model (OA-EXM) that employs donor-matched lower and upper limit response controls combined with statistical approaches to address variability. Multiple rapid read-outs allow for evaluation of therapeutics while cataloguing cartilage-synovium interactions. DESIGN: 48-h human explant cultures were sourced from OA knee arthroplasties. An OA-like cartilage-synovium co-culture baseline was established relative to donor-matched upper limit supraphysiological pro-inflammatory cytokine and lower limit OA cartilage or synovium alone controls. 100 nM dexamethasone treatment validated possible "rescue effects" within the OA-EXM dual tissue environment. Gene expression, proteoglycan loss, MMP activity, and soluble protein concentrations were analyzed using blocking and clustering methods. RESULTS: The OA-EXM demonstrates the value of the co-culture approach as the addition of OA synovium increases OA cartilage proteoglycan loss and expression of MMP1, MMP3, MMP13, CXCL8, CCL2, IL6, and PTGS2, but not to the extent of supraphysiological stimulation. Conversely, OA cartilage does not affect gene expression or MMP activity of OA synovium. Dexamethasone shows dual treatment effects on synovium (pro-resolving macrophage upregulation, protease downregulation) and cartilage (pro-inflammatory, catabolic, and anabolic downregulation), and decreases soluble CCL2 levels in co-culture, thereby validating OA-EXM utility. CONCLUSIONS: The OA-EXM is representative of late-stage OA pathology, captures dual interactions between cartilage and synovium, and combined with statistical strategies provides a rapid, sensitive research tool for evaluating OA therapeutics.
Assuntos
Cartilagem Articular/patologia , Osteoartrite/patologia , Membrana Sinovial/patologia , Idoso , Idoso de 80 Anos ou mais , Técnicas de Cocultura , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise MultivariadaRESUMO
BACKGROUND: Astrocytes and microglia are involved in the pathophysiology of epilepsy and bipolar disorder with a link to inflammation. We aimed to investigate the effects of the antiepileptic and mood-stabilizing drugs lamotrigine (LTG) and topiramate (TPM) on glial viability, microglial activation, cytokine release, and expression of gap-junctional protein connexin 43 (Cx43) in different set-ups of an in vitro astrocyte-microglia co-culture model of inflammation. METHODS: Primary rat co-cultures of astrocytes containing 5% (M5, representing "physiological" conditions) or 30% (M30, representing "pathological, inflammatory" conditions) of microglia were treated with different concentrations of LTG and TPM for 24 hours. An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to measure the glial cell viability. The microglial activation state was analyzed by immunocytochemistry. The pro-inflammatory tumor necrosis factor-α (TNF-α) and anti-inflammatory transforming growth factor-ß1 (TGF-ß1) cytokine levels were measured by enzyme-linked immunosorbent assay. The astroglial Cx43 expression was quantified by western blot. RESULTS: A significant reduction of the glial cell viability after incubation with LTG or TPM was observed in a concentration-dependent manner under all conditions. LTG caused no significant alterations of the microglial phenotypes. Under pathological conditions, TPM led to a significant concentration-dependent reduction of microglial activation. This correlated with increased astroglial Cx43 expression. TNF-α levels were not affected by LTG and TPM. Treatment with higher concentrations of LTG, but not with TPM, led to a significant increase in TGF-ß1 levels in M5 and M30 co-cultures. CONCLUSIONS: Despite the possible glial toxicity of LTG and TPM, both drugs reduced inflammatory activity, suggesting potential positive effects on the neuroinflammatory components of the pathogenesis of epilepsy and bipolar disorder.
Assuntos
Anticonvulsivantes , Epilepsia , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Astrócitos/metabolismo , Técnicas de Cocultura , Conexina 43/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Lamotrigina/metabolismo , Lamotrigina/farmacologia , Lamotrigina/uso terapêutico , Microglia , Ratos , Topiramato/farmacologia , Topiramato/uso terapêutico , Fator de Necrose Tumoral alfaRESUMO
Hesperidin and naringin are citrus flavonoids with known anti-oxidative and anti-inflammatory properties. Evidence from previous studies indicates that both these compounds and the metabolites that are formed during intestinal metabolism are able to exert beneficial effects on intestinal barrier function and inflammation. However, so far, studies investigating the relative contributions of the various compounds are lacking. Therefore, we assessed the effect of citrus flavonoids and their intestinal metabolites on immune-mediated barrier disruption in an in vitro co-culture model. Caco-2 cell monolayers were placed in co-culture with phorbol 12-myristate 13-acetate-stimulated THP-1-Blue™ NF-κB cells for 30 h. At baseline, the citrus flavonoids and their metabolites were added to the apical compartment (50 or 100 µM per compound). After 24 h, THP-1 cells were incubated with lipopolysaccharide (LPS) in the basolateral compartment for 6 h. Incubation with citrus flavonoids and their metabolites did not induce changes in transepithelial electrical resistance, fluorescein isothiocyanate-dextran 4 kDa permeation or gene expression of barrier-related genes for any of the compounds tested. After LPS stimulation, NF-κB activity was significantly inhibited by all compounds (100 µM) except for one metabolite (all P ≤ 0·03). LPS-induced production of the cytokines IL-8, TNF-α and IL-6 was inhibited by most compounds (all P < 0·05). However, levels of IL-1ß were increased, which may contribute to the lack of an improved barrier effect. Overall, these results suggest that citrus flavonoids may decrease intestinal inflammation via reduction of NF-κB activity and that the parent compounds and their metabolites formed during intestinal metabolism are able to exert comparable effects.
Assuntos
Citrus , Flavonoides , Humanos , NF-kappa B/metabolismo , Células CACO-2 , Técnicas de Cocultura , Citrus/metabolismo , Lipopolissacarídeos/efeitos adversos , Inflamação/induzido quimicamente , Mucosa Intestinal/metabolismoRESUMO
BACKGROUND: Hepatic encephalopathy (HE) is a neurological complication resulting from acute or chronic liver disease. Hyperammonemia leading to astrocyte swelling and cerebral edema in combination with neuroinflammation including microglia activation, mainly contribute to the pathogenesis of HE. However, little is known about microglia and their inflammatory response, as well as their influence on astrocytic channels and astrocyte swelling under hyperammonemia. OBJECTIVE: To investigate the effects of ammonia on the microglial activation and morphology in different set-ups of an in vitro astrocyte-microglia co-culture model. Further, potential effects on glial viability, connexin 43 (Cx43) and aquaporin 4 (AQP4) expression were tested. METHODS: Primary rat glial co-cultures of astrocytes containing 5% (M5, representing "physiological" conditions) or 30% (M30, representing "pathological" conditions) of microglia were incubated with 3 mM, 5 mM, 10 mM and 20 mM ammonium chloride (NH4Cl) for 6 h and 24 h in order to mimic the conditions of HE. An MTT assay was performed to measure the viability, proliferation and cytotoxicity of cells. The microglial phenotypes were analyzed by immunocytochemistry. The expression of Cx43 and AQP4 were quantified by immunoblot analysis. RESULTS: A significant reduction of glial viability was observed in M30 co-cultures after incubation with 20 mM NH4Cl for 6 h, whereas in M5 co-cultures the viability remained unchanged. Microglial activation was detected by immunocytochemistry after incubation with 3 mM, 5 mM and 10 mM NH4Cl for 6 h and 24 h in M5 as well as in M30 co-cultures. The Cx43 expression was slightly increased in M30 co-cultures after 6 h incubation with 5 mM NH4Cl. Also, the AQP4 expression was slightly increased only in M5 co-cultures treated with 10 mM NH4Cl for 6 h. Under the other conditions, Cx43 and AQP4 expression was not affected by NH4Cl. CONCLUSIONS: The novel aspect of our study was the significant microglial activation and decrease of viability after NH4Cl incubation in different set-ups of an in vitro astrocyte-microglia co-culture model, contributing to better understanding of pathophysiological mechanisms of HE. Hyperammonemia led to limited effects on Cx43 and AQP4 expression, the relevance of these minimal changes should be viewed with caution.
Assuntos
Cloreto de Amônio/toxicidade , Aquaporina 4/metabolismo , Conexina 43/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Animais , Astrócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Encefalopatia Hepática/metabolismo , RatosRESUMO
PURPOSE: The development of inhaled drug products is expensive and involves time-consuming pharmacokinetic (PK) and pharmacodynamic (PD) studies. There are few in vitro cell-based assays to evaluate the disposition and action of orally inhaled drugs to guide early product development and minimise risk. The aim of the present study was to develop a co-culture bioassay, combining an airway epithelial cell line (Calu-3) with cultured human primary airway smooth muscle cells (ASM), integrated with apparatus to deliver pharmaceutical aerosols. METHODS: An assay for measuring cyclic adenosine monophosphate (cAMP) in ASM derived from healthy donors was adapted to provide a biochemical surrogate for ASM relaxation. Concentration-response curves for cAMP were established for three drugs that elicit ASM relaxation: isoprenaline (ISO), forskolin (FOR) and salbutamol sulphate. The ASM bioassay was incorporated into a co-culture model in which air-interfaced Calu-3 cell layers, representing the permeability barrier of the airway epithelium, were grown on transwell inserts above ASM cells cultured in the well of the base-plate. The sensitivity of this bioassay to salbutamol delivered using different formulations and aerosol products was evaluated. RESULTS: ASM responded with concentration dependent increases in cAMP when exposed to 10-9 to 10-5 M ISO, FOR or salbutamol sulphate solutions for 15 or 30 min. Salbutamol formulated with different counter ions elicited differential cAMP responses in ASM (xinafoate > base = sulphate) suggesting that this bioassay could discriminate between formulations with different potency. A similar rank order of potency was observed for the different salbutamol salts when applied as aerosols to the co-culture model. DISCUSSION: We have developed a novel bioassay using human ASM in co-culture with human respiratory epithelial cells to better mimic various elements that contribute to the rate and extent of local drug availability in the lungs following topical administration. The bioassay offers an opportunity to investigate the factors determining the activity of inhaled bronchodilator drugs in a more biologically relevant system than that has previously been described and with further development and validation, this novel bioassay could provide a method to guide the more efficient development of inhaled bronchodilators, reducing the current reliance on in vivo studies.
Assuntos
Músculo Liso , Albuterol/farmacologia , Bioensaio , Broncodilatadores/farmacologia , Humanos , Relaxamento Muscular/efeitos dos fármacosRESUMO
The plausibility of human exposure to microplastics has increased within the last years. Microplastics have been found in different food types including seafood, salt, sugar and beverages. So far, human health effects of microplastics after ingestion are unknown. Herein, we designed a novel, three-dimensional in vitro intestinal model consisting of the human intestinal epithelial cell lines Caco-2 and HT29-MTX-E12 as well as human blood monocyte-derived macrophages and dendritic cells that is suitable to assess the possible effects of ingested microplastics. Relevant microplastic particles (in the order of 50-500 µm), including polymers representing tire wear and polyolefins, which represent major sources of microplastic in the EU, were compared to other polymer classes and an inorganic microparticle, healing earth, which is intended for human consumption. Microplastic particles were exposed at concentrations of 823.5-1380.0 µg/cm2 to the model using a dry powder insufflator system to aerosolize the particles directly on the intestinal model's surface. Cytotoxicity was investigated after 6, 24 and 48 h of exposure via measuring the release of lactate dehydrogenase. Inflammatory end points including the cytokines IL-8, TNFα and IL-1ß as well as changes of the barrier integrity after exposure were additionally monitored. We demonstrated that all of the microplastics and the healing earth particles did not cause any significant cytotoxicity or release of (pro-)inflammatory cytokines and did not change the barrier integrity of the co-culture at any of the time points investigated.
Assuntos
Células Dendríticas/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Microplásticos/toxicidade , Aerossóis , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Impedância Elétrica , Células HT29 , Humanos , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Tamanho da Partícula , Permeabilidade , Medição de Risco , Fatores de TempoRESUMO
Nanoparticles based on gellan gum/pectin blends were designed for colon-targeted release of resveratrol (RES). Their impact on drug release rates and permeability were evaluated using Caco-2 cell model and mucus secreting triple co-culture model. Polymeric nanoparticles (PNP) were successfully prepared by nebulization/ionotropic gelation, achieving high drug loading (>80%). PNP were spherical with a low positive charge density (+5mV) and exhibited diameters of around 330 nm. Developed PNP were able to promote effective modulation of drug release rates, so that only 3% of RES was released in acidic media over 2 h, and, in pH 6.8, the drug was released in a sustained manner, reaching 85% in 30 h. The permeability of RES-loaded PNP in the Caco-2 model was 0.15%, while in the triple co-culture model, in the presence of mucus, it reached 5.5%. The everted gut sac experiment corroborated the low permeability of RES-loaded PNP in the presence or absence of mucus and highlighted their high ability to interact with the intestinal tissue. Results indicate that the novel PNP developed in this work are safe and promising carriers for controlled delivery of RES at the colon.
Assuntos
Colo/efeitos dos fármacos , Nanopartículas/administração & dosagem , Nanopartículas/química , Pectinas/química , Polissacarídeos Bacterianos/química , Resveratrol/administração & dosagem , Resveratrol/química , Administração Oral , Animais , Células CACO-2 , Linhagem Celular Tumoral , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Células HT29 , Humanos , Concentração de Íons de Hidrogênio , Mucosa Intestinal/metabolismo , Masculino , Muco/metabolismo , Tamanho da Partícula , Permeabilidade/efeitos dos fármacos , Ratos , Ratos WistarRESUMO
BACKGROUND: Artificial sweeteners have been used widely as substitutes for sugar for several decades. In recent years they have been reported to be harmful to human health - especially to glucose absorption. However, as conclusions from previous studies using a single Caco-2 cell model were not consistent, further studies with a more suitable cell model are needed. RESULTS: We established a co-culture model with enterocyte Caco-2 and enteroendocrine NCI-H716 cell lines cultured in transwell inserts. The effects of artificial sweeteners, enhancing the glucose transport rate, lasted for 60 min and then began to diminish. Most importantly, different artificial sweeteners with the same sweetness intensity had similar effects on glucose transport. The sodium / glucose co-transporter member 1 (SGLT1) mRNA expression levels increased significantly with an initial glucose concentration of 20 mM, while glucose transporter 2 (GLUT2) mRNA expression significantly increased with initial glucose concentrations of 20 mM and 60 mM. CONCLUSION: Based on the Caco-2/NCI-H716 co-culture model, SGLT1 and GLUT2 mediated the enhancing effects of artificial sweeteners on glucose transport, depending on the sweetness intensity and initial glucose concentration.
Assuntos
Transporte Biológico/efeitos dos fármacos , Glucose/metabolismo , Edulcorantes/farmacologia , Células CACO-2 , Linhagem Celular , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Humanos , Transportador 1 de Glucose-Sódio/metabolismoRESUMO
Hepatic in vitro platforms ranging from multi-well cultures to bioreactors and microscale systems have been developed as tools to recapitulate cellular function and responses to aid in drug screening and disease model development. Recent developments in microfabrication techniques and cellular materials enabled fabrication of next-generation, advanced microphysiological systems (MPSs) that aim to capture the cellular complexity and dynamic nature of the organ presenting highly controlled extracellular cues to cells in a physiologically relevant context. Historically, MPSs have heavily relied on elastomeric materials in their manufacture, with unfavorable material characteristics (such as lack of structural rigidity) limiting their use in high-throughput systems. Herein, we aim to create a microfluidic bilayer model (microfluidic MPS) using thermoplastic materials to allow hepatic cell stabilization and culture, retaining hepatic functional phenotype and capturing cellular interactions. The microfluidic MPS consists of two overlapping microfluidic channels separated by a porous tissue-culture membrane that acts as a surface for cellular attachment and nutrient exchange; and an oxygen permeable material to stabilize and sustain primary human hepatocyte (PHH) culture. Within the microfluidic MPS, PHHs are cultured in the top channel in a collagen sandwich gel format with media exchange accomplished through the bottom channel. We demonstrate PHH culture for 7 days, exhibiting measures of hepatocyte stabilization, secretory and metabolic functions. In addition, the microfluidic MPS dimensions provide a reduced media-to-cell ratio in comparison with multi-well tissue culture systems, minimizing dilution and enabling capture of cellular interactions and responses in a hepatocyte-Kupffer coculture model under an inflammatory stimulus. Utilization of thermoplastic materials in the model and ability to incorporate multiple hepatic cells within the system is our initial step towards the development of a thermoplastic-based high-throughput microfluidic MPS platform for hepatic culture. We envision the platform to find utility in development and interrogation of disease models of the liver, multi-cellular interactions and therapeutic responses.
Assuntos
Comunicação Celular , Técnicas de Cultura de Células , Hepatócitos , Dispositivos Lab-On-A-Chip , Fígado , Técnicas Analíticas Microfluídicas , Avaliação Pré-Clínica de Medicamentos , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Fígado/citologia , Fígado/metabolismoRESUMO
The aims of the present research are to further validate the application of the improved three-dimensional (3 D) rat testicular cell co-culture model to evaluate the effects of various reprotoxic chemicals on the function of the main somatic cells, as well as on spermatogonial cell differentiation and even spermatogenesis, and to investigate the specific toxicant mechanisms in testes treated with HZ1006, a hydroxamate-based a hydroxamate-based histone deacetylase inhibitor (HDACI). Based on the characteristics of HZ1006, the appropriate exposure duration (8, 16, or 24 days), dosage (0, 3.125, 6.25, 12.5, or 25 µM) and toxic endpoints suitable for detection were selected in the experiments. The results showed inhibition of cell proliferation, reduced testosterone levels, and decreased spermatogonial cell meiosis-specific gene expression, as well as decreased protein levels of androgen receptor (AR) and decreased expression of the AR target gene PSA, accompanied by inhibition of Hdac6 expression after HZ1006 exposure in the 3 D rat testicular cell co-culture model. These findings indicate that the improved 3 D rat testicular cell co-culture model we have established has the potential to become a new testicular toxicity test system that can be used to test toxic characteristics and mechanisms of new compounds and has good application prospects, although more research on the model is required.
Assuntos
Cinamatos/toxicidade , Inibidores de Histona Desacetilases/toxicidade , Ácidos Hidroxâmicos/toxicidade , Espermatogônias/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cinamatos/química , Técnicas de Cocultura , Feminino , Inibidores de Histona Desacetilases/química , Ácidos Hidroxâmicos/química , Masculino , Estrutura Molecular , Ratos Sprague-Dawley , Espermatogônias/metabolismo , Espermatogônias/patologia , Testículo/metabolismo , Testículo/patologia , Testosterona/metabolismoRESUMO
Over the past decade, the therapeutic strategies employed to treat B-precursor acute lymphoblastic leukemia (ALL) have been progressively successful in treating the disease. Unfortunately, the treatment associated dyslipidemia, either acute or chronic, is very prevalent and a cause for decreased quality of life in the surviving patients. To overcome this hurdle, we tested a series of cylopropanecarboxamides, a family demonstrated to target lipid metabolism, for their anti-leukemic activity in ALL. Several of the compounds tested showed anti-proliferative activity, with one, compound 22, inhibiting both Philadelphia chromosome negative REH and Philadelphia chromosome positive SupB15 ALL cell division. The novel advantage of these compounds is the potential synergy with standard chemotherapeutic agents, while concomitantly blunting the emergence of dyslipidemia. Thus, the cylopropanecarboxamides represent a novel class of compounds that can be potentially used in combination with the present standard-of-care to limit treatment associated dyslipidemia in ALL patients.
Assuntos
Antineoplásicos/química , Lipase Lipoproteica/metabolismo , Amidas/química , Amidas/metabolismo , Amidas/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Dislipidemias/complicações , Dislipidemias/metabolismo , Dislipidemias/patologia , Humanos , Lipase Lipoproteica/antagonistas & inibidores , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Simulação de Acoplamento Molecular , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicações , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Ligação Proteica , Estrutura Terciária de Proteína , Albumina Sérica/química , Albumina Sérica/metabolismoRESUMO
PURPOSE: The anti-inflammatory activity of sardine protein hydrolysates (SPH) obtained by hydrolysis with proteases from brewing yeast surplus was ascertained. METHODS: For this purpose, a digested and desalted SPH fraction with molecular weight lower than 10 kDa was investigated using an endothelial cell line (EA.hy926) as such and in a co-culture model with an intestinal cell line (Caco-2). Effects of SPH <10 kDa on nitric oxide (NO) production, reactive oxygen species (ROS) inhibition and secretion of monocyte chemoattractant protein 1 (MCP-1), vascular endothelial growth factor (VEGF), chemokine IL-8 (IL-8) and intercellular adhesion molecule-1 (ICAM-1) were evaluated in TNF-α-treated and untreated cells. RESULTS: Upon TNF-α treatment, levels of NO, MCP-1, VEGF, IL-8, ICAM-1 and endothelial ROS were significantly increased in both mono- and co-culture models. Treatment with SPH <10 kDa (2.0 mg peptides/mL) significantly decreased all the inflammation markers when compared to TNF-α-treated control. This protective effect was more pronounced in the co-culture model, suggesting that SPH <10 kDa Caco-2 cells metabolites produced in the course of intestinal absorption may provide a more relevant protective effect against endothelial dysfunction. Additionally, indirect cross-talk between two cell types was established, suggesting that SPH <10 kDa may also bind to receptors on the Caco-2 cells, thereby triggering a pathway to secrete the pro-inflammatory compounds. CONCLUSION: Overall, these in vitro screening results, in which intestinal digestion, absorption and endothelial bioactivity are simulated, show the potential of SPH to be used as a functional food with anti-inflammatory properties.
Assuntos
Endotélio Vascular/metabolismo , Inflamação/metabolismo , Hidrolisados de Proteína/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Células CACO-2 , Técnicas de Cocultura , Humanos , Molécula 1 de Adesão Intercelular , Molécula 1 de Adesão de Célula Vascular , Fator A de Crescimento do Endotélio VascularRESUMO
BACKGROUND: Gold nanoparticles (AuNPs) are promising candidates to design the next generation NP-based drug formulations specifically treating maternal, fetal or placental complications with reduced side effects. Profound knowledge on AuNP distribution and effects at the human placental barrier in dependence on the particle properties and surface modifications, however, is currently lacking. Moreover, the predictive value of human placental transfer models for NP translocation studies is not yet clearly understood, in particular with regards to differences between static and dynamic exposures. To understand if small (3-4 nm) AuNPs with different surface modifications (PEGylated versus carboxylated) are taken up and cross the human placental barrier, we performed translocation studies in a static human in vitro co-culture placenta model and the dynamic human ex vivo placental perfusion model. The samples were analysed using ICP-MS, laser ablation-ICP-MS and TEM analysis for sensitive, label-free detection of AuNPs. RESULTS: After 24 h of exposure, both AuNP types crossed the human placental barrier in vitro, although in low amounts. Even though cellular uptake was higher for carboxylated AuNPs, translocation was slightly increased for PEGylated AuNPs. After 6 h of perfusion, only PEGylated AuNPs were observed in the fetal circulation and tissue accumulation was similar for both AuNP types. While PEGylated AuNPs were highly stable in the biological media and provided consistent results among the two placenta models, carboxylated AuNPs agglomerated and adhered to the perfusion device, resulting in different cellular doses under static and dynamic exposure conditions. CONCLUSIONS: Gold nanoparticles cross the human placental barrier in limited amounts and accumulate in placental tissue, depending on their size- and/or surface modification. However, it is challenging to identify the contribution of individual characteristics since they often affect colloidal particle stability, resulting in different biological interaction in particular under static versus dynamic conditions. This study highlights that human ex vivo and in vitro placenta models can provide valuable mechanistic insights on NP uptake and translocation if accounting for NP stability and non-specific interactions with the test system.
Assuntos
Ouro/química , Nanopartículas Metálicas/química , Modelos Biológicos , Placenta/metabolismo , Linhagem Celular , Técnicas de Cocultura , Coloides/química , Feminino , Humanos , Cinética , Perfusão , Gravidez , Distribuição TecidualRESUMO
The rise of antibiotic resistant bacteria is posing a serious threat to human health. For example, resistant strains of Pseudomonas aeruginosa have resulted in untreatable and potentially lethal infections in both cystic fibrosis and immunocompromised patients. Due to the growing need for alternative treatment options, bacteriophage, or phage, therapy is gaining considerable attention. While previous studies have demonstrated the effectiveness of phage in combating persistent bacterial infections, there is currently a lack of knowledge regarding the host immunological response following phage exposure. In the present study, the bioresponses of an enhanced in vitro model were characterized following exposure to either DMS3 or PEV2, P. aeruginosa targeting phages. Results demonstrated a PEV2-dependent increase in IL-6 and TNF-α production, but no changes associated with DMS3 exposure. Additionally, following the establishment of an in vitro infection model, DMS3 was found to successfully protect mammalian lung cells from P. aeruginosa. Taken together, the biocompatibility and antibacterial effectiveness distinguish DMS3 bacteriophage as a strong candidate for phage therapy. However, as DMS3 is pilin dependent and bacterial receptor expression varies significantly, this work highlights the necessity of generating phage cocktails.
Assuntos
Terapia por Fagos/métodos , Pneumonia/prevenção & controle , Infecções por Pseudomonas/prevenção & controle , Fagos de Pseudomonas/crescimento & desenvolvimento , Fagos de Pseudomonas/imunologia , Pseudomonas aeruginosa/virologia , Células A549 , Humanos , Imunidade Inata , Interleucina-6/metabolismo , Modelos Biológicos , Resultado do Tratamento , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Age-related Macular Degeneration (AMD) is the leading cause of visual impairment and blindness in the elderly in developed countries. Neovascular/exudative (wet) AMD is the aggressive form of AMD and can involve choroidal neovascularization and vascular leakage. Anti-vascular endothelial growth factor (anti-VEGF) medications have significantly improved treatment of wet-AMD. However, only approximately 40% of patients obtain full benefit from anti-VEGF therapy and the medications are given by intravitreal injection. Axitinib, a small molecule multi-receptor tyrosine kinase inhibitor used for the treatment of advanced renal cell carcinoma, is taken orally and inhibits VEGF activity by blocking VEGF receptors. Axitinib also has the advantage of blocking platelet derived growth factor (PDGF) receptors which play a role in neovascularization. Using in vitro human retinal microvascular endothelial cells (HRMVECs), human brain vascular pericytes (HBVRs), 3D co-culture vessel sprout assay, and in vivo laser induced rat choroidal neovascularization (CNV) models, the effect of axitinib on neovascularization was evaluated. Axitinib inhibited neovascularization better than anti-VEGF and/or anti-hPDGF-B mAb in the in vitro models demonstrating that combined inhibition of both VEGF and PDGF pathways may be synergistic in treating wet-AMD. Additionally, axitinib showed good efficacy at a low dose (0.875 mg/day) in laser-induced CNV model in rats. In conclusion our data shows that axitinib, an inhibitor of VEGF and PDGF-B pathways may be useful in ameliorating wet-AMD therapy.
Assuntos
Neovascularização de Coroide/tratamento farmacológico , Imidazóis/uso terapêutico , Indazóis/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Idoso , Animais , Axitinibe , Proliferação de Células/efeitos dos fármacos , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Angiofluoresceinografia , Humanos , Imidazóis/farmacologia , Imuno-Histoquímica , Indazóis/farmacologia , Injeções Intravítreas , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Pericitos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , RatosRESUMO
Hydrolyzed fish proteins (H-pro) contain high concentrations of free amino acids and low molecular peptides that potentially may benefit fish health. The following study aimed to test whether the water-soluble phase of H-pro could attenuate lipopolysaccharide (LPS) provoked inflammation in liver cells and head kidney cells isolated from Atlantic salmon. Cells were grown as mono cultures or co cultures to assess possible crosstalk between immune cells and metabolic cells during treatments. Cells were added media with or without H-pro for 2 days before LPS exposure and harvested 24 h post LPS exposure. Respective cells without H-pro and LPS were used as controls. H-pro alone could affect expression of proteins directly as H-pro increased catalase protein expression in head kidney- and liver cells, regardless of culturing methods and LPS treatment. Leukotriene B4 (LTB4) production was also increased by H-pro in head kidney cells co cultured with liver cells. H-pro increased LPS induced interleukin 1ß (IL-1ß) transcription in liver cells co cultured with head kidney cells. All cultures of head kidney cells showed a significant increase in IL-1ß transcription when treated with H-pro + LPS. H-pro decreased caspase-3 transcription in liver cells cultured co cultured with head kidney cells. Peroxisome proliferator activated receptor α (PPAR α) was upregulated, regardless of treatment, in liver cells co cultured with head kidney cells clearly showing that culturing method alone affected gene transcription. H-pro alone and together with LPS as an inflammation inducer, affect both antioxidant and inflammatory responses.