Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.254
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 42(1): 455-488, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38360546

RESUMO

Ten-eleven translocation (TET) proteins are iron-dependent and α-ketoglutarate-dependent dioxygenases that sequentially oxidize the methyl group of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). All three epigenetic modifications are intermediates in DNA demethylation. TET proteins are recruited by transcription factors and by RNA polymerase II to modify 5mC at enhancers and gene bodies, thereby regulating gene expression during development, cell lineage specification, and cell activation. It is not yet clear, however, how the established biochemical activities of TET enzymes in oxidizing 5mC and mediating DNA demethylation relate to the known association of TET deficiency with inflammation, clonal hematopoiesis, and cancer. There are hints that the ability of TET deficiency to promote cell proliferation in a signal-dependent manner may be harnessed for cancer immunotherapy. In this review, we draw upon recent findings in cells of the immune system to illustrate established as well as emerging ideas of how TET proteins influence cellular function.


Assuntos
Desmetilação do DNA , Dioxigenases , Imunoterapia , Inflamação , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/etiologia , Neoplasias/metabolismo , Animais , Inflamação/metabolismo , Inflamação/imunologia , Imunoterapia/métodos , Dioxigenases/metabolismo , Sistema Imunitário/metabolismo , Sistema Imunitário/imunologia , Epigênese Genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/genética
2.
Annu Rev Immunol ; 37: 325-347, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30676821

RESUMO

ATP, NAD+, and nucleic acids are abundant purines that, in addition to having critical intracellular functions, have evolved extracellular roles as danger signals released in response to cell lysis, apoptosis, degranulation, or membrane pore formation. In general ATP and NAD+ have excitatory and adenosine has anti-inflammatory effects on immune cells. This review focuses on recent advances in our understanding of purine release mechanisms, ectoenzymes that metabolize purines (CD38, CD39, CD73, ENPP1, and ENPP2/autotaxin), and signaling by key P2 purinergic receptors (P2X7, P2Y2, and P2Y12). In addition to metabolizing ATP or NAD+, some purinergic ectoenzymes metabolize other inflammatory modulators, notably lysophosphatidic acid and cyclic GMP-AMP (cGAMP). Also discussed are extracellular signaling effects of NAD+ mediated by ADP-ribosylation, and epigenetic effects of intracellular adenosine mediated by modification of S-adenosylmethionine-dependent DNA methylation.


Assuntos
Inflamação/imunologia , Purinas/metabolismo , Receptores Purinérgicos/metabolismo , ADP-Ribosilação , Trifosfato de Adenosina/metabolismo , Animais , Metilação de DNA , Humanos , Inflamação/genética , Inflamação/metabolismo , Lisofosfolipídeos/metabolismo , Transdução de Sinais
3.
Cell ; 186(4): 715-731.e19, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36754048

RESUMO

Transgenerational epigenetic inheritance in mammals remains a debated subject. Here, we demonstrate that DNA methylation of promoter-associated CpG islands (CGIs) can be transmitted from parents to their offspring in mice. We generated DNA methylation-edited mouse embryonic stem cells (ESCs), in which CGIs of two metabolism-related genes, the Ankyrin repeat domain 26 and the low-density lipoprotein receptor, were specifically methylated and silenced. DNA methylation-edited mice generated by microinjection of the methylated ESCs exhibited abnormal metabolic phenotypes. Acquired methylation of the targeted CGI and the phenotypic traits were maintained and transmitted across multiple generations. The heritable CGI methylation was subjected to reprogramming in parental PGCs and subsequently reestablished in the next generation at post-implantation stages. These observations provide a concrete step toward demonstrating transgenerational epigenetic inheritance in mammals, which may have implications in our understanding of evolutionary biology as well as the etiology, diagnosis, and prevention of non-genetically inherited human diseases.


Assuntos
Metilação de DNA , Epigênese Genética , Camundongos , Humanos , Animais , Ilhas de CpG , Padrões de Herança , Mamíferos/genética
4.
Cell ; 186(23): 5183-5199.e22, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37852258

RESUMO

Cellular lineage histories and their molecular states encode fundamental principles of tissue development and homeostasis. Current lineage-recording mouse models have insufficient barcode diversity and single-cell lineage coverage for profiling tissues composed of millions of cells. Here, we developed DARLIN, an inducible Cas9 barcoding mouse line that utilizes terminal deoxynucleotidyl transferase (TdT) and 30 CRISPR target sites. DARLIN is inducible, generates massive lineage barcodes across tissues, and enables the detection of edited barcodes in ∼70% of profiled single cells. Using DARLIN, we examined fate bias within developing hematopoietic stem cells (HSCs) and revealed unique features of HSC migration. Additionally, we established a protocol for joint transcriptomic and epigenomic single-cell measurements with DARLIN and found that cellular clonal memory is associated with genome-wide DNA methylation rather than gene expression or chromatin accessibility. DARLIN will enable the high-resolution study of lineage relationships and their molecular signatures in diverse tissues and physiological contexts.


Assuntos
Epigenômica , Transcriptoma , Animais , Camundongos , Transcriptoma/genética , Linhagem da Célula/genética , Perfilação da Expressão Gênica , Modelos Animais de Doenças , DNA
5.
Cell ; 186(17): 3674-3685.e14, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37494934

RESUMO

Epigenetic lesions that disrupt regulatory elements represent potential cancer drivers. However, we lack experimental models for validating their tumorigenic impact. Here, we model aberrations arising in isocitrate dehydrogenase-mutant gliomas, which exhibit DNA hypermethylation. We focus on a CTCF insulator near the PDGFRA oncogene that is recurrently disrupted by methylation in these tumors. We demonstrate that disruption of the syntenic insulator in mouse oligodendrocyte progenitor cells (OPCs) allows an OPC-specific enhancer to contact and induce Pdgfra, thereby increasing proliferation. We show that a second lesion, methylation-dependent silencing of the Cdkn2a tumor suppressor, cooperates with insulator loss in OPCs. Coordinate inactivation of the Pdgfra insulator and Cdkn2a drives gliomagenesis in vivo. Despite locus synteny, the insulator is CpG-rich only in humans, a feature that may confer human glioma risk but complicates mouse modeling. Our study demonstrates the capacity of recurrent epigenetic lesions to drive OPC proliferation in vitro and gliomagenesis in vivo.


Assuntos
Neoplasias Encefálicas , Epigênese Genética , Glioma , Animais , Humanos , Camundongos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Metilação de DNA , Glioma/genética , Glioma/patologia , Isocitrato Desidrogenase/genética , Mutação , Oncogenes , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética
6.
Cell ; 186(6): 1162-1178.e20, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36931244

RESUMO

Germline histone H3.3 amino acid substitutions, including H3.3G34R/V, cause severe neurodevelopmental syndromes. To understand how these mutations impact brain development, we generated H3.3G34R/V/W knock-in mice and identified strikingly distinct developmental defects for each mutation. H3.3G34R-mutants exhibited progressive microcephaly and neurodegeneration, with abnormal accumulation of disease-associated microglia and concurrent neuronal depletion. G34R severely decreased H3K36me2 on the mutant H3.3 tail, impairing recruitment of DNA methyltransferase DNMT3A and its redistribution on chromatin. These changes were concurrent with sustained expression of complement and other innate immune genes possibly through loss of non-CG (CH) methylation and silencing of neuronal gene promoters through aberrant CG methylation. Complement expression in G34R brains may lead to neuroinflammation possibly accounting for progressive neurodegeneration. Our study reveals that H3.3G34-substitutions have differential impact on the epigenome, which underlie the diverse phenotypes observed, and uncovers potential roles for H3K36me2 and DNMT3A-dependent CH-methylation in modulating synaptic pruning and neuroinflammation in post-natal brains.


Assuntos
DNA Metiltransferase 3A , Histonas , Animais , Camundongos , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Metilases de Modificação do DNA/genética , Histonas/metabolismo , Doenças Neuroinflamatórias
7.
Cell ; 186(19): 4100-4116.e15, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37643610

RESUMO

Nucleosomes block access to DNA methyltransferase, unless they are remodeled by DECREASE in DNA METHYLATION 1 (DDM1LSH/HELLS), a Snf2-like master regulator of epigenetic inheritance. We show that DDM1 promotes replacement of histone variant H3.3 by H3.1. In ddm1 mutants, DNA methylation is partly restored by loss of the H3.3 chaperone HIRA, while the H3.1 chaperone CAF-1 becomes essential. The single-particle cryo-EM structure at 3.2 Å of DDM1 with a variant nucleosome reveals engagement with histone H3.3 near residues required for assembly and with the unmodified H4 tail. An N-terminal autoinhibitory domain inhibits activity, while a disulfide bond in the helicase domain supports activity. DDM1 co-localizes with H3.1 and H3.3 during the cell cycle, and with the DNA methyltransferase MET1Dnmt1, but is blocked by H4K16 acetylation. The male germline H3.3 variant MGH3/HTR10 is resistant to remodeling by DDM1 and acts as a placeholder nucleosome in sperm cells for epigenetic inheritance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Metilação de DNA , Histonas , Nucleossomos , Montagem e Desmontagem da Cromatina , DNA , Metilases de Modificação do DNA , Epigênese Genética , Histonas/genética , Nucleossomos/genética , Sêmen , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
8.
Cell ; 186(12): 2593-2609.e18, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209683

RESUMO

Here, we describe an approach to correct the genetic defect in fragile X syndrome (FXS) via recruitment of endogenous repair mechanisms. A leading cause of autism spectrum disorders, FXS results from epigenetic silencing of FMR1 due to a congenital trinucleotide (CGG) repeat expansion. By investigating conditions favorable to FMR1 reactivation, we find MEK and BRAF inhibitors that induce a strong repeat contraction and full FMR1 reactivation in cellular models. We trace the mechanism to DNA demethylation and site-specific R-loops, which are necessary and sufficient for repeat contraction. A positive feedback cycle comprising demethylation, de novo FMR1 transcription, and R-loop formation results in the recruitment of endogenous DNA repair mechanisms that then drive excision of the long CGG repeat. Repeat contraction is specific to FMR1 and restores the production of FMRP protein. Our study therefore identifies a potential method of treating FXS in the future.


Assuntos
Síndrome do Cromossomo X Frágil , Expansão das Repetições de Trinucleotídeos , Humanos , Estruturas R-Loop , Metilação de DNA , Síndrome do Cromossomo X Frágil/genética , Epigênese Genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
9.
Cell ; 185(20): 3689-3704.e21, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36179666

RESUMO

Regulatory landscapes drive complex developmental gene expression, but it remains unclear how their integrity is maintained when incorporating novel genes and functions during evolution. Here, we investigated how a placental mammal-specific gene, Zfp42, emerged in an ancient vertebrate topologically associated domain (TAD) without adopting or disrupting the conserved expression of its gene, Fat1. In ESCs, physical TAD partitioning separates Zfp42 and Fat1 with distinct local enhancers that drive their independent expression. This separation is driven by chromatin activity and not CTCF/cohesin. In contrast, in embryonic limbs, inactive Zfp42 shares Fat1's intact TAD without responding to active Fat1 enhancers. However, neither Fat1 enhancer-incompatibility nor nuclear envelope-attachment account for Zfp42's unresponsiveness. Rather, Zfp42's promoter is rendered inert to enhancers by context-dependent DNA methylation. Thus, diverse mechanisms enabled the integration of independent Zfp42 regulation in the Fat1 locus. Critically, such regulatory complexity appears common in evolution as, genome wide, most TADs contain multiple independently expressed genes.


Assuntos
Cromatina , Placenta , Animais , Fator de Ligação a CCCTC/metabolismo , Montagem e Desmontagem da Cromatina , Elementos Facilitadores Genéticos , Evolução Molecular , Feminino , Genoma , Mamíferos/metabolismo , Placenta/metabolismo , Gravidez , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Cell ; 184(9): 2503-2519.e17, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33838111

RESUMO

A general approach for heritably altering gene expression has the potential to enable many discovery and therapeutic efforts. Here, we present CRISPRoff-a programmable epigenetic memory writer consisting of a single dead Cas9 fusion protein that establishes DNA methylation and repressive histone modifications. Transient CRISPRoff expression initiates highly specific DNA methylation and gene repression that is maintained through cell division and differentiation of stem cells to neurons. Pairing CRISPRoff with genome-wide screens and analysis of chromatin marks establishes rules for heritable gene silencing. We identify single guide RNAs (sgRNAs) capable of silencing the large majority of genes including those lacking canonical CpG islands (CGIs) and reveal a wide targeting window extending beyond annotated CGIs. The broad ability of CRISPRoff to initiate heritable gene silencing even outside of CGIs expands the canonical model of methylation-based silencing and enables diverse applications including genome-wide screens, multiplexed cell engineering, enhancer silencing, and mechanistic exploration of epigenetic inheritance.


Assuntos
Sistemas CRISPR-Cas , Reprogramação Celular , Epigênese Genética , Epigenoma , Edição de Genes , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/citologia , Diferenciação Celular , Ilhas de CpG , Metilação de DNA , Inativação Gênica , Código das Histonas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional
11.
Cell ; 184(9): 2454-2470.e26, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33857425

RESUMO

Glioblastoma multiforme (GBM) is an aggressive brain tumor for which current immunotherapy approaches have been unsuccessful. Here, we explore the mechanisms underlying immune evasion in GBM. By serially transplanting GBM stem cells (GSCs) into immunocompetent hosts, we uncover an acquired capability of GSCs to escape immune clearance by establishing an enhanced immunosuppressive tumor microenvironment. Mechanistically, this is not elicited via genetic selection of tumor subclones, but through an epigenetic immunoediting process wherein stable transcriptional and epigenetic changes in GSCs are enforced following immune attack. These changes launch a myeloid-affiliated transcriptional program, which leads to increased recruitment of tumor-associated macrophages. Furthermore, we identify similar epigenetic and transcriptional signatures in human mesenchymal subtype GSCs. We conclude that epigenetic immunoediting may drive an acquired immune evasion program in the most aggressive mesenchymal GBM subtype by reshaping the tumor immune microenvironment.


Assuntos
Neoplasias Encefálicas/imunologia , Epigênese Genética , Glioblastoma/imunologia , Evasão da Resposta Imune/imunologia , Células Mieloides/imunologia , Células-Tronco Neoplásicas/imunologia , Microambiente Tumoral/imunologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células , Metilação de DNA , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células Mieloides/metabolismo , Células Mieloides/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Annu Rev Biochem ; 89: 135-158, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31815535

RESUMO

DNA methylation at the 5-position of cytosine (5mC) plays vital roles in mammalian development. DNA methylation is catalyzed by DNA methyltransferases (DNMTs), and the two DNMT families, DNMT3 and DNMT1, are responsible for methylation establishment and maintenance, respectively. Since their discovery, biochemical and structural studies have revealed the key mechanisms underlying how DNMTs catalyze de novo and maintenance DNA methylation. In particular, recent development of low-input genomic and epigenomic technologies has deepened our understanding of DNA methylation regulation in germ lines and early stage embryos. In this review, we first describe the methylation machinery including the DNMTs and their essential cofactors. We then discuss how DNMTs are recruited to or excluded from certain genomic elements. Lastly, we summarize recent understanding of the regulation of DNA methylation dynamics in mammalian germ lines and early embryos with a focus on both mice and humans.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Animais , Coenzimas/química , Coenzimas/metabolismo , Ilhas de CpG , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA Metiltransferase 3A , Embrião de Mamíferos , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Oócitos/citologia , Oócitos/enzimologia , Oócitos/crescimento & desenvolvimento , Transdução de Sinais , Espermatozoides/citologia , Espermatozoides/enzimologia , Espermatozoides/crescimento & desenvolvimento
13.
Cell ; 182(6): 1474-1489.e23, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32841603

RESUMO

Widespread changes to DNA methylation and chromatin are well documented in cancer, but the fate of higher-order chromosomal structure remains obscure. Here we integrated topological maps for colon tumors and normal colons with epigenetic, transcriptional, and imaging data to characterize alterations to chromatin loops, topologically associated domains, and large-scale compartments. We found that spatial partitioning of the open and closed genome compartments is profoundly compromised in tumors. This reorganization is accompanied by compartment-specific hypomethylation and chromatin changes. Additionally, we identify a compartment at the interface between the canonical A and B compartments that is reorganized in tumors. Remarkably, similar shifts were evident in non-malignant cells that have accumulated excess divisions. Our analyses suggest that these topological changes repress stemness and invasion programs while inducing anti-tumor immunity genes and may therefore restrain malignant progression. Our findings call into question the conventional view that tumor-associated epigenomic alterations are primarily oncogenic.


Assuntos
Cromatina/metabolismo , Cromossomos/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica/genética , Divisão Celular , Senescência Celular/genética , Sequenciamento de Cromatina por Imunoprecipitação , Cromossomos/genética , Estudos de Coortes , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Biologia Computacional , Metilação de DNA/genética , Epigenômica , Células HCT116 , Humanos , Hibridização in Situ Fluorescente , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular , RNA-Seq , Análise Espacial , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
14.
Cell ; 180(2): 263-277.e20, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31955845

RESUMO

Cytosine methylation of DNA is a widespread modification of DNA that plays numerous critical roles. In the yeast Cryptococcus neoformans, CG methylation occurs in transposon-rich repeats and requires the DNA methyltransferase Dnmt5. We show that Dnmt5 displays exquisite maintenance-type specificity in vitro and in vivo and utilizes similar in vivo cofactors as the metazoan maintenance methylase Dnmt1. Remarkably, phylogenetic and functional analysis revealed that the ancestral species lost the gene for a de novo methylase, DnmtX, between 50-150 mya. We examined how methylation has persisted since the ancient loss of DnmtX. Experimental and comparative studies reveal efficient replication of methylation patterns in C. neoformans, rare stochastic methylation loss and gain events, and the action of natural selection. We propose that an epigenome has been propagated for >50 million years through a process analogous to Darwinian evolution of the genome.


Assuntos
Cryptococcus neoformans/genética , Metilação de DNA/genética , Metiltransferases/genética , Evolução Biológica , Cryptococcus neoformans/metabolismo , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/fisiologia , Metilases de Modificação do DNA/genética , Elementos de DNA Transponíveis/genética , Epigenômica/métodos , Evolução Molecular , Genoma/genética , Metiltransferases/metabolismo , Filogenia
15.
Cell ; 177(7): 1781-1796.e25, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31104845

RESUMO

DNA N6-adenine methylation (6mA) has recently been described in diverse eukaryotes, spanning unicellular organisms to metazoa. Here, we report a DNA 6mA methyltransferase complex in ciliates, termed MTA1c. It consists of two MT-A70 proteins and two homeobox-like DNA-binding proteins and specifically methylates dsDNA. Disruption of the catalytic subunit, MTA1, in the ciliate Oxytricha leads to genome-wide loss of 6mA and abolishment of the consensus ApT dimethylated motif. Mutants fail to complete the sexual cycle, which normally coincides with peak MTA1 expression. We investigate the impact of 6mA on nucleosome occupancy in vitro by reconstructing complete, full-length Oxytricha chromosomes harboring 6mA in native or ectopic positions. We show that 6mA directly disfavors nucleosomes in vitro in a local, quantitative manner, independent of DNA sequence. Furthermore, the chromatin remodeler ACF can overcome this effect. Our study identifies a diverged DNA N6-adenine methyltransferase and defines the role of 6mA in chromatin organization.


Assuntos
Complexos Multienzimáticos/metabolismo , Nucleossomos/enzimologia , Oxytricha/enzimologia , Proteínas de Protozoários/metabolismo , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Tetrahymena thermophila/enzimologia , Complexos Multienzimáticos/genética , Nucleossomos/genética , Oxytricha/genética , Proteínas de Protozoários/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , Tetrahymena thermophila/genética
16.
Cell ; 176(1-2): 227-238.e20, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30528434

RESUMO

Chemical modifications to DNA and histone proteins are involved in epigenetic programs underlying cellular differentiation and development. Regulatory networks involving molecular writers and readers of chromatin marks are thought to control these programs. Guided by this common principle, we established an orthogonal epigenetic regulatory system in mammalian cells using N6-methyladenine (m6A), a DNA modification not commonly found in metazoan epigenomes. Our system utilizes synthetic factors that write and read m6A and consequently recruit transcriptional regulators to control reporter loci. Inspired by models of chromatin spreading and epigenetic inheritance, we used our system and mathematical models to construct regulatory circuits that induce m6A-dependent transcriptional states, promote their spatial propagation, and maintain epigenetic memory of the states. These minimal circuits were able to program epigenetic functions de novo, conceptually validating "read-write" architectures. This work provides a toolkit for investigating models of epigenetic regulation and encoding additional layers of epigenetic information in cells.

17.
Cell ; 173(4): 839-850.e18, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29628142

RESUMO

Maize abnormal chromosome 10 (Ab10) encodes a classic example of true meiotic drive that converts heterochromatic regions called knobs into motile neocentromeres that are preferentially transmitted to egg cells. Here, we identify a cluster of eight genes on Ab10, called the Kinesin driver (Kindr) complex, that are required for both neocentromere motility and preferential transmission. Two meiotic drive mutants that lack neocentromere activity proved to be kindr epimutants with increased DNA methylation across the entire gene cluster. RNAi of Kindr induced a third epimutant and corresponding loss of meiotic drive. Kinesin gliding assays and immunolocalization revealed that KINDR is a functional minus-end-directed kinesin that localizes specifically to knobs containing 180 bp repeats. Sequence comparisons suggest that Kindr diverged from a Kinesin-14A ancestor ∼12 mya and has driven the accumulation of > 500 Mb of knob repeats and affected the segregation of thousands of genes linked to knobs on all 10 chromosomes.


Assuntos
Centrômero/metabolismo , Cinesinas/metabolismo , Meiose , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Centrômero/genética , Cromossomos de Plantas , Evolução Molecular , Haplótipos , Hibridização in Situ Fluorescente , Cinesinas/antagonistas & inibidores , Cinesinas/classificação , Cinesinas/genética , Modelos Genéticos , Mutagênese , Filogenia , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Sequenciamento Completo do Genoma , Zea mays/genética
18.
Cell ; 172(5): 993-1006.e13, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29456083

RESUMO

The fate and function of epigenetic marks during the germline-to-embryo transition is a key issue in developmental biology, with relevance to stem cell programming and transgenerational inheritance. In zebrafish, DNA methylation patterns are programmed in transcriptionally quiescent cleavage embryos; paternally inherited patterns are maintained, whereas maternal patterns are reprogrammed to match the paternal. Here, we provide the mechanism by demonstrating that "Placeholder" nucleosomes, containing histone H2A variant H2A.Z(FV) and H3K4me1, virtually occupy all regions lacking DNA methylation in both sperm and cleavage embryos and reside at promoters encoding housekeeping and early embryonic transcription factors. Upon genome-wide transcriptional onset, genes with Placeholder become either active (H3K4me3) or silent (H3K4me3/K27me3). Notably, perturbations causing Placeholder loss confer DNA methylation accumulation, whereas acquisition/expansion of Placeholder confers DNA hypomethylation and improper gene activation. Thus, during transcriptionally quiescent gametic and embryonic stages, an H2A.Z(FV)/H3K4me1-containing Placeholder nucleosome deters DNA methylation, poising parental genes for either gene-specific activation or facultative repression.


Assuntos
Reprogramação Celular/genética , Metilação de DNA/genética , Embrião não Mamífero/metabolismo , Células Germinativas/metabolismo , Nucleossomos/metabolismo , Animais , Histonas/metabolismo , Masculino , Mutação/genética , Espermatozoides/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
Cell ; 172(5): 979-992.e6, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29456084

RESUMO

Fragile X syndrome (FXS), the most common genetic form of intellectual disability in males, is caused by silencing of the FMR1 gene associated with hypermethylation of the CGG expansion mutation in the 5' UTR of FMR1 in FXS patients. Here, we applied recently developed DNA methylation editing tools to reverse this hypermethylation event. Targeted demethylation of the CGG expansion by dCas9-Tet1/single guide RNA (sgRNA) switched the heterochromatin status of the upstream FMR1 promoter to an active chromatin state, restoring a persistent expression of FMR1 in FXS iPSCs. Neurons derived from methylation-edited FXS iPSCs rescued the electrophysiological abnormalities and restored a wild-type phenotype upon the mutant neurons. FMR1 expression in edited neurons was maintained in vivo after engrafting into the mouse brain. Finally, demethylation of the CGG repeats in post-mitotic FXS neurons also reactivated FMR1. Our data establish that demethylation of the CGG expansion is sufficient for FMR1 reactivation, suggesting potential therapeutic strategies for FXS.


Assuntos
Metilação de DNA/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Edição de Genes , Neurônios/patologia , Animais , Proteína 9 Associada à CRISPR/metabolismo , Epigênese Genética , Células HEK293 , Heterocromatina/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cinética , Masculino , Camundongos , Neurônios/metabolismo , Fenótipo , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos/metabolismo , Expansão das Repetições de Trinucleotídeos/genética
20.
Cell ; 175(5): 1244-1258.e26, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30454645

RESUMO

Cyclin-dependent kinase 9 (CDK9) promotes transcriptional elongation through RNAPII pause release. We now report that CDK9 is also essential for maintaining gene silencing at heterochromatic loci. Through a live cell drug screen with genetic confirmation, we discovered that CDK9 inhibition reactivates epigenetically silenced genes in cancer, leading to restored tumor suppressor gene expression, cell differentiation, and activation of endogenous retrovirus genes. CDK9 inhibition dephosphorylates the SWI/SNF protein BRG1, which contributes to gene reactivation. By optimization through gene expression, we developed a highly selective CDK9 inhibitor (MC180295, IC50 = 5 nM) that has broad anti-cancer activity in vitro and is effective in in vivo cancer models. Additionally, CDK9 inhibition sensitizes to the immune checkpoint inhibitor α-PD-1 in vivo, making it an excellent target for epigenetic therapy of cancer.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Animais , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Metilação de DNA , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA