Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Strahlenther Onkol ; 200(1): 39-48, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37591978

RESUMO

PURPOSE: The geometric distortion related to magnetic resonance (MR) imaging in a diagnostic radiology (MRDR) and radiotherapy (MRRT) setup is evaluated, and the dosimetric impact of MR distortion on fractionated stereotactic radiotherapy (FSRT) in patients with brain metastases is simulated. MATERIALS AND METHODS: An anthropomorphic skull phantom was scanned using a 1.5­T MR scanner, and the magnitude of MR distortion was calculated with (MRDR-DC and MRRT-DC) and without (MRDR-nDC and MRRT-nDC) distortion-correction algorithms. Automated noncoplanar volumetric modulated arc therapy (HyperArc, HA; Varian Medical Systems, Palo Alto, CA, USA) plans were generated for 53 patients with 186 brain metastases. The MR distortion at each gross tumor volume (GTV) was calculated using the distance between the center of the GTV and the MR image isocenter (MIC) and the quadratic regression curve derived from the phantom study (MRRT-DC and MRRT-nDC). Subsequently, the radiation isocenter of the HA plans was shifted according to the MR distortion at each GTV (HADC and HAnDC). RESULTS: The median MR distortions were approximately 0.1 mm when the distance from the MIC was < 30 mm, whereas the median distortion varied widely when the distance was > 60 mm (0.23, 0.47, 0.37, and 0.57 mm in MRDR-DC, MRDR-nDC, MRRT-DC, and MRRT-nDC, respectively). The dose to the 98% of the GTV volume (D98%) decreased as the distance from the MIC increased. In the HADC plans, the relative dose difference of D98% was less than 5% when the GTV was located within 70 mm from the MIC, whereas the underdose of GTV exceeded 5% when it was 48 mm (-26.5% at maximum) away from the MIC in the HAnDC plans. CONCLUSION: Use of a distortion-correction algorithm in the studied MR diagnoses is essential, and the dosimetric impact of MR distortion is not negligible, particularly for tumors located far away from the MIC.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Radiocirurgia/métodos , Algoritmos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Imageamento por Ressonância Magnética/métodos , Dosagem Radioterapêutica
2.
J Appl Clin Med Phys ; : e14521, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259886

RESUMO

BACKGROUND: Endometrial cancer is one of the most common gynecological malignancies in the world. Vaginal brachytherapy is an important postoperative adjuvant treatment for endometrial cancer. However, a common problem with existing applicators is insufficient dose at the vaginal apex. PURPOSE: This study describes the Hangzhou (HZ) cylinder, a novel 3D printed vaginal intracavity brachytherapy applicator, detailing its characteristics, dose distribution, and clinical applications. METHODS AND MATERIALS: The HZ cylinder is distinguished by its unique structure: a U-shaped channel with a 2 mm diameter, a straight central axis channel of the same diameter, and 10 parallel straight channels. For comparison, standard plans were employed, designed to ensure that a minimum of 95% of the prescribed dose reached 5 mm beneath the mucosal surface. We conducted comparative analyses of mucosal surface doses and doses at a 5 mm depth below the mucosa between the HZ cylinder and a conventional single-channel cylinder across various treatment schemes. Additionally, the study examined dose differences in target volume and organs at risk (OARs) between actual HZ cylinder plans and hypothetical single-channel plans. RESULTS: In the standard plans, mucosal surface doses at the apex of the vagina were 209.32% and 200.61% of the prescribed dose with the HZ and single-channel cylinders, respectively. The doses on the left and right wall mucosal surfaces varied from 149.26% to 178.13% and 142.98% to 180.75% of the prescribed dose, and on the anterior and posterior wall mucosal surfaces varied from 128.87% to 138.50% and 142.98% to 180.75% of the prescribed dose. Analysis of 24 actual treatment plans revealed that when the vaginal tissue volume dose covering 98% (vaginal D98%) was comparable between the HZ cylinder and virtual single-channel plans (6.74 ± 0.07 Gy vs. 6.69 ± 0.10 Gy, p = 0.24), rectum doses of HZ cylinder plans were significantly lower than those of single-channel plans (D1cc, 5.96 ± 0.56 Gy vs. 6.26 ± 0.71 Gy, p = 0.02 and D2cc, 5.26 ± 0.52 Gy vs. 5.56 ± 0.62 Gy, p = 0.02). CONCLUSIONS: The HZ cylinder demonstrates a reduction in dose to the rectum and bladder while maintaining adequate target volume coverage. Its mucosal surface dose is comparable to that of the traditional single-channel cylinder. These findings suggest that the HZ cylinder is a viable and potentially safer alternative for vaginal brachytherapy, warranting further investigation with larger sample sizes.

3.
J Appl Clin Med Phys ; : e14490, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39270157

RESUMO

PURPOSE: Kilovoltage cone beam computed tomography (kVCBCT)-guided adaptive radiation therapy (ART) uses daily deformed CT (dCT), which is generated automatically through deformable registration methods. These registration methods may perform poorly in reproducing volumes of the target organ, rectum, and bladder during treatment. We analyzed the registration errors between the daily kVCBCTs and corresponding dCTs for these organs using the default optical flow algorithm and two registration procedures. We validated the effectiveness of these registration methods in replicating the geometry for dose calculation on kVCBCT for ART. METHODS: We evaluated three deformable image registration (DIR) methods to assess their registration accuracy and dose calculation effeciency in mapping target and critical organs. The DIR methods include (1) default intensity-based deformable registration, (2) hybrid deformable registration, and (3) a two-step deformable registration process. Each technique was applied to a computerized imaging reference system (CIRS) phantom (Model 062 M) and to five patients who received volumetric modulated arc therapy to the prostate. Registration accuracy was assessed using the 95% Hausdorff distance (HD95) and Dice similarity coefficient (DSC), and each method was compared with the intensity-based registration method. The improvement in the dCT image quality of the CIRS phantom and five patients was assessed by comparing dCT with kVCBCT. Image quality quantitative metrics for the phantom included the signal-to-noise ratio (SNR), uniformity, and contrast-to-noise ratio (CNR), whereas those for the patients included the mean absolute error (MAE), mean error, peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM). To determine dose metric differences, we used a dose-volume histogram (DVH) and 3.0%/0.3 mm gamma analysis to compare planning computed tomography (pCT) and kVCBCT recalculations with restimulated CT images used as a reference. RESULTS: The dCT images generated by the hybrid (dCTH) and two-step (dCTC) registration methods resulted in significant improvements compared to kVCBCT in the phantom model. Specifically, the SNR improved by 107% and 107.2%, the uniformity improved by 90% and 75%, and the CNR improved by 212.2% and 225.6 for dCTH and dCTC methods, respectively. For the patient images, the MAEs improved by 98% and 94%, the PSNRs improved by 16.3% and 22.9%, and the SSIMs improved by 1% and 1% in the dCTH and dCTC methods, respectively. For the geometric evaluation, only the two-step registration method improved registration accuracy. The dCTH method yielded an average HD95 of 12 mm and average DSC of 0.73, whereas dCTC yielded an average HD95 of 2.9 mm and average DSC of 0.902. The DVH showed that the dCTC-based dose calculations differed by <2% from the expected results for treatment targets and volumes of organs at risk. Additionally, gamma indices for dCTC-based treatment plans were >95% at all points, whereas they were <95% for kVCBCT-based treatment plans. CONCLUSION: The two-step registration method outperforms the intensity-based and hybrid registration methods. While the hybrid and two-step-based methods improved the image quality of kVCBCT in a linear accelerator, only the two-step method improved the registration accuracy of the corresponding structures among the pCT and kVCBCT datasets. A two-step registration process is recommended for applying kVCBCT to ART, which achieves better registration accuracy for local and global image structures. This method appears to be beneficial for radiotherapy dose calculation in patients with pelvic cancer.

4.
J Xray Sci Technol ; 32(3): 797-807, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457139

RESUMO

BACKGROUND: The error magnitude is closely related to patient-specific dosimetry and plays an important role in evaluating the delivery of the radiotherapy plan in QA. No previous study has investigated the feasibility of deep learning to predict error magnitude. OBJECTIVE: The purpose of this study was to predict the error magnitude of different delivery error types in radiotherapy based on ResNet. METHODS: A total of 34 chest cancer plans (172 fields) of intensity-modulated radiation therapy (IMRT) from Eclipse were selected, of which 30 plans (151 fields) were used for model training and validation, and 4 plans including 21 fields were used for external testing. The collimator misalignment (COLL), monitor unit variation (MU), random multi-leaf collimator shift (MLCR), and systematic MLC shift (MLCS) were introduced. These dose distributions of portal dose predictions for the original plans were defined as the reference dose distribution (RDD), while those for the error-introduced plans were defined as the error-introduced dose distribution (EDD). Different inputs were used in the ResNet for predicting the error magnitude. RESULTS: In the test set, the accuracy of error type prediction based on the dose difference, gamma distribution, and RDD + EDD was 98.36%, 98.91%, and 100%, respectively; the root mean squared error (RMSE) was 1.45-1.54, 0.58-0.90, 0.32-0.36, and 0.15-0.24; the mean absolute error (MAE) was 1.06-1.18, 0.32-0.78, 0.25-0.27, and 0.11-0.18, respectively, for COLL, MU, MLCR and MLCS. CONCLUSIONS: In this study, error magnitude prediction models with dose difference, gamma distribution, and RDD + EDD are established based on ResNet. The accurate prediction of the error magnitude under different error types can provide reference for error analysis in patient-specific QA.


Assuntos
Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Radioterapia de Intensidade Modulada/normas , Garantia da Qualidade dos Cuidados de Saúde/normas , Garantia da Qualidade dos Cuidados de Saúde/métodos , Radiometria/métodos , Radiometria/normas , Aprendizado Profundo
5.
Strahlenther Onkol ; 199(3): 258-267, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35857073

RESUMO

PURPOSE: For patients with large tumors palliative radiotherapy often is the only local treatment option. To prevent toxicity the administered doses are low. Dose escalation to the tumor could be an option to better smyptom control and prolong local control rates. In this prospective study we used a very pragmatic approach with a simultaneously integrated boost (SIB) to an almost geometrically defined tumor core to achieve this. The primary endpoint was to demonstrate feasibility. METHOD: Patients with solid tumors > 4 cm in diameter of different histologies were eligible in this single arm, prospective, multi-institutional clinical feasibility trial with two treatment concepts: 5â€¯× 5 Gy with an integrated boost to the tumor core of 5â€¯× 10 Gy or 10â€¯× 3 Gy with a boost of 10â€¯× 6 Gy. The objective of dose escalation in this study was to deliver a minimum dose of 150% of the prescribed dose to the gross tumor volume (GTV) tumor core and to reach a maximum of at least 200% in the tumor core. RESULTS: In all, 21 patients at three study sites were recruited between January 2019 and November 2020 and were almost evenly spread (9 to 12) between the two concepts. The treated planning target volumes (PTV) averaged 389.42 cm3 (range 49.4-1179.6 cm3). The corresponding core volumes were 72.85 cm3 on average (range 4.21-338.3 cm3). Dose escalation to the tumor core with mean doses of 167.7-207.7% related to the nonboost prescribed isodose led to PTV mean doses of 120.5-163.3%. Treatment delivery and short-term follow-up was successful in all patients. CONCLUSIONS: Palliative radiotherapy with SIB to the tumor core seems to be a feasible and well-tolerated treatment concept for large tumors. The applied high doses of up to 50 Gy in 5 fractions (or 60 Gy in 10 fractions) did not cause unexpected side effects in the 42 day follow-up period. Further research is needed for more information on efficacy and long-term toxicity.


Assuntos
Neoplasias , Radioterapia de Intensidade Modulada , Humanos , Estudos de Viabilidade , Neoplasias/radioterapia , Cuidados Paliativos , Estudos Prospectivos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
6.
Environ Sci Technol ; 57(43): 16707-16717, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37846972

RESUMO

Ultraviolet (UV) disinfection is commonly applied in the treatment of drinking water and wastewater. The performance of UV disinfection systems is governed by the UV dose distribution delivered to the fluid, which is an intrinsic characteristic of the reactor under a given operating condition. Current design and validation approaches are based on empirical methods that are expensive to apply and provide limited information about the UV photoreactor behavior. To address this issue, a dose distribution scaling method was developed based on dimensional analysis (i.e., application of the Buckingham-π theorem). Three dimensionless groups representing UV dose, reactor geometry, and UV absorption behavior were defined. Using these groups, the approach was applied for the analysis of 15 operating conditions, defined by process variables of volumetric flow rate, UV transmittance, and lamp power. The approach was demonstrated to allow scaling of the dose distribution with these critical, dimensionless variables and yielded close agreement between predictions of disinfection efficacy against MS2 and E. coli based on the scaling approach with conventional CFD-E' modeling results. The approach thus provides a low-cost, rapid method for predicting the performance of UV disinfection systems across a wide range of operating conditions and against essentially any microbial challenge agent.


Assuntos
Escherichia coli , Purificação da Água , Raios Ultravioleta , Desinfecção/métodos , Águas Residuárias , Purificação da Água/métodos
7.
J Appl Clin Med Phys ; 24(2): e13897, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36610053

RESUMO

During a single scan using computed tomography, an X-ray tube orbits along a 360°-circular path around the patient. A scan obtained using the half-cylindrical type phantoms with a radiochromic film sandwiched in between reveals a pixel value map illustrating the two-dimensional (2D) dose distribution. A three-dimensional (3D) dose distribution can be obtained with a 360° rotation of the 2D dose map. This study evaluates the concept and methodology of creating a 3D dose map to develop a phantom with a radiochromic film for obtaining the 3D dose distribution. The coronal and axial plane dose distributions were also evaluated. A single scan computed tomography image obtained using a half-cylindrical type of acrylic phantom with a sandwiched radiochromic film was studied. The diameters of the phantoms were 10 and 16 cm, and their lengths were 30 cm. A 2D image of the XR-QA2 film was obtained using an image scanner and image processing software. A red channel image was used to obtain the 3D dose distribution using a computing platform. A pseudo color was applied to the red channel image from which cross-sectional color images were obtained. Half of the cross-sectional pixel data were rotated by 360° to generate the data for each axial plane. The image created was saved, and a 3D pixel value map was constructed. The dose measurement procedure for the 3D dose distribution was developed using half-cylindrical acrylic phantoms with a radiochromic film.


Assuntos
Dosimetria Fotográfica , Tomografia Computadorizada por Raios X , Humanos , Estudos Transversais , Dosimetria Fotográfica/métodos , Tomografia Computadorizada por Raios X/métodos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas
8.
J Appl Clin Med Phys ; 24(11): e14097, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37438966

RESUMO

PURPOSE: This study aimed to assess the effects of bladder filling during cervical cancer radiotherapy on target volume and organs at risk (OARs) dose based on daily computed tomography (daily-CT) images and provide bladder-volume-based dose prediction models. METHODS: Nineteen patients (475 daily-CTs) comprised the study group, and five patients comprised the validation set (25 daily-CTs). Target volumes and OARs were delineated on daily-CT images and the treatment plan was recalculated accordingly. The deviation from the planning bladder volume (DVB), the correlation between DVB and clinical (CTV)/planning (PTV) target volume in terms of prescribed dose coverage, and the relationship of small bowel volume and bladder dose with the ratio of bladder volume (RVB) were analyzed. RESULTS: In all cases, the prescribed dose coverage in the CTV was >95% when DVB was <200 cm3 , whereas that in the PTV was >95% when RVB was <160%. The ratio of bladder V45 Gy to the planning bladder V45 Gy (RBV45 ) exhibited a negative linear relationship with RVB (RBV45  = -0.18*RVB + 120.8; R2  = 0.80). Moreover, the ratio of small bowel volume to planning small bowel volume (RVS) exhibited a negative linear relationship with RVB (RVS = -1.06*RVB +217.59; R2  = 0.41). The validation set results showed that the linear model predicted well the effects of bladder volume changes on target volume coverage and bladder dose. CONCLUSIONS: This study assessed dosimetry and volume effects of bladder filling on target and OARs based on daily-CT images. We established a quantitative relationship between these parameters, providing dose prediction models for cervical cancer radiotherapy.


Assuntos
Radioterapia de Intensidade Modulada , Neoplasias do Colo do Útero , Feminino , Humanos , Bexiga Urinária/diagnóstico por imagem , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia , Tomografia Computadorizada por Raios X , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco
9.
Sensors (Basel) ; 23(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37447831

RESUMO

The procedure is practically an optimization method, during which it is assumed that the gamma dose values detected at different points above the area come from the background radiation and from a single source found in the area. Accordingly, the procedure searches within the area for a geographical coordinate for which the distance law for the spatial propagation of radiation will be true. In order to validate the procedure, we performed measurements in a test area in such a way that all parameters of the source, including its location, were well defined. However, these data were not taken into account during the processing, i.e., the search procedure did not have these data. We can estimate the radiation position without a positional parameter. The exact coordinate and the intensity of the radiating sample were only used when checking the results. We have also applied the method to the raw data of our experiments carried out in the past if we used one source for them. The results confirmed our assumptions. The method is suitable for determining the starting parameters of more complex processes that can even detect multiple sources, but assuming one source, it has proven to be a reliable analytical method on its own.

10.
Sensors (Basel) ; 23(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37050532

RESUMO

This study evaluated the effect of pitch on 256-slice helical computed tomography (CT) scans. Cylindrical water phantoms (CWP) were measured using axial and helical scans with various pitch values. The surface dose distributions of CWP were measured, and reconstructed images were obtained using filtered back-projection (FBP) and iterative model reconstruction (IMR). The image noise in each reconstructed image was decomposed into a baseline component and another component that varied along the z-axis. The baseline component of the image noise was highest at the center of the reconstructed image and decreased toward the edges. The normalized 2D power spectra for each pitch were almost identically distributed. Furthermore, the ratios of the 2D power spectra for IMR and FBP at different pitch values were obtained. The magnitudes of the components varying along the z-axis were smallest at the center of the reconstructed image and increased toward the edge. The ratios of the 3D power spectra on the fx axis for IMR and FBP at different pitch values were obtained. The results showed that the effect of the pitch was related to the component that varied along the z-axis. Furthermore, the pitch had a smaller effect on IMR than on FBP.


Assuntos
Interpretação de Imagem Radiográfica Assistida por Computador , Tomografia Computadorizada por Raios X , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Estudos Prospectivos , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Doses de Radiação , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
11.
J Radiol Prot ; 43(1)2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36599152

RESUMO

Hadron radiation therapy is of great interest worldwide. Heavy-ion beams provide ideal therapeutic conditions for deep-seated local tumours. At the Heidelberg Ion Beam Therapy Center (HIT, Germany), protons and carbon ions are already integrated into the clinical routine, while16O ions are still used for research only. To ensure the protection of the technical staff and members of the public, it is required to estimate the neutron dose distribution for optimal working conditions and at different locations. The Particle and Heavy Ion Transport Code System (PHITS) is used in this work to evaluate the dose rate distribution of secondary neutrons in a treatment room at HIT where16O ions are used: an equivalent target in soft tissue is considered in the shielding assessment to simulate the interaction of the beam with patients. The angular dependence of neutron fluences and energy spectra around the considered phantom were calculated. Alongside the spatial distribution of the neutron and photon fluence, a map of the effective dose rate was estimated using the ICRP fluence-to-effective dose conversion coefficients, exploiting the PHITS code's built-in capabilities. The capability of the actual shielding design of the studied HIT treatment room was approved.


Assuntos
Nêutrons , Humanos , Doses de Radiação , Método de Monte Carlo , Transporte de Íons , Íons
12.
Rep Pract Oncol Radiother ; 28(1): 1-8, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122911

RESUMO

Background: In patients with expander-based reconstruction a few dosimetric analyses detected radiation therapy dose perturbation due to the internal port of an expander, potentially leading to toxicity or loss of local control. This study aimed at adding data on this field. Materials and methods: A dosimetric analysis was conducted in 30 chest wall treatment planning without and with correction for port artifact. In plans with artifact correction density was overwritten as 1 g/cm3. Medium, minimum and maximum chest wall doses were compared in the two plans. Both plans, with and without correction, were compared on an anthropomorphic phantom with a tissue expander on the chest covered by a bolus simulating the skin. Ex vivo dosimetry was carried out on the phantom and in vivo dosimetry in three patients by using film strips during one treatment fraction. Estimated doses and measured film doses were compared. Results: No significant differences emerged in the minimum, medium and maximum doses in the two plans, without and with correction for port artifacts. Ex vivo and in vivo analyses showed a good correspondence between detected and calculated doses without and with correction. Conclusions: The port did not significantly affect dose distribution in patients who will receive post-mastectomy radiation therapy.

13.
Strahlenther Onkol ; 198(9): 849-861, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35732919

RESUMO

BACKGROUND: The gamma index and dose-volume histogram (DVH)-based patient-specific quality assurance (QA) measures commonly applied in radiotherapy planning are unable to simultaneously deliver detailed locations and magnitudes of discrepancy between isodoses of planned and delivered dose distributions. By exploiting statistical classification performance measures such as sensitivity or specificity, compliance between a planned and delivered isodose may be evaluated locally, both for organs-at-risk (OAR) and the planning target volume (PTV), at any specified isodose level. Thus, a patient-specific QA tool may be developed to supplement those presently available in clinical radiotherapy. MATERIALS AND METHODS: A method was developed to locally establish and report dose delivery errors in three-dimensional (3D) isodoses of planned (reference) and delivered (evaluated) dose distributions simultaneously as a function the dose level and of spatial location. At any given isodose level, the total volume of delivered dose containing the reference and the evaluated isodoses is locally decomposed into four subregions: true positive-subregions within both reference and evaluated isodoses, true negative-outside of both of these isodoses, false positive-inside the evaluated isodose but not the reference isodose, and false negatives-inside the reference isodose but not the evaluated isodose. Such subregions may be established over the whole volume of delivered dose. This decomposition allows the construction of a confusion matrix and calculation of various indices to quantify the discrepancies between the selected planned and delivered isodose distributions, over the complete range of values of dose delivered. The 3D projection and visualization of the spatial distribution of these discrepancies facilitates the application of the developed method in clinical practice. RESULTS: Several clinical photon radiotherapy plans were analyzed using the developed method. In some plans at certain isodose levels, dose delivery errors were found at anatomically significant locations. These errors were not otherwise highlighted-neither by gamma analysis nor by DVH-based QA measures. A specially developed 3D projection tool to visualize the spatial distribution of such errors against anatomical features of the patient aids in the proposed analysis of therapy plans. CONCLUSIONS: The proposed method is able to spatially locate delivery errors at selected isodose levels and may supplement the presently applied gamma analysis and DVH-based QA measures in patient-specific radiotherapy planning.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
14.
Sensors (Basel) ; 22(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36501764

RESUMO

Several dose distribution maps were obtained using a gamma radiation detector mounted to a drone. Based on the results and experience of the experiments, the shortcomings of the system and the possibilities for further development were identified. The primary goal of the development was to create a more compact, easy-to-carry, and easy-to-install system with increased sensitivity, which was achieved by several different methods and their combinations. During the discrete measurement procedure, the aim was to decrease the detection threshold, +0.005 to +0.007 µS/h measured above the background radiation. The increase in sensitivity was based on the characteristic energy spectrum of radiative materials. We took advantage of the fact that the radiating samples do not evenly increase the amount of gamma radiation over the entire energy spectrum. During the processing of the measurement data, we performed a comparison with the background radiation in the vicinity of the energy peaks characteristic of the sample and its decay products. This provides a better signal-to-noise ratio, thus enabling a more sensitive detection procedure. An important feature of our method is that in the traditional intensity curve displayed as a function of flight time only noise is visible, therefore one cannot directly conclude the presence of the sample. However, our method is clearly able to identify the location of the searched source at a height of 8 m with a continuous flight speed of 2 m/s using a 500 µS/h activity sample (as measured at a distance of 0.1 m from the sample). The increase in sensitivity allows either a higher scanning height (approximately +1 to 2 m) or, in the case of the same aircraft at the same altitude, a larger area from one take-off. Of course, the scan height or scan speed can increase significantly if the activity of the source being sought is high. In our experiments, we used a natural uranium mineral (Autunite) with activity far below that of artificially produced isotopes. In the series of our experiments, we also covered the detection of several sources, which modeled the possibility of mapping scattered active sources. The main advantages of the system developed and presented by us over the survey procedures used in practice is that a large area can be mobilized easily, without the risk of a human operator in the field, and the survey of a large area can be carried out at a low cost. The purpose of the system is to detect the presence of the source and to localize it to such an extent that the localization can then be easily refined by manual or other ground procedures. As we do not aim for positioning accuracy by centimeter, standard GPS localization is sufficient for the measurements. During the measurements, the geographical coordinates are interpreted in the GWS'84 system. The coordinates of the latitude and longitude circles are also shown in this system in the figures presented.


Assuntos
Aeronaves , Humanos , Raios gama
15.
Rep Pract Oncol Radiother ; 27(2): 275-280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299389

RESUMO

Background: The purpose of this study was to evaluate and compare results obtained in high dose rate (HDR) brachytherapy treatment of vaginal cancer. Different catheters distributions inside the custom mold were explored. The difference between those distributions is the position of the posterior catheter located near the rectum in the actual custom mold applicator used in different hospitals, each one having a catheter displacement of 0.5 which is equal to the length of a step position. The best catheters distribution offering an optimal dose distribution: better coverage of the clinical target volume (CTV), while reducing the dose received by organs at risk (OARs), were discussed. Materials and methods: A group of 60 patients treated with HDR brachytherapy, alone or in combination with external radiotherapy, was investigated. A custom mold is normally used for HDR brachytherapy vaginal cancer treatment. Three different geometrical positions of the catheters (G1, G2 and G3) and, consequently, 3 different dosimetries were simulated out for each patient on the CT images, using the Oncentra planning system. The coverage of the CTV was studied. Results: The average volume treated was 30.46 cc (min = 9.8 cc, max = 70.86 cc). The total prescribed dose, including external and internal radiotherapy, was 80 Gy. We evaluated conformity index (CI), dose homogeneity index (DHI) and conformality index (COIN) indices for the three implantation geometries to reach the same coverage criteria of the CTV. The D2cc parameter allowed the evaluation of the dose received by the OARs. For the rectum, a dose reduction of 9.67% (range 0.29-32.86) was obtained with the second geometry of implantation compared to 10.14% (range 1.43-28.33) with the third geometry. For the bladder, the second geometry of implantation showed a better preservation for this organ [15.93% (range 0.86-58.71) vs. 8.35% (range 0.33-30.43) with the third geometry]. The sigmoid was more protected using the second plan of implantation as well [6.33% (range 0.14-40.71) for the second implantation compared to 5.95% (range 0.33-36) for the third implantation]. Conclusions: G2 and G3 catheters' distribution, having catheter position farther from the mold wall and so from the vaginal wall compared to the catheter position applied showed a better protection for the OARs while giving the same prescribed dose for the CTV.

16.
Acta Med Okayama ; 75(3): 307-314, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34176934

RESUMO

Reports on irradiation dose distribution in breast cancer radiotherapy with sufficient sample size are limited in Asian patients. Elucidating dose distribution in Asian patients is particularly important as their breast volume differs compared to patients in Europe and North America. Here, we examined dose distribution in the irradiation field relative to breast volume for three irradiation methods historically used in our facility. We investigated the influence of breast volume on each irradiation method for Asian women. A total of 573 women with early-stage breast cancer were treated with breast-conserving surgery and adjuvant radiotherapy. Three methods were compared: wedge (W), field-in-field (FIF), and wedge-field-in-field (W-FIF). In patients with small breast volume, FIF decreased low- and high-dose areas within the planning target volume, and increased optimal dose area more than W. In patients with medium and large breast volumes, FIF decreased high-dose area more than W. The absolute values of correlation coefficients of breast volume to low-, optimal-, and high-dose areas and mean dose were significantly lower in FIF than in W. The correlation coefficients of V107% were 0.00 and 0.28 for FIF and W, respectively. FIF is an excellent irradiation method that is less affected by breast volume than W in Asian breast cancer patients.


Assuntos
Neoplasias da Mama/radioterapia , Mama/anatomia & histologia , Dosagem Radioterapêutica , Adulto , Idoso , Povo Asiático , Neoplasias da Mama/cirurgia , Feminino , Humanos , Japão , Pessoa de Meia-Idade , Radioterapia Conformacional/métodos , Estudos Retrospectivos
17.
J Res Natl Inst Stand Technol ; 126: 126025, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38469433

RESUMO

Disinfection of surfaces by ultraviolet-C (UV-C) radiation is gaining importance in diverse applications. However, there is generally no accepted computational procedure to determine the minimum irradiation times and UV-C doses required for reliable and secure disinfection of surfaces. UV-C dose distributions must be comparable for devices presently on the market and future ones, as well as for the diverse surfaces of objects to be disinfected. A mathematical model is presented to estimate irradiance distributions. To this end, the relevant parameters are defined. These parameters are the optical properties of the UV-C light sources, such as wavelength and emitted optical power, as well as electrical features, like radiant efficiency and consumed power. Furthermore, the characteristics and geometry of the irradiated surfaces as well as the positions of the irradiated surfaces in relation to the UV-C light sources are considered. Because mercury (Hg) lamps are competitive with UV-C light-emitting diodes, a comparative analysis between these two light sources based on the simulation results is also discussed.

18.
J Appl Clin Med Phys ; 22(4): 143-150, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33710776

RESUMO

Transarterial radioembolization (TARE) effectively treats unresectable primary and metastatic liver tumors through intra-arterial injection of Yttrium-90 (90 Y) beta particle emitting microspheres which implant around the tumor. Current dosimetry models are highly simplistic and there is a large need for an image-based dosimetry post-TARE, which would improve treatment safety and efficacy. Current post-TARE imaging is 90 Y bremsstrahlung SPECT/CT and we study the use of these images for dosimetry. Retrospective image review of ten patients having a Philips HealthcareTM SPECT/CT following TARE SIR-Spheres® implantation. Emission series with attenuation correction were resampled to 3 mm resolution and used to create image-based dose distributions. Dose distributions and analysis were performed in MIM Software SurePlanTM utilizing SurePlanTM Local Deposition Method (LDM) and a dose convolution method (WFBH). We sought to implement a patient-specific background subtraction prior to dose calculation to make these noisy bremsstrahlung SPECT images suitable for post-TARE dosimetry. On average the percentage of mean background counts to maximum count in the image across all patients was 9.4 ± 4.9% (maximum = 7.6%, minimum = 2.3%). Absolute dose increased and profile line width decreased as background subtraction value increased. The average value of the LDM and WFBH dose methods was statistically the same. As background subtraction value increased, the DVH curves become unrealistic and distorted. Background subtraction on bremsstrahlung SPECT image has a large effect on post-TARE dosimetry. The background contour defined provides a systematic estimate to the activity background that accounts for the scanner and patient conditions at the time of the image study and is easily implemented using commercially available software. Using the mean count in the background contour as a subtraction across the entire image gave the most realistic dose distributions. This methodology is independent of microsphere and software manufacturer allowing for use with any available products or tools.


Assuntos
Embolização Terapêutica , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Microesferas , Radiometria , Estudos Retrospectivos , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Radioisótopos de Ítrio/uso terapêutico
19.
J Appl Clin Med Phys ; 22(7): 93-102, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34028944

RESUMO

PURPOSE: Helical tomotherapy (HT) is a form of intensity-modulated radiation therapy that is employed in total body irradiation (TBI). Because TBI targets the whole body, accurate setup positioning at the edge of the treatment volume is made difficult by the whole-body rotational posture. The purpose of this study is to clarify the tolerance for rotational setup error (SE) in the vertical direction. In addition, we perform a retrospective analysis of actually irradiated dose distributions using previous patients' irradiation data. METHODS: To clarify the effects of rotational SE on the dose distribution, the planned CT images of 10 patients were rotated by 1-5° in the vertical (pitch) direction to create a pseudo-rotational SE image. Then, the effect of the magnitude of the rotational SE on the dose distribution was simulated. In addition, the irradiated dose to the patients was analyzed by obtaining recalculated dose distributions using megavoltage CT images acquired before treatment. RESULTS: The simulation results showed that the average value of the lung volume receiving at least 10 Gy did not exceed the allowable value when the SE value was ≤2°. When the rotational SE was ≤3°, it was possible to maintain the clinical target volume dose heterogeneity within ±10% of the prescribed dose, which is acceptable according to the guidelines. A retrospective analysis of previous patients' irradiation data showed their daily irradiation dose distribution. The dose to the clinical target volume was reduced by up to 3.4% as a result of the residual rotational SE. Although whole-course retrospective analyses showed a statistically significant increase in high-dose areas, the increase was only approximately 1.0%. CONCLUSIONS: Dose errors induced by rotational SEs of ≤2° were acceptable in this study.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos , Irradiação Corporal Total
20.
Sensors (Basel) ; 21(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34300669

RESUMO

A dose distribution map can be created using geographic information system (GIS) methods from sensor data that do not provide image information in a classical way. The results of discrete radiation measurements can be properly represented in a uniform raster above the surface. If the radiation measured at each site does not show a jump-like change, a dose distribution map can be prepared by interpolating the measured values. The coordinates of the measuring points can be used to calibrate the map. The calibrated and georeferenced map is suitable for locating hidden or lost radiation sources or for mapping active debris scattered during a possible reactor accident. The advantage of the developed method is the measurement can be performed with a small multicopter, cost-effectively, even without human intervention. The flight time of small multicopters is very limited, so it is especially important to increase the efficiency of the measurement. During the experiments, a practical comparison of several methods was made with regard to the measurement procedure. Similarly, based on the measurement experience, the detector system was further developed and tested in three main steps. A system was developed with a detector system with a total weight of 500 g, including a battery capable of operating the detector for at least 120 min. The device is capable of detecting an average of 30 events/min at of 0.01 µSv/h background radiation. Experiments have shown that the system is able to significantly detect a source with an activity of 300 µSv/h by scanning above 10 m ground level.


Assuntos
Monitoramento de Radiação , Raios gama , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA