Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.025
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(2): 545-559.e22, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33357446

RESUMO

Biological processes are regulated by intermolecular interactions and chemical modifications that do not affect protein levels, thus escaping detection in classical proteomic screens. We demonstrate here that a global protein structural readout based on limited proteolysis-mass spectrometry (LiP-MS) detects many such functional alterations, simultaneously and in situ, in bacteria undergoing nutrient adaptation and in yeast responding to acute stress. The structural readout, visualized as structural barcodes, captured enzyme activity changes, phosphorylation, protein aggregation, and complex formation, with the resolution of individual regulated functional sites such as binding and active sites. Comparison with prior knowledge, including other 'omics data, showed that LiP-MS detects many known functional alterations within well-studied pathways. It suggested distinct metabolite-protein interactions and enabled identification of a fructose-1,6-bisphosphate-based regulatory mechanism of glucose uptake in E. coli. The structural readout dramatically increases classical proteomics coverage, generates mechanistic hypotheses, and paves the way for in situ structural systems biology.


Assuntos
Proteínas de Escherichia coli/metabolismo , Imageamento Tridimensional , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Espectrometria de Massas , Simulação de Dinâmica Molecular , Pressão Osmótica , Fosforilação , Proteólise , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Estresse Fisiológico
2.
Cell ; 180(4): 703-716.e18, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32059782

RESUMO

The three-dimensional structures of chromosomes are increasingly being recognized as playing a major role in cellular regulatory states. The efficiency and promiscuity of phage Mu transposition was exploited to directly measure in vivo interactions between genomic loci in E. coli. Two global organizing principles have emerged: first, the chromosome is well-mixed and uncompartmentalized, with transpositions occurring freely between all measured loci; second, several gene families/regions show "clustering": strong three-dimensional co-localization regardless of linear genomic distance. The activities of the SMC/condensin protein MukB and nucleoid-compacting protein subunit HU-α are essential for the well-mixed state; HU-α is also needed for clustering of 6/7 ribosomal RNA-encoding loci. The data are explained by a model in which the chromosomal structure is driven by dynamic competition between DNA replication and chromosomal relaxation, providing a foundation for determining how region-specific properties contribute to both chromosomal structure and gene regulation.


Assuntos
Bacteriófago mu/genética , Cromossomos Bacterianos/genética , Elementos de DNA Transponíveis , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Bacterianos/química , DNA Bacteriano/química , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genoma Bacteriano , Conformação de Ácido Nucleico , Transposases/genética , Transposases/metabolismo
3.
Cell ; 183(3): 650-665.e15, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33031742

RESUMO

Endocannabinoids are host-derived lipid hormones that fundamentally impact gastrointestinal (GI) biology. The use of cannabis and other exocannabinoids as anecdotal treatments for various GI disorders inspired the search for mechanisms by which these compounds mediate their effects, which led to the discovery of the mammalian endocannabinoid system. Dysregulated endocannabinoid signaling was linked to inflammation and the gut microbiota. However, the effects of endocannabinoids on host susceptibility to infection has not been explored. Here, we show that mice with elevated levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG) are protected from enteric infection by Enterobacteriaceae pathogens. 2-AG directly modulates pathogen function by inhibiting virulence programs essential for successful infection. Furthermore, 2-AG antagonizes the bacterial receptor QseC, a histidine kinase encoded within the core Enterobacteriaceae genome that promotes the activation of pathogen-associated type three secretion systems. Taken together, our findings establish that endocannabinoids are directly sensed by bacteria and can modulate bacterial function.


Assuntos
Endocanabinoides/metabolismo , Enterobacteriaceae/patogenicidade , Animais , Ácidos Araquidônicos/química , Ácidos Araquidônicos/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Citrobacter rodentium/patogenicidade , Colo/microbiologia , Colo/patologia , Endocanabinoides/química , Infecções por Enterobacteriaceae/microbiologia , Feminino , Microbioma Gastrointestinal , Glicerídeos/química , Glicerídeos/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoacilglicerol Lipases/metabolismo , Salmonella/patogenicidade , Virulência
4.
Cell ; 177(3): 683-696.e18, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30929902

RESUMO

Microbiota and intestinal epithelium restrict pathogen growth by rapid nutrient consumption. We investigated how pathogens circumvent this obstacle to colonize the host. Utilizing enteropathogenic E. coli (EPEC), we show that host-attached bacteria obtain nutrients from infected host cell in a process we termed host nutrient extraction (HNE). We identified an inner-membrane protein complex, henceforth termed CORE, as necessary and sufficient for HNE. The CORE is a key component of the EPEC injectisome, however, here we show that it supports the formation of an alternative structure, composed of membranous nanotubes, protruding from the EPEC surface to directly contact the host. The injectisome and flagellum are evolutionarily related, both containing conserved COREs. Remarkably, CORE complexes of diverse ancestries, including distant flagellar COREs, could rescue HNE capacity of EPEC lacking its native CORE. Our results support the notion that HNE is a widespread virulence strategy, enabling pathogens to thrive in competitive niches.


Assuntos
Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/metabolismo , Nutrientes/metabolismo , Aminoácidos/metabolismo , Aderência Bacteriana/fisiologia , Escherichia coli Enteropatogênica/crescimento & desenvolvimento , Escherichia coli Enteropatogênica/metabolismo , Fluoresceínas/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência
5.
Cell ; 175(2): 571-582.e11, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30146159

RESUMO

Elucidating the benefits of individual microbiota-derived molecules in host animals is important for understanding the symbiosis between humans and their microbiota. The bacteria-secreted enterobactin (Ent) is an iron scavenging siderophore with presumed negative effects on hosts. However, the high prevalence of Ent-producing commensal bacteria in the human gut raises the intriguing question regarding a potential host mechanism to beneficially use Ent. We discovered an unexpected and striking role of Ent in supporting growth and the labile iron pool in C. elegans. We show that Ent promotes mitochondrial iron uptake and does so, surprisingly, by binding to the ATP synthase α subunit, which acts inside of mitochondria and independently of ATP synthase. We also demonstrated the conservation of this mechanism in mammalian cells. This study reveals a distinct paradigm for the "iron tug of war" between commensal bacteria and their hosts and an important mechanism for mitochondrial iron uptake and homeostasis.


Assuntos
Enterobactina/fisiologia , Ferro/metabolismo , Sideróforos/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , ATPases Bacterianas Próton-Translocadoras/metabolismo , ATPases Bacterianas Próton-Translocadoras/fisiologia , Transporte Biológico , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Enterobactina/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Células HEK293 , Humanos , Ferro/fisiologia , Mitocôndrias/metabolismo
6.
Cell ; 169(2): 273-285.e17, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28388411

RESUMO

How phospholipids are trafficked between the bacterial inner and outer membranes through the hydrophilic space of the periplasm is not known. We report that members of the mammalian cell entry (MCE) protein family form hexameric assemblies with a central channel capable of mediating lipid transport. The E. coli MCE protein, MlaD, forms a ring associated with an ABC transporter complex in the inner membrane. A soluble lipid-binding protein, MlaC, ferries lipids between MlaD and an outer membrane protein complex. In contrast, EM structures of two other E. coli MCE proteins show that YebT forms an elongated tube consisting of seven stacked MCE rings, and PqiB adopts a syringe-like architecture. Both YebT and PqiB create channels of sufficient length to span the periplasmic space. This work reveals diverse architectures of highly conserved protein-based channels implicated in the transport of lipids between the membranes of bacteria and some eukaryotic organelles.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas de Membrana/química , Membrana Celular/química , Cristalografia por Raios X , Microscopia Eletrônica , Modelos Moleculares , Complexos Multiproteicos/química
7.
Cell ; 169(3): 442-456.e18, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28431245

RESUMO

Fluoropyrimidines are the first-line treatment for colorectal cancer, but their efficacy is highly variable between patients. We queried whether gut microbes, a known source of inter-individual variability, impacted drug efficacy. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we performed three-way high-throughput screens that unraveled the complexity underlying host-microbe-drug interactions. We report that microbes can bolster or suppress the effects of fluoropyrimidines through metabolic drug interconversion involving bacterial vitamin B6, B9, and ribonucleotide metabolism. Also, disturbances in bacterial deoxynucleotide pools amplify 5-FU-induced autophagy and cell death in host cells, an effect regulated by the nucleoside diphosphate kinase ndk-1. Our data suggest a two-way bacterial mediation of fluoropyrimidine effects on host metabolism, which contributes to drug efficacy. These findings highlight the potential therapeutic power of manipulating intestinal microbiota to ensure host metabolic health and treat disease.


Assuntos
Antineoplásicos/metabolismo , Escherichia coli/metabolismo , Fluoruracila/metabolismo , Microbioma Gastrointestinal , Animais , Autofagia , Caenorhabditis elegans , Morte Celular , Neoplasias Colorretais/tratamento farmacológico , Dieta , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos , Modelos Animais , Pentosiltransferases/genética
8.
Cell ; 170(5): 860-874.e19, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28803730

RESUMO

Lower urinary tract infections are among the most common human bacterial infections, but extension to the kidneys is rare. This has been attributed to mechanical forces, such as urine flow, that prevent the ascent of bladder microbes. Here, we show that the regional hypersalinity, required for the kidney's urine-concentrating function, instructs epithelial cells to produce chemokines that localize monocyte-derived mononuclear phagocytes (MNPs) to the medulla. This hypersaline environment also increases the intrinsic bactericidal and neutrophil chemotactic activities of MNPs to generate a zone of defense. Because MNP positioning and function are dynamically regulated by the renal salt gradient, we find that patients with urinary concentrating defects are susceptible to kidney infection. Our work reveals a critical accessory role for the homeostatic function of a vital organ in optimizing tissue defense.


Assuntos
Rim/imunologia , Fagócitos/imunologia , Animais , Linhagem Celular , Quimiocina CCL2/metabolismo , Quimiocinas/imunologia , Diabetes Insípido , Humanos , Rim/citologia , Medula Renal/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Salinidade , Sódio/metabolismo , Fatores de Transcrição/genética , Infecções Urinárias/imunologia , Infecções Urinárias/microbiologia , Urina/química , Escherichia coli Uropatogênica/fisiologia
9.
Cell ; 171(5): 1125-1137.e11, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29107333

RESUMO

Human cytotoxic lymphocytes kill intracellular microbes. The cytotoxic granule granzyme proteases released by cytotoxic lymphocytes trigger oxidative bacterial death by disrupting electron transport, generating superoxide anion and inactivating bacterial oxidative defenses. However, they also cause non-oxidative cell death because anaerobic bacteria are also killed. Here, we use differential proteomics to identify granzyme B substrates in three unrelated bacteria: Escherichia coli, Listeria monocytogenes, and Mycobacteria tuberculosis. Granzyme B cleaves a highly conserved set of proteins in all three bacteria, which function in vital biosynthetic and metabolic pathways that are critical for bacterial survival under diverse environmental conditions. Key proteins required for protein synthesis, folding, and degradation are also substrates, including multiple aminoacyl tRNA synthetases, ribosomal proteins, protein chaperones, and the Clp system. Because killer cells use a multipronged strategy to target vital pathways, bacteria may not easily become resistant to killer cell attack.


Assuntos
Escherichia coli/citologia , Granzimas/metabolismo , Células Matadoras Naturais/enzimologia , Listeria monocytogenes/citologia , Mycobacterium tuberculosis/citologia , Linfócitos T Citotóxicos/enzimologia , Aminoacil-tRNA Sintetases/metabolismo , Animais , Escherichia coli/metabolismo , Humanos , Células Matadoras Naturais/imunologia , Listeria monocytogenes/metabolismo , Redes e Vias Metabólicas , Camundongos , Mycobacterium tuberculosis/metabolismo , Biossíntese de Proteínas , Proteômica , Ribossomos/metabolismo , Linfócitos T Citotóxicos/imunologia
10.
Immunity ; 54(8): 1745-1757.e7, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34348118

RESUMO

Environmental enteric dysfunction (EED) is a gastrointestinal inflammatory disease caused by malnutrition and chronic infection. EED is associated with stunting in children and reduced efficacy of oral vaccines. To study the mechanisms of oral vaccine failure during EED, we developed a microbiota- and diet-dependent mouse EED model. Analysis of E. coli-labile toxin vaccine-specific CD4+ T cells in these mice revealed impaired CD4+ T cell responses in the small intestine and but not the lymph nodes. EED mice exhibited increased frequencies of small intestine-resident RORγT+FOXP3+ regulatory T (Treg) cells. Targeted deletion of RORγT from Treg cells restored small intestinal vaccine-specific CD4 T cell responses and vaccine-mediated protection upon challenge. However, ablation of RORγT+FOXP3+ Treg cells made mice more susceptible to EED-induced stunting. Our findings provide insight into the poor efficacy of oral vaccines in EED and highlight how RORγT+FOXP3+ Treg cells can regulate intestinal immunity while leaving systemic responses intact.


Assuntos
Toxinas Bacterianas/imunologia , Vacinas contra Escherichia coli/imunologia , Gastroenteropatias/imunologia , Intestino Delgado/imunologia , Linfócitos T Reguladores/imunologia , Administração Oral , Animais , Linhagem Celular , Modelos Animais de Doenças , Drosophila , Escherichia coli/imunologia , Feminino , Fatores de Transcrição Forkhead/metabolismo , Gastroenteropatias/microbiologia , Gastroenteropatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA