Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 284: 116990, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39236658

RESUMO

Marine toxins pose a significant safety risk, leading to human intoxications and causing substantial economic losses in seafood-producing regions. The development of rapid, cost-effective, efficient, and reliable approaches for the containment of these substances is therefore crucial in order to mitigate the adverse impact of marine toxins. This research conducted a comprehensive review on the toxicity and influencing factors of marine toxins production. Additionally, depuration technologies, including adsorption, advanced oxidation processes, biodegradation, heating treatment, temporary maintenance and purification, and drug inhibition, were systematically summarized. The study also provided a comparative analysis of the advantages and disadvantages of various depuration technologies and proposed strategies for future development.


Assuntos
Toxinas Marinhas , Toxinas Marinhas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental/métodos , Biodegradação Ambiental , Adsorção , Humanos , Organismos Aquáticos/efeitos dos fármacos
2.
Int J Phytoremediation ; 26(11): 1741-1748, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38738738

RESUMO

Arbuscular mycorrhizal fungi (AMF) have different biological mechanisms to alleviate stressful conditions in heavy metals (HMs) polluted soil. These mechanisms were widely assessed under controlled/greenhouse conditions, but scarcely studied at pilot or territory scale. The aim of this study was to evaluate the response of two Rhizophagus intraradices strains isolated from soils with different histories of pollution, in association with Senecio bonariensis plants, growing in an engineering vegetal depuration module filled with artificially HMs polluted substrate. Plants inoculated with GC3 strain uptook low amounts of HMs and translocated them to shoot biomass. Heavy metals (Mg, Zn, Mn, Cr, Cu and Ni) and macronutrients (Ca, K, S and P) were accumulated in roots of S. bonariensis when inoculated with GB8 strain, limiting their translocation to the shoot. Uninoculated plants showed high translocation of all studied elements to shoot tissues. Concluding, tested R. intraradices strains have exhibited different phytoprotection mechanisms under extremely toxic concentrations of HMs. Moreover, the development of the assay at such a high Technological Readiness Level represents a novel contribution in this field of study.


Assuntos
Biodegradação Ambiental , Metais Pesados , Micorrizas , Senécio , Poluentes do Solo , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Micorrizas/fisiologia , Projetos Piloto , Glomeromycota/fisiologia , Microbiologia do Solo , Raízes de Plantas/microbiologia
3.
Bull Environ Contam Toxicol ; 112(3): 45, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429565

RESUMO

Crayfish rely on their chemosensory system for many essential behaviours including finding food, finding mates, and to recognize individuals. Copper can impair chemosensation in crayfish at low concentrations; however, it is not clear if the effect is ameliorated once copper is removed. To better understand the effect of and recovery from copper exposure in crayfish, we exposed Northern clearwater crayfish (Faxonius propinquus) to 31.3 [Formula: see text] copper for 24 h and measured the response of the crayfish to a food cue. The crayfish were then placed into clean water to depurate for an 24 h. The results demonstrated that the crayfish did not respond to a food cue if they had been exposed to copper, but showed a full response after a 24 h recovery period without copper. Higher concentrations of copper have shown a much longer-term effect in rusty crayfish (Faxonius rustics), indicating there is a concentration where the copper is causing longer-term damage instead of just impairing chemosensation. These results highlight the fact that even though contaminants like copper can have profound effects at low concentrations, by removing the contaminants the effect can be ameliorated.


Assuntos
Cobre , Poluentes Químicos da Água , Humanos , Animais , Cobre/toxicidade , Astacoidea/fisiologia , Alimentos Marinhos , Poluentes Químicos da Água/toxicidade , Água
4.
Fish Shellfish Immunol ; 137: 108779, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37120087

RESUMO

Depuration is a vital stage to ensure the safety of oyster consumption, and salinity had a great impact on the environmental adaptability of oysters, but the underlying molecular mechanism was poorly understood during depuration stage. Here, Crassostrea gigas was depurated for 72 h at different salinity (26, 29, 32, 35, 38 g/L, corresponding to ±20%, ±10% salinity fluctuation away from oyster's production area) and then analyzed by using transcriptome, proteome, and metabolome combined with bioinformatics techniques. The transcriptome showed that the salinity stress led to 3185 differentially expressed genes and mainly enriched in amino acid metabolism, carbohydrate metabolism, lipid metabolism, etc. A total of 464 differentially expressed proteins were screened by the proteome, and the number of up-regulated expression proteins was less than the down-regulated, indicating that the salinity stress would affect the regulation of metabolism and immunity in oysters. 248 metabolites significantly changed in response to depuration salinity stress in oysters, including phosphate organic acids and their derivatives, lipids, etc. The results of integrated omics analysis indicated that the depuration salinity stress induced abnormal metabolism of the citrate cycle (TCA cycle), lipid metabolism, glycolysis, nucleotide metabolism, ribosome, ATP-binding cassette (ABC) transport pathway, etc. By contrast with Pro-depuration, more radical responses were observed in the S38 group. Based on the results, we suggested that the 10% salinity fluctuation was suitable for oyster depuration and the combination of multi-omics analysis could provide a new perspective for the analysis of the mechanism changes.


Assuntos
Crassostrea , Animais , Crassostrea/genética , Crassostrea/metabolismo , Proteoma/metabolismo , Multiômica , Salinidade , Biologia Computacional , Estresse Salino
5.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36626775

RESUMO

AIMS: This study aims to assess the use of marine lactic acid bacteria (LAB) to reduce Vibrio parahaemolyticus levels during oyster depuration process. METHODS AND RESULTS: The inhibitory effect of 30 marine LAB strains against V. parahaemolyticus strains was evaluated by in vitro assays. A total of three positive strains (Latilactobacillus sakei SF1583, Lactococcus lactis SF1945, and Vagococcus fluvialis CD264) were selected for V. parahaemolyticus levels reduction during oyster depuration. Pacific oysters Crassostrea gigas were artificially and independently contaminated by four GFP-labelled V. parahaemolyticus strains (IFVp201, IFVp69, IFVp195, and LMG2850T) at 105 CFU ml-1 and then exposed by balneation to 106 CFU ml-1 of each LAB strains during 24 h, at 19°C. Quantification of V. parahaemolyticus in haemolymph by flow cytometry revealed variations in natural depuration of the different V. parahaemolyticus strains alone. Furthermore, the addition of LABs improved up to 1-log bacteria ml-1 the reduction of IFVp201 concentration in comparison to the control condition. CONCLUSIONS: Although further optimizations of procedure are needed, addition of marine LABs during oyster depuration may be an interesting strategy to reduce V. parahaemolyticus levels in Crassostrea gigas.


Assuntos
Crassostrea , Lactobacillales , Ostreidae , Vibrio parahaemolyticus , Animais , Crassostrea/microbiologia , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Contagem de Colônia Microbiana , Temperatura , Ostreidae/microbiologia
6.
Food Microbiol ; 116: 104363, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37689418

RESUMO

Norovirus is a significant global cause of viral gastroenteritis, with raw oyster consumption often linked to such outbreaks due to their filter-feeding in harvest waters. National water quality and depuration/relaying times are often classified using Escherichia coli, a poor proxy for norovirus levels in shellfish. The current norovirus assay is limited to only the digestive tracts of oysters, meaning the total norovirus load of an oyster may differ from reported results. These limitations motivated this work, building upon previous modelling by the authors, and considers the sequestration of norovirus into observed and cryptic (unobservable) compartments within each oyster. Results show that total norovirus levels in shellfish batches exhibit distinct peaks during the early depuration stages, with each peak's magnitude dependent on the proportion of cryptic norovirus. These results are supported by depuration trial data and other studies, where viral levels often exhibit multiphase decays. This work's significant result is that any future norovirus legislation needs to consider not only the harvest site's water classification but also the total viral load present in oysters entering the market. We show that 62 h of depuration should be undertaken before any norovirus testing is conducted on oyster samples, being the time required for cryptic viral loads to have transited into the digestive tracts where they can be detected by current assay, or have exited the oyster.


Assuntos
Norovirus , Ostreidae , Animais , Alimentos Marinhos , Bioensaio , Escherichia coli , Inocuidade dos Alimentos
7.
Food Microbiol ; 110: 104172, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36462828

RESUMO

We investigated the effect of depuration of three naturally contaminated commercially important tropical edible bivalve molluscs by varying temperature, salinity and body-size of animals harvested from Ashtamudi and Vembanad estuaries, India using a static depuration system to ensure microbiological food safety. Before depuration, the levels of faecal indicators and pathogens were above the acceptable limits for live consumption. The depuration water temperature had a significant effect on bacterial elimination. Log reduction of faecal coliforms (FC) and E. coli varied between room-temperature (RTDS) and low-temperature depuration system (LTDS) and it was in the range of 1.39-2.44 and 1.88-2.82 log MPN, respectively under RTDS and LTDS. The elimination of bacterial pathogens such as Vibrio and Salmonella spp. was rapid in RTDS compared to LTDS. The highest elimination of FC and E. coli (2.39 and 2.92 log) was at 35 psµ depuration and the lowest (0.87 and 1.65 log) at 15 psµ depuration. The reduction of FC and E. coli was higher in the medium-sized animals compared to the small animals. Based on the results it is recommended that depuration using the static system under room-temperature (30 ± 1 °C); a salinity range of (25-35 psµ) and using medium-size bivalves (clam>30 mm; mussel >45 mm, and oyster >65 mm length) as optimum conditions for producing microbiologically safe bivalves for live consumption within 36 h.


Assuntos
Bivalves , Escherichia coli , Animais , Alimentos Marinhos , Índia , Fezes
8.
Appl Environ Microbiol ; 88(8): e0236021, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35348387

RESUMO

Contamination of oysters with a variety of viruses is one key pathway to trigger outbreaks of massive oyster mortality as well as human illnesses, including gastroenteritis and hepatitis. Much effort has gone into examining the fate of viruses in contaminated oysters, yet the current state of knowledge of nonlinear virus-oyster interactions is not comprehensive because most studies have focused on a limited number of processes under a narrow range of experimental conditions. A framework is needed for describing the complex nonlinear virus-oyster interactions. Here, we introduce a mathematical model that includes key processes for viral dynamics in oysters, such as oyster filtration, viral replication, the antiviral immune response, apoptosis, autophagy, and selective accumulation. We evaluate the model performance for two groups of viruses, those that replicate in oysters (e.g., ostreid herpesvirus) and those that do not (e.g., norovirus), and show that this model simulates well the viral dynamics in oysters for both groups. The model analytically explains experimental findings and predicts how changes in different physiological processes and environmental conditions nonlinearly affect in-host viral dynamics, for example, that oysters at higher temperatures may be more resistant to infection by ostreid herpesvirus. It also provides new insight into food treatment for controlling outbreaks, for example, that depuration for reducing norovirus levels is more effective in environments where oyster filtration rates are higher. This study provides the foundation of a modeling framework to guide future experiments and numerical modeling for better prediction and management of outbreaks. IMPORTANCE The fate of viruses in contaminated oysters has received a significant amount of attention in the fields of oyster aquaculture, food quality control, and public health. However, intensive studies through laboratory experiments and in situ observations are often conducted under a narrow range of experimental conditions and for a specific purpose in their respective fields. Given the complex interactions of various processes and nonlinear viral responses to changes in physiological and environmental conditions, a theoretical framework fully describing the viral dynamics in oysters is warranted to guide future studies from a top-down design. Here, we developed a process-based, in-host modeling framework that builds a bridge for better communications between different disciplines studying virus-oyster interactions.


Assuntos
Gastroenterite , Herpesviridae , Norovirus , Ostreidae , Animais , Vírus de DNA , Gastroenterite/epidemiologia , Humanos
9.
Crit Rev Food Sci Nutr ; 62(32): 8972-8985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34184956

RESUMO

Human norovirus (HuNoV) is a major foodborne pathogen that causes acute viral gastroenteritis, and bivalve shellfish are one of the main carriers of HuNoV transmission. A comprehensive understanding of bivalve shellfish-related HuNoV outbreaks focusing on contamination factors, bioaccumulation mechanisms, and pre- and post-harvest interventions is essential for the development of effective strategies to prevent contamination of shellfish. This review comprehensively surveys the current knowledge on global contamination and non-thermal treatment of HuNoV in bivalve shellfish. HuNoV contamination in bivalve shellfish is significantly related to the season and water. While evaluating the water quality of shellfish-inhabited waters is a key intervention, the development of non-heat treatment technology to effectively inactivate the HuNoV in bivalve shellfish while maintaining the flavor and nutrition of the shellfish is also an important direction for further research. Additionally, this review explores the bioaccumulation mechanisms of HuNoV in bivalve shellfish, especially the mechanism underlying the binding of histo-blood group antigen-like molecules and HuNoV. The detection methods for infectious HuNoV are also discussed. The establishment of effective methods to rapidly detect infectious HuNoV and development of biological components to inactivate or prevent HuNoV contamination in shellfish also need to be studied further.


Assuntos
Bivalves , Norovirus , Animais , Humanos , Norovirus/fisiologia , Bioacumulação , Frutos do Mar , Surtos de Doenças
10.
Molecules ; 27(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36296423

RESUMO

Seaweed aquaculture is affected by natural and anthropogenic stressors, which put the biomass productivity of the cultures at risk. Seaweed biomass for commercial purposes, principally in pharmaceutical and/or nutraceutical applications, needs to be free of pollutants; therefore, controlled cultures have relevance in regulating the quality of biomass. The aim of this work was to demonstrate the successful utilization of controlled outdoor cultures to remove excess heavy metal accumulation in Gracilaria chilensis, an important commercial seaweed farming model. Specifically, we designed a simple and operational heavy metal depuration protocol, utilizing seawater and tap water removal, which permitted the concentration reduction of 10 heavy metals, including As, Cu, and Cd but not Zn, from the biomass at 7 days of culture. The percentage of depuration of the heavy metals ranged from 32 to 92% at 7 days, which was maintained throughout 21 days of culture. During the culture period, the monitored physicochemical parameters (temperature, salinity, and dissolved oxygen, among others) remained stable, with an increase in the daily growth rate (DGR% d-1) of the biomass recorded after 14 days of culture. Consequently, the experimental setup was successful for heavy metal depuration, which highlights the importance of controlled outdoor cultures as important tools of sustainability.


Assuntos
Poluentes Ambientais , Gracilaria , Metais Pesados , Rodófitas , Alga Marinha , Poluentes Químicos da Água , Cádmio , Água , Oxigênio , Preparações Farmacêuticas , Poluentes Químicos da Água/análise
11.
J Sci Food Agric ; 102(5): 2003-2011, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34537961

RESUMO

BACKGROUND: Depuration is an important process performed to ensure the safety of oyster consumption, and the effect of salinity stress on physiological and ecological characteristics of oyster remains unknow. In this study, the simulated depuration of Crassostrea gigas was performed with the salinities varying from ±10% to ±20% away from that of production area (26, 28, 32, 35, and 38 g L-1 ), as well as respiratory metabolism, glycolysis, lipolysis, and apoptosis were analyzed. RESULTS: (i) The oxygen consumption rate, ammonia discharge rate and enzyme activities related to respiratory metabolism were decreased significantly at salinities of 38 g L-1 , indicating that salinity stress triggered the abnormal respiratory metabolism of C. gigas, further, glycolysis was enhanced. (ii) Glycogen decomposition, lactic acid increase, and fatty acid composition modifications were caused by adenosine monophosphate (AMP)-activated protein kinase (AMPK) -mediated during salinity stress. (iii) There was a clear decrease of the condition index and meat yield of C. gigas after 72 h of depuration, especially in salinity 38 g L-1 . (iv) Salinity stress would lead to the increase of cytochrome c levels, then cause apoptosis of C. gigas, while heat shock protein 70 (HSP70) would interfere with this process. CONCLUSION: Salinity stress had a significant effect on the physiological and ecological response of C. gigas during the depuration process, including respiratory metabolism, glycolysis, lipolysis, and apoptosis. In general, the low depuration salinity fluctuation (±10%) is helpful to maintain quality of C. gigas, as well as the optimal depuration time was 48 h. © 2021 Society of Chemical Industry.


Assuntos
Crassostrea , Animais , Apoptose , Glicólise , Lipólise , Salinidade , Estresse Salino
12.
J Sci Food Agric ; 102(4): 1651-1659, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34472630

RESUMO

BACKGROUND: Oysters are mainly consumed in the raw form, so it is important to get rid of bacteria and other harmful substances. Ultraviolet (UV) sterilization depuration is a commonly used method and does not produce chemical residues or act directly on shellfish, resulting in minimal adverse effects on flavor. This study simulated the industrial depuration process using UV sterilization to depurate Pacific oysters (Crassostrea gigas). The effects of different temperatures (15, 20, and 25 °C) on the quality and taste components of C. gigas were investigated by measuring changes in physiological and biochemical indexes in C. gigas tissue samples. RESULTS: At the end of depuration, no oyster mortality occurred, but it was up to 55% at 25 °C at 84 h. Glycogen content decreased the most at 25 °C at 48 h. The fatty acid content was higher at 20 and 25 °C. Succinic acid content decreased significantly and was higher at 20 and 25 °C at 48 h with no significant difference. Total free amino acid (FAA) content was significantly higher at 20 °C, however, there were no significant differences in nucleotide content at any temperature at 48 h. Adenylate energy charge (AEC) values decreased, with higher values at 15 and 25 °C, and equivalent umami concentration (EUC) values increased, with higher values at 20 and 25 °C. CONCLUSION: Considering the changes in flavor substances and mortality rate, 20 °C is the appropriate temperature for UV sterilization depuration of C. gigas to produce better edible quality. © 2021 Society of Chemical Industry.


Assuntos
Crassostrea , Animais , Valor Nutritivo , Alimentos Marinhos , Frutos do Mar , Temperatura
13.
Compr Rev Food Sci Food Saf ; 21(4): 3480-3506, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35638353

RESUMO

Consumption of raw oysters, whether wild-caught or aquacultured, may increase health risks for humans. Vibrio vulnificus and Vibrio parahaemolyticus are two potentially pathogenic bacteria that can be concentrated in oysters during filter feeding. As Vibrio abundance increases in coastal waters worldwide, ingesting raw oysters contaminated with V. vulnificus and V. parahaemolyticus can possibly result in human illness and death in susceptible individuals. Depuration is a postharvest processing method that maintains oyster viability while they filter clean salt water that either continuously flows through a holding tank or is recirculated and replenished periodically. This process can reduce endogenous bacteria, including coliforms, thus providing a safer, live oyster product for human consumption; however, depuration of Vibrios has presented challenges. When considering the difficulty of removing endogenous Vibrios in oysters, a more standardized framework of effective depuration parameters is needed. Understanding Vibrio ecology and its relation to certain depuration parameters could help optimize the process for the reduction of Vibrio. In the past, researchers have manipulated key depuration parameters like depuration processing time, water salinity, water temperature, and water flow rate and explored the use of processing additives to enhance disinfection in oysters. In summation, depuration processing from 4 to 6 days, low temperature, high salinity, and flowing water effectively reduced V. vulnificus and V. parahaemolyticus in live oysters. This review aims to emphasize trends among the results of these past works and provide suggestions for future oyster depuration studies.


Assuntos
Ostreidae , Vibrio parahaemolyticus , Vibrio vulnificus , Animais , Humanos , Ostreidae/microbiologia , Alimentos Marinhos/microbiologia , Água
14.
Bull Environ Contam Toxicol ; 109(3): 464-469, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35900370

RESUMO

Oreochromis niloticus was subjected to sub-lethal Cd and Zn concentrations for 14 days in order to evaluate their accumulation in the gills, liver, and muscle. Following that, the fish were placed to uncontaminated water for 7 days to allow the metals to be removed from the tissues. The gills had the highest bio-concentration factor for Cd and Zn. The gills showed the highest Cd accumulation rate, and the muscle showed the lowest. The muscle had the highest Cd depuration rate, while the liver had the lowest. The liver exhibited the highest Zn accumulation rate, while the gills and muscle had nearly similar values. Zn depuration rates were very consistent across all tissues.


Assuntos
Ciclídeos , Tilápia , Poluentes Químicos da Água , Animais , Cádmio/análise , Brânquias/química , Fígado/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Zinco/análise , Zinco/toxicidade
15.
Mar Drugs ; 19(9)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34564172

RESUMO

Paralytic shellfish toxins (PST) are found in the hepatopancreas of Southern Rock Lobster Jasus edwardsii from the east coast of Tasmania in association with blooms of the toxic dinoflagellate Alexandrium catenella. Tasmania's rock lobster fishery is one of the state's most important wild capture fisheries, supporting a significant commercial industry (AUD 97M) and recreational fishing sector. A comprehensive 8 years of field data collected across multiple sites has allowed continued improvements to the risk management program protecting public health and market access for the Tasmanian lobster fishery. High variability was seen in toxin levels between individuals, sites, months, and years. The highest risk sites were those on the central east coast, with July to January identified as the most at-risk months. Relatively high uptake rates were observed (exponential rate of 2% per day), similar to filter-feeding mussels, and meant that lobster accumulated toxins quickly. Similarly, lobsters were relatively fast detoxifiers, losing up to 3% PST per day, following bloom demise. Mussel sentinel lines were effective in indicating a risk of elevated PST in lobster hepatopancreas, with annual baseline monitoring costing approximately 0.06% of the industry value. In addition, it was determined that if the mean hepatopancreas PST levels in five individual lobsters from a site were <0.22 mg STX equiv. kg-1, there is a 97.5% probability that any lobster from that site would be below the bivalve maximum level of 0.8 mg STX equiv. kg-1. The combination of using a sentinel species to identify risk areas and sampling five individual lobsters at a particular site, provides a cost-effective strategy for managing PST risk in the Tasmanian commercial lobster fishery.


Assuntos
Bivalves , Monitoramento Ambiental , Toxinas Marinhas/análise , Palinuridae , Intoxicação por Frutos do Mar/prevenção & controle , Animais , Demografia , Ecossistema , Pesqueiros , Humanos , Doenças Profissionais/prevenção & controle , Reprodutibilidade dos Testes , Tasmânia
16.
Ecotoxicol Environ Saf ; 217: 112246, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33901781

RESUMO

It is generally expected that biotransformation and excretion of pharmaceuticals occurs similarly in fish and mammals, despite significant physiological differences. Here, we exposed European perch (Perca fluviatilis) to the benzodiazepine drug temazepam at a nominal concentration of 2 µg L-1 for 10 days. We collected samples of blood plasma, muscle, and brain in a time-dependent manner to assess its bioconcentration, biotransformation, and elimination over another 10 days of depuration in clean water. We observed rapid pharmacokinetics of temazepam during both the exposure and depuration periods. The steady state was reached within 24 h of exposure in most individuals, as was complete elimination of temazepam from tissues during depuration. Further, the biologically active metabolite oxazepam was produced via fish biotransformation, and accumulated significantly throughout the exposure period. In contrast to human patients, where a negligible amount of oxazepam is created by temazepam biotransformation, we observed a continuous increase of oxazepam concentrations in all fish tissues throughout exposure. Indeed, oxazepam accumulated more than its parent compound, did not reach a steady state during the exposure period, and was not completely eliminated even after 10 days of depuration, highlighting the importance of considering environmental hazards posed by pharmaceutical metabolites.


Assuntos
Hipnóticos e Sedativos/toxicidade , Percas/fisiologia , Temazepam/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biotransformação , Hipnóticos e Sedativos/metabolismo , Oxazepam/metabolismo , Percas/metabolismo , Temazepam/metabolismo , Poluentes Químicos da Água/metabolismo
17.
Ecotoxicol Environ Saf ; 216: 112202, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33838460

RESUMO

The present study tested the biological consequences of exposure to a multimetal mixture as a multiple chemical stressor on Oncorhynchus mykiss at molecular, cellular, physiological and whole-organism levels and on biomarker responses of this fish during the depuration period. To represent environmentally relevant multiple chemical stressors, in our study, we used the mixture of Zn, Cu, Ni, Cr, Pb and Cd at the concentrations corresponding to Maximum-Permissible-Concentrations (MPCs) acceptable for the EU inland waters. This study was undertaken with a view to elucidate if changes in the MPC of the test mixture components (Ni, Pb, Cd) could cause significantly different biomarker responses in O. mykiss from those previously determined in the carnivorous and omnivorous fishes exposed to the mixture of the same metals but at different MPCs of Ni, Pb and Cd. This study has revealed that exposure to mixtures of metals at MPC produces genotoxic effects in fish blood erythrocytes and a lethargic effect on O. mykiss behaviour, and, also, significantly increases the levels of Cd, Cr and Ni accumulated in the gills tissue. O. mykiss successfully depurated Cr and Ni in less than 28 days, however, the level of Cd decreased by only approximately 40% over the same period. A significant capacity of O. mykiss to restore its DNA integrity (Comet assay) after exposure to metal mixtures was revealed. However, the 28-day recovery period proved to be insufficiently long for erythrocytes with nuclear abnormalities to recover to the unexposed level. In conclusion, changes in the MPCs of Ni, Pb and Cd in the test mixture produce biological effects similar to those previously determined in S. salar, R. rutilus and P. fluviatilis exposed to the mixture of the same metals but at lower MPCs of Ni and Pb and at higher MPC of Cd.

18.
J Environ Manage ; 298: 113538, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34403917

RESUMO

Neonicotinoids pesticides were introduced to the market in the 1990s to control various pests. Its accumulation in the environment supposes a severe problem that can affect human health. This study investigates the electrochemical degradation of four common neonicotinoid pesticides; thiamethoxam (TMX), imidacloprid (ICP), acetamiprid (ACP) and thiacloprid (TCP), in different natural surface waters by a boron-doped diamond anode (BDD). The most influencing variable was the current density (j), and to a lesser extent, the supporting electrolyte concentration (Ce). In optimal conditions (j = 34.14 mA cm-2 and Ce = 10.00 mM, using Na2SO4 as electrolyte) pesticide removals for TMX, ICP, ACP and TCP were 97.2, 96.9, 87.8 and 98.2 %, respectively. The obtained results with different support electrolytes (Na2SO4, NaCl, NaNO3 and HK2PO4) suggest that sulphate electrolyte was the optimum for TMX, ICP and ACP. However, for TCP, a total removal was achieved in less than 10 min using NaCl. It was also verified that the initial pH of the solution did not significantly influence the process in the range 3-9. All these results were rationalized in this paper. Finally, to evaluate the matrix influence, some experiments were carried out in different natural surface water matrices (river, reservoir and two different WWTP effluents). The factors influencing the process were the conductivity of the solution and the organic matter content. It was noticeable that the specific energy consumption (SEC) reduced by approximately 15 % for river water and WWTP effluent. High mineralization rates were obtained for all water matrices, with TOC removals ranging between 60 and 80 %.


Assuntos
Praguicidas , Poluentes Químicos da Água , Boro , Diamante , Eletrodos , Humanos , Neonicotinoides , Oxirredução , Sulfatos , Poluentes Químicos da Água/análise
19.
Artigo em Inglês | MEDLINE | ID: mdl-33356853

RESUMO

Cadmium (Cd) toxic effects can overwhelm endogenous antioxidants and affect recuperation in fish. Thus, this study assessed antioxidative properties and ameliorating potentials of dietary supplemented garlic (D1), propolis (D2), and wakame (D3) on i) Cd bioconcentration, and ii) Cd induced toxicity during recuperation in Cd exposed Japanese medaka. In a 21-day exposure, control (0.0 mg Cd/L in water-C1) or Cd-treatment (0.3 mg Cd/L in water-T1) fish were fed medaka diets. Surviving fish in T1 were further depurated for 21-days and fed D1, D2, D3, or medaka diet (C2). Gill, liver, and muscle tissues were assessed weekly for Cd bioconcentration, metallothionein, (MT), superoxide dismutase (SOD), total glutathione (GSH), and lipid peroxidation (LPO). Results showed reduced antioxidant activity by significantly increasing tissue Cd and LPO, and significantly reducing SOD activity and GSH content in gill and muscle upon Cd exposure. In contrast, D1, D2, and D3 diets significantly reduced tissue Cd and LPO, while increasing contents of MT and GSH, and SOD activity, significantly. Other condition indices in D1, D2 and D3 groups were also significantly higher than those in C2 groups. In conclusion, dietary supplementation significantly increased recuperation and tissue functions in fish, in the order D1 > D2 > D3> C2.


Assuntos
Ração Animal , Cádmio/toxicidade , Alho/química , Oryzias/metabolismo , Própole/química , Undaria/química , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Dieta , Suplementos Nutricionais , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo
20.
Bull Environ Contam Toxicol ; 106(3): 501-506, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33559033

RESUMO

We investigated cadmium (Cd) accumulation in muscles, gills and hepatopancreas of Litopenaeus vannamei following 48 h exposure to 5.25 mg/L, and depuration of Cd in these tissues on 1, 5 and 15 d post exposure. We also detected the expressions of metallothionein (MT), caspase-3 and p53 in hepatopancreas of shrimp exposed to 0, 5.25 and 10.5 mg/L Cd (the 24 h median lethal concentration, 24 h LC50) at 0, 3, 12, 24 and 48 h. Cd accumulated with high concentration in hepatopancreas, and low concentration in muscles. Cd depurated fast in hepatopancreas and gills. MT expression increased in a time-dependent manner after Cd exposure. The p53 and caspase-3 increased at 12 and 24 h in 10.5 mg/L group. In conclusion, the accumulation and depuration of Cd in three tissues were tissues-specific. The changes of the expressions of MT, p53 and caspase-3, were stress response of L. vannamei under Cd exposure.


Assuntos
Metalotioneína , Penaeidae , Animais , Cádmio/toxicidade , Brânquias , Hepatopâncreas , Metalotioneína/genética , Penaeidae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA