Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(31): e2217033120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487063

RESUMO

Type I spiral ganglion neurons (SGNs) are the auditory afferents that transmit sound information from cochlear inner hair cells (IHCs) to the brainstem. These afferents consist of physiological subtypes that differ in their spontaneous firing rate (SR), activation threshold, and dynamic range and have been described as low, medium, and high SR fibers. Lately, single-cell RNA sequencing experiments have revealed three molecularly defined type I SGN subtypes. The extent to which physiological type I SGN subtypes correspond to molecularly defined subtypes is unclear. To address this question, we have generated mouse lines expressing CreERT2 in SGN subtypes that allow for a physiological assessment of molecular subtypes. We show that Lypd1-CreERT2 expressing SGNs represent a well-defined group of neurons that preferentially innervate the IHC modiolar side and exhibit a narrow range of low SRs. In contrast, Calb2-CreERT2 expressing SGNs preferentially innervate the IHC pillar side and exhibit a wider range of SRs, thus suggesting that a strict stratification of all SGNs into three molecular subclasses is not obvious, at least not with the CreERT2 tools used here. Genetically marked neuronal subtypes refine their innervation specificity onto IHCs postnatally during the time when activity is required to refine their molecular phenotype. Type I SGNs thus consist of genetically defined subtypes with distinct physiological properties and innervation patterns. The molecular subtype-specific lines characterized here will provide important tools for investigating the role of the physiologically distinct type I SGNs in encoding sound signals.


Assuntos
Tronco Encefálico , Células Ciliadas Vestibulares , Animais , Camundongos , Cóclea , Células Ciliadas Auditivas Internas , Neurônios
2.
Genes Cells ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109760

RESUMO

Mesothelial and epicardial cells give rise to various types of mesenchymal cells via epithelial (mesothelial)-to-mesenchymal transition during development. However, the genes controlling the differentiation and diversification of mesothelial/epicardial cells remain unclear. Here, we examined Wnt2b expression in the embryonic mesothelium and epicardium and performed lineage tracing of Wnt2b-expressing cells by using novel Wnt2b-2A-CreERT2 knock-in and LacZ-reporter mice. Wnt2b was expressed in mesothelial cells covering visceral organs, but the expression was restricted in their subpopulations. Wnt2b-expressing cells labeled at embryonic day (E) 10.5 were distributed to the mesothelium and mesenchyme in the lungs, abdominal wall, stomach, and spleen in Wnt2b2A-CreERT2/+;R26RLacZ/+ mice at E13.0. Wnt2b was initially expressed in the proepicardial organ (PEO) at E9.5 and then in the epicardium after E10.0. Wnt2b-expressing PEO cells labeled at E9.5 differentiated into a small fraction of cardiac fibroblasts and preferentially localized at the left side of the postnatal heart. LacZ+ epicardium-derived cells labeled at E10.5 differentiated into a small fraction of fibroblasts and smooth muscle cells in the postnatal heart. Taken together, our results reveal novel subpopulations of PEO and mesothelial/epicardial cells that are distinguishable by Wnt2b expression and elucidate the unique contribution of Wnt2b-expressing PEO and epicardial cells to the postnatal heart.

3.
Genesis ; 62(1): e23582, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38069547

RESUMO

Tfap2b, a pivotal transcription factor, plays critical roles within neural crest cells and their derived lineage. To unravel the intricate lineage dynamics and contribution of these Tfap2b+ cells during craniofacial development, we established a Tfap2b-CreERT2 knock-in transgenic mouse line using the CRISPR-Cas9-mediated homologous direct repair. By breeding with tdTomato reporter mice and initiating Cre activity through tamoxifen induction at distinct developmental time points, we show the Tfap2b lineage within the key neural crest-derived domains, such as the facial mesenchyme, midbrain, cerebellum, spinal cord, and limbs. Notably, the migratory neurons stemming from the dorsal root ganglia are visible subsequent to Cre activity initiated at E8.5. Intriguingly, Tfap2b+ cells, serving as the progenitors for limb development, show activity predominantly commencing at E10.5. Across the mouse craniofacial landscape, Tfap2b exhibits a widespread presence throughout the facial organs. Here we validate its role as a marker of progenitors in tooth development and have confirmed that this process initiates from E12.5. Our study not only validates the Tfap2b-CreERT2 transgenic line, but also provides a powerful tool for lineage tracing and genetic targeting of Tfap2b-expressing cells and their progenitor in a temporally and spatially regulated manner during the intricate process of development and organogenesis.


Assuntos
Sistemas CRISPR-Cas , Tamoxifeno , Camundongos , Animais , Tamoxifeno/farmacologia , Camundongos Transgênicos , Proteína Vermelha Fluorescente , Integrases/genética , Integrases/metabolismo
4.
Dev Dyn ; 251(10): 1754-1773, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35582941

RESUMO

BACKGROUND: The most-common strategy for zebrafish Cre/lox-mediated lineage labeling experiments combines ubiquitously expressed, lox-based Switch reporter transgenes with tissue-specific Cre or 4-OH-Tamoxifen-inducible CreERT2 driver lines. Although numerous Cre driver lines have been produced, only a few broadly expressed Switch reporters exist in zebrafish and their generation by random transgene integration has been challenging due to position-effect sensitivity of the lox-flanked recombination cassettes. Here, we compare commonly used Switch reporter lines for their recombination efficiency and reporter expression pattern during zebrafish development. RESULTS: Using different experimental setups, we show that ubi:Switch and hsp70l:Switch outperform current generations of the two additional Switch reporters actb2:BFP-DsRed and actb2:Stop-DsRed. Our comparisons also document preferential Cre-dependent recombination of ubi:Switch and hsp70l:Switch in distinct zebrafish tissues at early developmental stages. To investigate what genomic features may influence Cre accessibility and lox recombination efficiency in highly functional Switch lines, we mapped these transgenes and charted chromatin dynamics at their integration sites. CONCLUSIONS: Our data documents the heterogeneity among lox-based Switch transgenes toward informing suitable transgene selection for lineage labeling experiments. Our work further proposes that ubi:Switch and hsp70l:Switch define genomic integration sites suitable for universal transgene or switch reporter knock-in in zebrafish.


Assuntos
Integrases , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Cromatina/metabolismo , Genômica , Integrases/genética , Integrases/metabolismo , Tamoxifeno , Transgenes , Peixe-Zebra/metabolismo
5.
Dev Dyn ; 251(9): 1524-1534, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33728725

RESUMO

BACKGROUND: Genetic tools to study gene function and the fate of cells in the anterior limb bud are very limited. RESULTS: We describe a transgenic mouse line expressing CreERT2 from the Aristaless-like 4 (Alx4) promoter that induces recombination in the anterior limb. Cre induction at embryonic day 8.5 revealed that Alx4-CreERT2 labeled cells using the mTmG Cre reporter contributed to anterior digits I to III as well as the radius of the forelimb. Cre activity is expanded further along the AP axis in the hindlimb than in the forelimb resulting in some Cre reporter cells contributing to digit IV. Induction at later time points labeled cells that become progressively restricted to more anterior digits and proximal structures. Comparison of Cre expression from the Alx4 promoter transgene with endogenous Alx4 expression reveals Cre expression is slightly expanded posteriorly relative to the endogenous Alx4 expression. Using Alx4-CreERT2 to induce loss of intraflagellar transport 88 (Ift88), a gene required for ciliogenesis, hedgehog signaling, and limb patterning, did not cause overt skeletal malformations. However, the efficiency of deletion, time needed for Ift88 protein turnover, and for cilia to regress may hinder using this approach to analyze cilia in the limb. Alx4-CreERT2 is also active in the mesonephros and nephric duct that contribute to the collecting tubules and ducts of the adult nephron. Embryonic activation of the Alx4-CreERT2 in the Ift88 conditional line results in cyst formation in the collecting tubules/ducts. CONCLUSION: Overall, the Alx4-CreERT2 line will be a new tool to assess cell fates and analyze gene function in the anterior limb, mesonephros, and nephric duct.


Assuntos
Proteínas Hedgehog , Fatores de Transcrição , Animais , Extremidades , Proteínas Hedgehog/genética , Proteínas de Homeodomínio , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Transgênicos , Fatores de Transcrição/genética , Transgenes
6.
Proc Natl Acad Sci U S A ; 116(52): 26633-26643, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31843909

RESUMO

Corneal epithelia have limited self-renewal and therefore reparative capacity. They are continuously replaced by transient amplifying cells which spawn from stem cells and migrate from the periphery. Because this view has recently been challenged, our goal was to resolve the conflict by giving mice annular injuries in different locations within the corneolimbal epithelium, then spatiotemporally fate-mapping cell behavior during healing. Under these conditions, elevated proliferation was observed in the periphery but not the center, and wounds predominantly resolved by centripetally migrating limbal epithelia. After wound closure, the central corneal epithelium was completely replaced by K14+ limbal-derived clones, an observation supported by high-resolution fluorescence imaging of genetically marked cells in organ-cultured corneas and via computational modeling. These results solidify the essential role of K14+ limbal epithelial stem cells for wound healing and refute the notion that stem cells exist within the central cornea and that their progeny have the capacity to migrate centrifugally.

7.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408803

RESUMO

Macular neovascularization type 3, formerly known as retinal angiomatous proliferation (RAP), is a hallmark of age-related macular degeneration and is associated with an accumulation of myeloid cells, such as microglia (MG) and infiltrating blood-derived macrophages (MAC). However, the contribution of MG and MAC to the myeloid cell pool at RAP sites and their exact functions remain unknown. In this study, we combined a microglia-specific reporter mouse line with a mouse model for RAP to identify the contribution of MG and MAC to myeloid cell accumulation at RAP and determined the transcriptional profile of MG using RNA sequencing. We found that MG are the most abundant myeloid cell population around RAP, whereas MAC are rarely, if ever, associated with late stages of RAP. RNA sequencing of RAP-associated MG showed that differentially expressed genes mainly contribute to immune-associated processes, including chemotaxis and migration in early RAP and proliferative capacity in late RAP, which was confirmed by immunohistochemistry. Interestingly, MG upregulated only a few angiomodulatory factors, suggesting a rather low angiogenic potential. In summary, we showed that MG are the dominant myeloid cell population at RAP sites. Moreover, MG significantly altered their transcriptional profile during RAP formation, activating immune-associated processes and exhibiting enhanced proliferation, however, without showing substantial upregulation of angiomodulatory factors.


Assuntos
Degeneração Macular , Neovascularização Retiniana , Animais , Proliferação de Células/genética , Angiofluoresceinografia , Degeneração Macular/complicações , Camundongos , Microglia , Neovascularização Patológica/complicações , Neovascularização Retiniana/genética , Tomografia de Coerência Óptica
8.
Am J Physiol Cell Physiol ; 320(5): C722-C730, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33596149

RESUMO

Hereditary motor sensory neuropathy (HMSN/ACC) with agenesis of the corpus callosum (ACC) has been documented in the French-derived populations of Charlevoix and Saguenay/Lac St. Jean in Quebec, Canada, as well as a few sporadic families throughout the world. HMSN/ACC occurs because of loss-of-function mutations in the potassium-chloride cotransporter 3 (KCC3). In HMSN/ACC, motor deficits occur early in infancy with rapid and continual deterioration of motor and sensory fibers into juvenile and adulthood. Genetic work in mice has demonstrated that the disease is caused by loss of KCC3 function in neurons and particularly parvalbumin (PV)-expressing neurons. Currently, there are no treatments or cures for HMSN/ACC other than pain management. As genetic counseling in Quebec has increased as a preventative strategy, most individuals with HSMN/ACC are now adults. The onset of the disease is unknown. In particular, it is unknown if the disease starts early during development and whether it can be reversed by restoring KCC3 function. In this study, we used two separate mouse models that when combined to the PV-CreERT2 tamoxifen-inducible system allowed us to 1) disrupt KCC3 expression in adulthood or juvenile periods; and 2) reintroduce KCC3 expression in mice that first develop with a nonfunctional cotransporter. We show that disrupting or reintroducing KCC3 in the adult mouse has no effect on locomotor behavior, indicating that expression of KCC3 is critical during embryonic development and/or the perinatal period and that once the disease has started, reexpressing a functional cotransporter fails to change the course of HMSN/ACC.


Assuntos
Agenesia do Corpo Caloso/terapia , Comportamento Animal , Gânglios Espinais/metabolismo , Terapia Genética , Atividade Motora , Doenças do Sistema Nervoso Periférico/terapia , Simportadores/metabolismo , Fatores Etários , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/metabolismo , Agenesia do Corpo Caloso/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Gânglios Espinais/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Parvalbuminas/metabolismo , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/fisiopatologia , Fenótipo , Equilíbrio Postural , Teste de Desempenho do Rota-Rod , Simportadores/genética
9.
Eur J Immunol ; 50(3): 459-463, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31785096

RESUMO

Ligand-dependent Cre recombinases such as the CreERT2 system allow for tamoxifen-inducible Cre recombination. Important examples are the Cx3cr1-CreERT2 and Sall1-CreERT2 lines that are widely used for fate mapping and gene deletion studies of brain macrophages. Our results now show that both CreERT2 lines can exhibit a high rate of tamoxifen-independent "leaky" excision with some reporter strains, while this is not observed with others. We suggest that this disparity is determined by the length of the floxed transcriptional STOP cassette that is incorporated in the various reporter lines. In addition, the rate of spontaneous recombination was also determined by the CreERT2 expression levels and the longevity of the CreERT2-expressing cells. The implications of these results are discussed in the context of fate mapping and inducible gene deletion studies in macrophages and microglia.


Assuntos
Integrases , Camundongos Transgênicos , Microglia , Modelos Animais , Recombinação Genética , Animais , Deleção de Genes , Camundongos , Tamoxifeno
10.
Eur J Immunol ; 50(4): 603-605, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32087088

RESUMO

A growing body of evidence suggests that Cre recombinase can be toxic to immune cells in various experimental settings. Cre recombinase toxicity is dependent on the level of Cre activity and may also interfere with cell proliferation. Here, we compared two different published tamoxifen-inducible CD4-CreERT2 mouse lines for their suitability to study the dynamics of T-follicular helper cell responses in vivo. Our data underscore that under certain circumstances inducible Cre toxicity (tamoxifen application results in translocation of preformed CreERT2 to the nucleus) interferes with cell survival and, therefore, necessitates careful interpretation of experimental data and the inclusion of appropriate controls. Interestingly, our data indicate that low expression of CreERT2 can still allow for efficient recombination in proliferating lymphocytes without causing excessive cell loss due to Cre toxicity.


Assuntos
Centro Germinativo/imunologia , Integrases/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Integrases/genética , Camundongos , Camundongos Transgênicos , Tamoxifeno/metabolismo
11.
Glia ; 68(9): 1859-1873, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32150307

RESUMO

Myeloid cells such as resident retinal microglia (MG) or infiltrating blood-derived macrophages (Mϕ) accumulate in areas of retinal ischemia and neovascularization (RNV) and modulate neovascular eye disease. Their temporospatial distribution and biological function in this process, however, remain unclarified. Using state-of-the-art methods, including cell-specific reporter mice and high-throughput RNA sequencing (RNA Seq), this study determined the extent of MG proliferation and Mϕ infiltration in areas with retinal ischemia and RNV in Cx3cr1CreERT2 :Rosa26-tdTomato mice and examined the transcriptional profile of MG in the mouse model of oxygen-induced retinopathy (OIR). For RNA Seq, tdTomato-positive retinal MG were sorted by flow cytometry followed by Gene ontology (GO) cluster analysis. Furthermore, intraperitoneal injections of the cell proliferation marker 5-ethynyl-2'-deoxyuridine (EdU) were performed from postnatal day (p) 12 to p16. We found that MG is the predominant myeloid cell population while Mϕ rarely appears in areas of RNV. Thirty percent of retinal MG in areas of RNV were EdU-positive indicating a considerable local MG cell expansion. GO cluster analysis revealed an enrichment of clusters related to cell division, tubulin binding, ATPase activity, protein kinase regulatory activity, and chemokine receptor binding in MG in the OIR model compared to untreated controls. In conclusion, activated retinal MG alter their transcriptional profile, exhibit considerable proliferative ability and are by far the most frequent myeloid cell population in areas of ischemia and RNV in the OIR model thus presenting a potential target for future therapeutic approaches.


Assuntos
Doenças Retinianas , Neovascularização Retiniana , Animais , Modelos Animais de Doenças , Isquemia , Camundongos , Camundongos Endogâmicos C57BL , Microglia , Oxigênio
12.
Eur J Immunol ; 49(1): 192-194, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30359469

RESUMO

The germinal center reaction is essential for efficient humoral immunity, but it can also give rise to B cell lymphomas. Cre/loxP-mediated conditional gene knock-out or knock-in can be used for the genetic manipulation of germinal center B cells in vivo. Here we present a novel allele, Cγ1-CreERT2, that allows for timed activation of Cre recombinase in a small fraction of germinal center B cells. This allele will be useful to study normal and malignant germinal center B cell development in vivo.


Assuntos
Linfócitos B/fisiologia , Técnicas de Introdução de Genes/métodos , Técnicas de Inativação de Genes/métodos , Centro Germinativo/imunologia , Integrases/genética , Alelos , Animais , Diferenciação Celular , Humanos , Camundongos
13.
Transgenic Res ; 29(1): 53-68, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31641921

RESUMO

The CreERT2/loxP system is widely used to induce conditional gene deletion in mice. One of the main advantages of the system is that Cre-mediated recombination can be controlled in time through Tamoxifen administration. This has allowed researchers to study the function of embryonic lethal genes at later developmental timepoints. In addition, CreERT2 mouse lines are commonly used in combination with reporter genes for lineage tracing and mosaic analysis. In order for these experiments to be reliable, it is crucial that the cell labeling approach only marks the desired cell population and their progeny, as unfaithful expression of reporter genes in other cell types or even unintended labeling of the correct cell population at an undesired time point could lead to wrong conclusions. Here we report that all CreERT2 mouse lines that we have studied exhibit a certain degree of Tamoxifen-independent, basal, Cre activity. Using Ai14 and Ai3, two commonly used fluorescent reporter genes, we show that those basal Cre activity levels are sufficient to label a significant amount of cells in a variety of tissues during embryogenesis, postnatal development and adulthood. This unintended labelling of cells imposes a serious problem for lineage tracing and mosaic analysis experiments. Importantly, however, we find that reporter constructs differ greatly in their susceptibility to basal CreERT2 activity. While Ai14 and Ai3 easily recombine under basal CreERT2 activity levels, mTmG and R26R-EYFP rarely become activated under these conditions and are therefore better suited for cell tracking experiments.


Assuntos
Linhagem da Célula , Genes Reporter , Integrases/metabolismo , Receptores de Estrogênio/genética , Recombinação Genética , Tamoxifeno/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Rastreamento de Células , Antagonistas de Estrogênios/farmacologia , Feminino , Integrases/genética , Masculino , Camundongos , Camundongos Transgênicos , Retina/efeitos dos fármacos , Retina/metabolismo
14.
Neuroendocrinology ; 110(7-8): 574-581, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31986518

RESUMO

Tanycytes are peculiar ependymoglial cells lining the bottom and the lateral wall of the third ventricle. For a decade, the utilization of molecular genetic approaches allowed us to make important discoveries about their diverse physiological functions. Here, I review the current methods used to target tanycytes, focusing on their specificity, their efficiency, their limitations, as well as their potential future improvements.


Assuntos
Células Ependimogliais/citologia , Células Ependimogliais/fisiologia , Marcação de Genes/métodos , Animais , Sistemas de Liberação de Medicamentos/métodos , Células Ependimogliais/metabolismo , Regulação da Expressão Gênica , Humanos , Sensibilidade e Especificidade , Terceiro Ventrículo
15.
Diabetologia ; 62(11): 2094-2105, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31309261

RESUMO

AIMS/HYPOTHESIS: In the context of diabetes, the health benefit of antioxidant treatment has been widely debated. In this study, we investigated the effect of antioxidant treatment during the development of insulin resistance and hyperphagia in obesity and partial lipodystrophy. METHODS: We studied the role of antioxidants in the regulation of insulin resistance using the tamoxifen-inducible fat-specific insulin receptor knockout (iFIRKO) mouse model, which allowed us to analyse the antioxidant's effect in a time-resolved manner. In addition, leptin-deficient ob/ob mice were used as a hyperphagic, chronically obese and diabetic mouse model to validate the beneficial effect of antioxidants on metabolism. RESULTS: Acute induction of insulin receptor knockout in adipocytes changed the substrate preference to fat before induction of a diabetic phenotype including hyperinsulinaemia and hyperglycaemia. In healthy chow-fed animals as well as in morbidly obese mice, this diabetic phase could be reversed within a few weeks. Furthermore, after the induction of insulin receptor knockout in mature adipocytes, iFIRKO mice were protected from subsequent obesity development through high-fat diet feeding. By genetic tracing we show that the persistent fat mass loss in mice after insulin receptor knockout in adipocytes is not caused by the depletion of adipocytes. Treatment of iFIRKO mice with antioxidants postponed and reduced hyperglycaemia by increasing insulin sensitivity. In ob/ob mice, antioxidants rescued both hyperglycaemia and hyperphagia. CONCLUSIONS/INTERPRETATION: We conclude that fat mass reduction through insulin resistance in adipocytes is not reversible. Furthermore, it seems unlikely that adipocytes undergo apoptosis during the process of extreme lipolysis, as a consequence of insulin resistance. Antioxidants have a beneficial health effect not only during the acute phase of diabetes development, but also in a temporary fashion once chronic obesity and diabetes have been established.


Assuntos
Antioxidantes/metabolismo , Diabetes Mellitus/metabolismo , Glucose/metabolismo , Resistência à Insulina , Obesidade Mórbida/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Glicemia/metabolismo , Calorimetria , Modelos Animais de Doenças , Homeostase , Hiperinsulinismo/metabolismo , Hiperfagia/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Lipodistrofia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade Mórbida/complicações , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
16.
EMBO J ; 34(7): 925-39, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25630702

RESUMO

The development and function of B lymphocytes is regulated by numerous signaling pathways, some emanating from the B-cell antigen receptor (BCR). The spleen tyrosine kinase (Syk) plays a central role in the activation of the BCR, but less is known about its contribution to the survival and maintenance of mature B cells. We generated mice with an inducible and B-cell-specific deletion of the Syk gene and found that a considerable fraction of mature Syk-negative B cells can survive in the periphery for an extended time. Syk-negative B cells are defective in BCR, RP105 and CD38 signaling but still respond to an IL-4, anti-CD40, CpG or LPS stimulus. Our in vivo experiments show that Syk-deficient B cells require BAFF receptor and CD19/PI3K signaling for their long-term survival. These studies also shed a new light on the signals regulating the maintenance of the normal mature murine B-cell pool.


Assuntos
Antígenos CD19/imunologia , Linfócitos B/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Proteínas Tirosina Quinases/imunologia , Transdução de Sinais/imunologia , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/imunologia , Animais , Anticorpos/farmacologia , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos CD19/genética , Receptor do Fator Ativador de Células B/genética , Receptor do Fator Ativador de Células B/imunologia , Linfócitos B/citologia , Antígenos CD40/antagonistas & inibidores , Antígenos CD40/genética , Antígenos CD40/imunologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Interleucina-4/antagonistas & inibidores , Interleucina-4/genética , Interleucina-4/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipopolissacarídeos/farmacologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Oligodesoxirribonucleotídeos/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/imunologia , Proteínas Tirosina Quinases/genética , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Transdução de Sinais/genética , Quinase Syk
17.
Stem Cells ; 36(11): 1736-1751, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29999568

RESUMO

Adult neurogenesis in the brain continuously seeds new neurons throughout life, but how homeostasis of adult neural stem cells (NSCs) is maintained is incompletely understood. Here, we demonstrate that the DNA methylation adapter ubiquitin-like, containing PHD and RING finger domains-1 (UHRF1) is expressed in, and regulates proliferation of, the active but not quiescent pool of adult neural progenitor cells. Mice with a neural stem cell-specific deficiency in UHRF1 exhibit a massive depletion of neurogenesis resulting in a collapse of formation of new neurons. In the absence of UHRF1, NSCs unexpectedly remain in the cell cycle but with a 17-fold increased cell cycle length due to a failure of replication phase entry caused by promoter demethylation and derepression of Cdkn1a, which encodes the cyclin-dependent kinase inhibitor p21. UHRF1 does not affect the proportion progenitor cells active within the cell cycle but among these cells, UHRF1 is critical for licensing replication re-entry. Therefore, this study shows that a UHRF1-Cdkn1a axis is essential for the control of stem cell self-renewal and neurogenesis in the adult brain. Stem Cells 2018;36:1736-1751.


Assuntos
Células-Tronco Adultas/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas Nucleares/genética , Animais , Proteínas Estimuladoras de Ligação a CCAAT , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases
18.
Mol Cell Neurosci ; 88: 258-269, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29427775

RESUMO

The main olfactory epithelium (MOE) of an adult mouse harbors a few million mature olfactory sensory neurons (OSNs), which are traditionally defined as mature by their expression of the olfactory marker protein (OMP). Mature OSNs differentiate in situ from stem cells at the base of the MOE. The consensus view is that mature OSNs have a defined lifespan and then undergo programmed cell death, and that the adult MOE maintains homeostasis by generating new mature OSNs from stem cells. But there is also evidence for mature OSNs that are long-lived. Thus far modern genetic tools have not been applied to quantify survival of a population of OSNs that are mature at a given point in time. Here, a genetic strategy was developed to label irreversibly OMP-expressing OSNs in mice. A gene-targeted OMP-CreERT2 strain was generated in which mature OSNs express an enzymatically inactive version of the Cre recombinase. The fusion protein CreERT2 becomes transiently active when exposed to tamoxifen, and in the presence of a Cre reporter in the genome such as tdRFP, CreERT2-expressing cells become irreversibly labeled. A cohort of mice was generated with the same day of birth by in vitro fertilization and embryo transfer, and injected tamoxifen in their mothers at E18.5 of gestation. I counted RFP immunoreactive cells in the MOE and vomeronasal organ of 36 tamoxifen-exposed OMP-CreERT2 × tdRFP mice from 7 age groups: postnatal day (PD)1.5, PD3.5, PD6.5, 3 weeks, 9 weeks, 6 months, and 12 months. Approximately 7.8% of perinatally labeled cells remain at 12 months, confirming that some mature OSNs are indeed long-lived. The survival curve of the population of perinatally labeled MOE cells can be modeled with a mean half-life of 26 days for the population as a whole, excluding the long-lived cells.


Assuntos
Proteína de Marcador Olfatório/genética , Mucosa Olfatória/citologia , Neurônios Receptores Olfatórios/citologia , Órgão Vomeronasal/crescimento & desenvolvimento , Animais , Sobrevivência Celular/fisiologia , Camundongos Transgênicos , Bulbo Olfatório/crescimento & desenvolvimento , Receptores Odorantes/genética
19.
Genesis ; 56(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29345101

RESUMO

PDGF-C, a member of the platelet-derived growth factor (PDGF) family, plays important roles in the development of craniofacial structures, the neural system, the vascular system, and tumors. PDGF-C could also be required for the regulation of certain types of stem or progenitor cells as suggested by its expression in the regions where these cells are located. To further characterize the role of PDGF-C in development, we generated a Pdgf-cCreERT2 mouse strain, in which a tamoxifen-inducible Cre (CreERT2) cDNA was specifically targeted into the Pdgf-c genomic locus and controlled by the endogenous Pdgf-c regulatory elements. We also showed that Cre activity in this mouse strain could be specifically induced by tamoxifen, which allowed the fate of PDGF-C-expressing cells to be traced at various stages of development. Using this model system, we demonstrated for the first time that PDGF-C-expressing cells could be multipotent, generating multiple cell lineages required for the formation of the cerebellum. Therefore, the Pdgf-cCreERT2 mouse strain generated in this study will be a valuable transgenic tool for exploring the function of PDGF-C in development and stem cell biology.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Técnicas de Introdução de Genes , Linfocinas/genética , Fator de Crescimento Derivado de Plaquetas/genética , Alelos , Animais , Biomarcadores , Expressão Gênica , Marcação de Genes , Genes Reporter , Loci Gênicos , Genótipo , Recombinação Homóloga , Imuno-Histoquímica , Linfocinas/metabolismo , Camundongos , Fenótipo , Fator de Crescimento Derivado de Plaquetas/metabolismo
20.
Genesis ; 56(4): e23099, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29508517

RESUMO

Reck encodes a membrane-anchored glycoprotein implicated in the regulation of extracellular metalloproteinases, Notch-signaling, and Wnt7-signaling and shown to play critical roles in embryogenesis and tumor suppression. Precise mechanisms of its actions in vivo, however, remain largely unknown. By homologous recombination, we generated a new Reck allele, ReckCreERT2 (MGI symbol: Reck). This allele is defective in terms of Reck function but expected to induce loxP-mediated recombination in the cells committed to express Reck. Similarity in the expression patterns of the ReckCreERT2 transgene and the endogenous Reck gene was confirmed in five tissues. In the adult hippocampus, induction of Reck expression after transient cerebral ischemia could be demonstrated using this allele. These results indicate the utility of this Cre-driver allele in further studies.


Assuntos
Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Alelos , Animais , Técnicas de Introdução de Genes , Engenharia Genética/métodos , Integrases/genética , Camundongos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA