Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; 356(1): e2200417, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36257809

RESUMO

New 2-mercapto-quinazolin-4-one analogs were synthesized and tested for their in vitro anticancer activity, dihydrofolate reductase (DHFR) inhibition, and epidermal growth factor tyrosine kinase (EGFR-TK) inhibition activities. Compound 24, which is characterized by a 2-benzyl-thio function, showed broad-spectrum anticancer activity with high safety profile and selectivity index. The concentrations of 24 causing 50% growth inhibition (GI50 ) and total cell growth inhibition (TGI) and its lethal concentration 50 (LC50 ) were 15.1, 52.5, and 91.2 µM, respectively, using 5-fluorouracil as a positive control. Also, it showed EGFR-TK inhibitory activity with IC50 = 13.40 nM compared to gefitinib (IC50 = 18.14 nM) and DHFR inhibitory potency with 0.30 µM compared to methotrexate (MTX; IC50 = 0.08 µM). In addition, compound 24 caused cell cycle arrest and apoptosis on COLO-205 colon cancer cells. Compounds 37, 21, and 54 showed remarkable DHFR inhibitory activity with IC50 values of 0.03, 0.08, and 0.08 µM, respectively. The inhibitory properties of these compounds are due to an electron-withdrawing group on the quinazolinone ring, except for compound 54. In a molecular modeling study, compound 24 showed the same binding mode as gefitinib as it interacted with the amino acid Lys745 via π-π interaction. Compound 37 showed a similar binding mode as MTX through the binding interaction with Lys68, Asn64 via hydrogen bond acceptor, and Phe31 via arene-arene interaction. The obtained model and substitution pattern could be used for further development.


Assuntos
Antineoplásicos , Antagonistas do Ácido Fólico , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Estrutura Molecular , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Proteínas Tirosina Quinases/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Gefitinibe/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Quinazolinonas/farmacologia , Quinazolinonas/química , Receptores ErbB/metabolismo , Linhagem Celular Tumoral
2.
Molecules ; 28(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049777

RESUMO

Targeting L858R/T790M and L858R/T790M/C797S mutant EGFR is a critical challenge in developing EGFR tyrosine kinase inhibitors to overcome drug resistance in non-small cell lung cancer (NSCLC). The discovery of next-generation EGFR tyrosine kinase inhibitors (TKIs) is therefore necessary. To this end, a series of furopyridine derivatives were evaluated for their EGFR-based inhibition and antiproliferative activities using computational and biological approaches. We found that several compounds derived from virtual screening based on a molecular docking and solvated interaction energy (SIE) method showed the potential to suppress wild-type and mutant EGFR. The most promising PD13 displayed strong inhibitory activity against wild-type (IC50 of 11.64 ± 1.30 nM), L858R/T790M (IC50 of 10.51 ± 0.71 nM), which are more significant than known drugs. In addition, PD13 revealed a potent cytotoxic effect on A549 and H1975 cell lines with IC50 values of 18.09 ± 1.57 and 33.87 ± 0.86 µM, respectively. The 500-ns MD simulations indicated that PD13 formed a hydrogen bond with Met793 at the hinge region, thus creating excellent EGFR inhibitory activity. Moreover, the binding of PD13 in the hinge region of EGFR was the major determining factor in stabilizing the interactions via hydrogen bonds and van der Waals (vdW). Altogether, PD13 is a promising novel EGFR inhibitor that could be further clinically developed as fourth-generation EGFR-TKIs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Mutação , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos
3.
Bioorg Chem ; 127: 105966, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35728294

RESUMO

A novel series of phthalimide derivatives was synthesized and evaluated for in vitro antitumor activity against six human cancer cell lines; HepG-2, HCT-116, MCF-7, Hep2, PC3 and Hela.The obtained results revealed that compound 32 was the most potent antitumor, while compounds 33, 22 and 24 showed strong activity against all tested cell lines. Further biological evaluation of the most active compounds was done and their in vitro EGFR-TK inhibition was tested, and the results came in accordance with the results of antitumor testing, where 32 displayed promising inhibitory activity (IC50 = 0.065 µM) compared to the standard drug erlotinib (IC50 = 0.067 µM). In addition, compounds 48, 22, 28 and 19 showed strong inhibitory activity (IC50 = 0.089, 0.093, 0.147 and 0.152 µM respectively). Cell cycle analysis was conducted and the results revealed that 32 induced cell cycle arrest on Hela and MCF-7 at G0-G1 phase and Pre-G1 phase causing cell death mainly via apoptosis. Additionally, in vivo antitumor screening revealed that 32 reduced both body weight and tumor volume in solid tumor utilizing Ehrlich ascites carcinoma (EAC) animal model. Molecular modeling study showed that 32 and 48 have the highest affinity for binding with the active site of EGFR-TK with docking score comparable to erlotinib. Compounds 32 and 48 could be used as template models for further optimization.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB , Cloridrato de Erlotinib/farmacologia , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Neoplasias/tratamento farmacológico , Ftalimidas/farmacologia , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
4.
BMC Cancer ; 21(1): 530, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971844

RESUMO

BACKGROUND: Osimertinib is a third generation tyrosine kinase inhibitor (TKI) that targets the epidermal growth factor receptor (EGFR) in lung cancer. However, although this molecule is not subject to some of the resistance mechanisms observed in response to first generation TKIs, ultimately, patients relapse because of unknown resistance mechanisms. New relevant non-small cell lung cancer (NSCLC) mice models are therefore required to allow the analysis of these resistance mechanisms and to evaluate the efficacy of new therapeutic strategies. METHODS: Briefly, PC-9 cells, previously modified for luciferase expression, were injected into the tail vein of mice. Tumor implantation and longitudinal growth, almost exclusively localized in the lung, were evaluated by bioluminescence. Once established, the tumor was treated with osimertinib until tumor escape and development of bone metastases. RESULTS: Micro-metastases were detected by bioluminescence and collected for further analysis. CONCLUSION: We describe an orthotopic model of NSCLC protocol that led to lung primary tumor nesting and, after osimertinib treatment, by metastases dissemination, and that allow the isolation of these small osimertinib-resistant micro-metastases. This model provides new biological tools to study tumor progression from the establishment of a lung tumor to the generation of drug-resistant micro-metastases, mimicking the natural course of the disease in human NSCLC patients.


Assuntos
Acrilamidas/uso terapêutico , Compostos de Anilina/uso terapêutico , Neoplasias Ósseas/secundário , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Micrometástase de Neoplasia , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Enzyme Inhib Med Chem ; 36(1): 1488-1499, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34227457

RESUMO

New cyanobenzofurans derivatives 2-12 were synthesised, and their antiproliferative activity was examined compared to doxorubicin and Afatinib (IC50 = 4.17-8.87 and 5.5-11.2 µM, respectively). Compounds 2 and 8 exhibited broad-spectrum activity against HePG2 (IC50 = 16.08-23.67 µM), HCT-116 (IC50 = 8.81-13.85 µM), and MCF-7 (IC50 = 8.36-17.28 µM) cell lines. Compounds 2, 3, 8, 10, and 11 were tested as EGFR-TK inhibitors to demonstrate their possible anti-tumour mechanism compared to gefitinib (IC50 = 0.90 µM). Compounds 2, 3, 10, and 11 displayed significant EGFR TK inhibitory activity with IC50 of 0.81-1.12 µM. Compounds 3 and 11 induced apoptosis at the Pre-G phase and cell cycle arrest at the G2/M phase. They also increased the level of caspase-3 by 5.7- and 7.3-fold, respectively. The molecular docking analysis of compounds 2, 3, 10, and 11 indicated that they could bind to the active site of EGFR TK.


Assuntos
Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Desenho de Fármacos , Nitrilas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzofuranos/síntese química , Benzofuranos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Nitrilas/síntese química , Nitrilas/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
6.
Bioorg Med Chem Lett ; 30(23): 127557, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949719

RESUMO

Epidermal growth factor receptor tyrosine kinase (EGFR-TK) has been proved as a target for the treatment of non-small cell lung cancer (NSCLC) with specific gene mutations. However, EGFR-TK inhibitors (EGFR-TKIs) need to enter cancer cells and then competitively interact with the active site of tyrosine kinase receptors to suppress the downstream signaling pathway to inhibit tumor proliferation. In this study, in order to improve the tumor cell targeting ability of EGFR-TKI, EGFR-TKI erlotinib was conjugated with the cancer cell-targeting heptamethine cyanine dyes to form seventeen novel erlotinib-dye conjugates. The efficiency of tumor targeting properties of conjugates against cancer cell growth and EGFR-TK inhibition was evaluated in vitro. The result revealed that most erlotinib-dye conjugates exhibited stronger inhibitory effect on A549, H460, H1299 and MDA-MB-231 cell lines than the parent drug erlotinib. Meanwhile, representative compounds exhibited weak cytotoxicity on human normal mammary epithelial MCF-10A cells. Moreover, the conjugate CE17 also showed ~14-fold higher EGFR-TK inhibition activity (IC50 = 0.124 µM) than erlotinib (IC50 = 5.182 µM) in A549 cell line. Finally, molecular docking analysis verified that the erlotinib moiety of compound CE17 could form hydrogen bond with Met-769 and occupy active cavity of EGFR-TK. Therefore, we believed the integration strategy between heptamethine cyanine dyes and EGFR-TKI will contribute to enhancing the therapeutic effect of EGFR-TKI for NSCLC treatment.


Assuntos
Antineoplásicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib/farmacologia , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/síntese química , Cloridrato de Erlotinib/metabolismo , Humanos , Indóis/síntese química , Indóis/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Relação Estrutura-Atividade
7.
Bioorg Med Chem Lett ; 30(12): 127167, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32317208

RESUMO

Epidermal growth factor receptor (EGFR) is one of the important and valuable drug targets. Overexpression of EGFR is associated with the development of many types of cancer. In this study, three PROTACs small molecules (16a-16c) were designed, synthesized and evaluated for their cytotoxicity against the growth in different NSCLC cell line and the degradation effect. The bioassay results indicated that 16c has a good inhibition in PC9 cells and H1975 cells, and the corresponding IC50 value was 0.413 µM and 0.657 µM, respectively. Western blotting results demonstrated that compound 16c could serve as an effective EGFRdel19-targeting degrader in PC9 cells.


Assuntos
Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Quimera/metabolismo , Lenalidomida/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Acrilamidas/química , Sequência de Aminoácidos , Compostos de Anilina/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Desenho de Fármacos , Receptores ErbB/metabolismo , Humanos , Lenalidomida/química , Ligação Proteica , Conformação Proteica , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
8.
Bioorg Med Chem ; 28(21): 115674, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065442

RESUMO

New series of isoxazole derivatives were synthesized and evaluated for in vitro antitumor activity against HepG2, MCF-7 and HCT-116 cancer cells. Results showed that 4b and 25a are the most potent members against the three cancer cells (IC50 = 6.38-9.96 µM). Further, 4a, 8a and 16b showed strong activity against the three cancer cells, whereas 6b, 10a, 10b and 16a exhibited moderate activity against the three cancer cells. Moreover, 25a showed low cytotoxicity against WISH and WI38 normal cells (IC50 = 53.19 ± 3.1 and 38.64 ± 2.8 µM, respectively), and it might be used as a potent and safe antitumor agent. The nine active compounds 4a, 4b, 6b, 8a, 10a, 10b, 16a, 16b and 25a were studied for EGFR-TK inhibitory activity, where 10a, 10b and 25a showed the highest inhibitory activity (IC50 = 0.064 ± 0.001, 0.066 ± 0.001 and 0.054 ± 0.001 µM, respectively). Compound 25a was also assessed against other four target proteins, and it showed promising inhibitory activities against VEGFR-2, CK2α and topoisomerase IIß, and acceptable inhibitory activity against tubulin polymerization. Cell cycle analysis of cancer cells treated with 25a proved that it induces cell cycle arrest at G2/M and pre-G1 phases. Furthermore, it was confirmed that 25a induces cancer cell death through apoptosis, supported by increased caspases 3/9 levels and increased Bax/Bcl-2 ratio in the three cancer cells. In addition, docking studies proved the exact fit of 25a into the active site of EGFR-TK, VEGFR-2, CK2α, topoisomerase IIß and tubulin. Lipinski's rule and Veber's standards were also analyzed, and results illustrated that 25a is expected to be well absorbed orally.


Assuntos
Receptores ErbB/metabolismo , Isoxazóis/química , Inibidores de Proteínas Quinases/química , Apoptose/efeitos dos fármacos , Sítios de Ligação , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Isoxazóis/metabolismo , Isoxazóis/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade , Regulação para Cima/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
Bioorg Chem ; 100: 103855, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32428743

RESUMO

Tyrosine kinase (TK) receptors including epidermal growth factor receptors (EGFRs) are known to be overexpressed in a wide variety of solid tumors associated with poor prognosis. The HBED-CC chelator N,N'-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N'-diacetic acid 1 was coupled via one or both its propionic acid moieties with the quinazoline EGFR-TK inhibiting pharmacophore 4-amino-N-(4-((3-bromophenyl)amino)quinazolin-6-yl)butanamide 3 resulting in either a monomeric 4 or a dimeric 5 species. Ligands 4 and 5 reacted with Ga3+ generating the corresponding complexes Ga4 and Ga5. Both ligands and complexes were characterized with mass spectrometry and NMR spectroscopy and evaluated in vitro with MTT assays in A431 cells, where they showed IC50 values in the range 51.6 to 68.8 µM. Labeling of ligands 4 and 5 with the PET radionuclide 68Ga was quantitative and resulted in tracers [68Ga]Ga4 and [68Ga]Ga5 with radiochemical purities greater than 98%, which were also characterised by comparative RP-HPLC studies with Ga4 and Ga5 respectively. Radiotracers [68Ga]Ga4 and [68Ga]Ga5 were stable (intact tracer over 98%) in the reaction mixture (120 min) and in human serum (30 min). Both tracers were evaluated in vivo with biodistribution experiments in SCID mice bearing A431 tumors presenting tumor uptake of 1.34 for [68Ga]Ga4 and 1.01 %ID/g for [68Ga]Ga5 at 5 min, which was slightly decreased at 60 min p.i. and then remained stable until 120 min p.i. To the best of our knowledge, this is the first report of monomeric and dimeric quinazoline conjugates with the chelator HBED-CC, which can serve as a basis for further development of EGFR-TKI targeting tracers.


Assuntos
Ácido Edético/análogos & derivados , Receptores ErbB/análise , Radioisótopos de Gálio/química , Neoplasias/diagnóstico por imagem , Quinazolinas/química , Animais , Linhagem Celular Tumoral , Dimerização , Ácido Edético/síntese química , Ácido Edético/química , Feminino , Humanos , Camundongos , Camundongos SCID , Tomografia por Emissão de Pósitrons , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinazolinas/síntese química
10.
Bioorg Chem ; 103: 104133, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32745759

RESUMO

A series of benzothiazole/isatin linked to 1,2,3-triazole moiety and terminal sulpha drugs 5a-e and 6a-e were synthesized and evaluated for cytotoxic activity against a panel of cancer cell lines. The novel compounds showed variable IC50 range of activity and some of them were potent compared to reference drug. The promising compounds were subjected as postulated the mimicry proposal for quinazoline-based EGFR inhibitors for their inhibitory profile against EGFR TK enzyme. That data obtained revealed that most of these compounds were potent EGFR TK inhibitors at nanomolar concentrations. Among these, compounds 5a and 5b showed more potent activity on EGFR compared to erlotinib (IC50 103 and 104 versus 67.6 nM). Based upon the results, molecular docking analysis was performed on EGFR receptor and proved the strong contribution of fragments; benzothiazole, isatin, and triazole to the binding ATP pocket. When these selected compounds 5a and 5b were tested in an HepG2 model, they could effectively inhibited tumor growth, strongly induced cancer cell apoptosis, and suppressed cell cycle progression leading to DNA fragmentation. Well-DMET profile of the most active derivatives was presented and compared to the reference drugs. Taken together, we introduced novel triazole-sulpha drug hybrid for the first time as EGFR inhibitors and the results of our studies indicate that the newly discovered inhibitors have significant potential for anticancer treatment.


Assuntos
Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , Isatina/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzotiazóis/síntese química , Benzotiazóis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Isatina/síntese química , Isatina/química , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinazolinas/química , Relação Estrutura-Atividade , Triazóis/química
11.
Bioorg Chem ; 96: 103628, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32062064

RESUMO

A new series of 6-substiuted-4-(2-(4-substituted-benzylidene)hydrazinyl)quinolin-2(1H)-one derivatives have been designed and synthesized. The structure of the synthesized compounds was proved by 1H NMR, 13C NMR, 2D NMR, mass and elemental analyses. The target compounds were evaluated for their in vitro cytotoxic activity against 60 cancer cell lines according to NCI protocol. Consequently, the most active compounds were further examined against the most sensitive leukemia RPMI-8226 and on healthy cell lines. 6-Chloro-derivative was the most active one; with IC50 = 15.72 ± 1.21 and 46.05 ± 2.36 µM against RPMI-8226 and normal cell lines, respectively. Also, it showed a remarkable inhibitory activity compared to gefitinib on the EGFR TK mutant, wild and on H-RAS in addition to STAT-3 with IC50 = 695.49 ± 21.8, 263.15 ± 15.13, 10.61 ± 0.27 and 1.753 ± 0.81 nM, respectively. Cell cycle analysis of RPMI-8226 cells treated with the 6-chloro-derivative showed cell cycle arrest at G2/M phase (supported by Caspases-3,8, BAX and Bcl-2 studies) with a significant pro-apoptotic activity as indicated by annexin V-FITC staining. Moreover, the docking studies ROCS analysis and Tanimoto scores supported the results. The study illustrated the effect of several factors on compounds activity.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cloridrato de Erlotinib/análogos & derivados , Cloridrato de Erlotinib/farmacologia , Leucemia/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Desenho de Fármacos , Receptores ErbB/metabolismo , Humanos , Leucemia/metabolismo , Modelos Moleculares , Quinolinas/química , Quinolinas/farmacologia , Fator de Transcrição STAT3/metabolismo
12.
Bioorg Chem ; 90: 103045, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31212178

RESUMO

Two new series of diethyl 2-[2-(substituted-2-oxo-1,2-dihydroquinolin-4-yl)hydrazono]-succinates 6a-g and 1-(2-oxo-1,2-dihydroquinolin-4-yl)-1H-pyrazoles 7a-f have been designed and synthesized. The structures of the synthesized compounds were proved by IR, mass, NMR (2D) spectra and elemental analyses. The target compounds were evaluated for their in vitro cytotoxic activity against 60 cancer cell lines according to NCI protocol. Consequently, seven compounds were further examined against the most sensitive cell lines, leukemia CCRF-CEM, and MOLT-4. 5-Amino-1-(6-bromo-2-oxo-1,2-dihydroquinolin-4-yl)-1H-pyrazole-3,4-dicarbonitrile (7f) was the most active product, with IC50 = 1.35 uM and 2.42 uM against MOLT-4 and CCRF-CEM, respectively. Also, it showed a remarkable inhibitory activity compared to erlotinib on the EGFR TK with IC50 = 247.14 nM and 208.42 nM, respectively. Cell cycle analysis of MOLT-4 cells treated with 7f showed cell cycle arrest at G2/M phase (supported by Caspases, BAX and Bcl-2 studies) with a significant pro-apoptotic activity as indicated by annexin V-FITC staining. Moreover, the docking study indicated that both the pyrazole moiety and the quinolin-2-one ring showed good fitting into EGFR (PDB code: 1M17). In order to interpret SAR of the designed compounds, and provide a basis for further optimization, molecular docking of the synthesized compounds to known EGFR inhibitors was performed. The study illustrated the effect of several factors on the compounds' activity.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Quinolonas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Pirazóis/síntese química , Pirazóis/metabolismo , Quinolonas/síntese química , Quinolonas/metabolismo , Relação Estrutura-Atividade
13.
Bioorg Chem ; 88: 102944, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31051400

RESUMO

Deregulation of many kinases is directly linked to cancer development and the tyrosine kinase family is one of the most important targets in current cancer therapy regimens. In this study, we have designed and synthesized a series of thieno[2,3-d]pyrimidine derivatives as an EGFR and HER2 tyrosine kinase inhibitors. All the synthesized compounds were evaluated in vitro for their inhibitory activities against EGFRWT; and the most active compounds that showed promising IC50 values against EGFRWT were tested in vitro for their inhibitory activities against mutant EGFRT790M and HER2 kinases. Moreover, the antitumor activities of these compounds were tested against four cancer cell lines (HepG2, HCT-116, MCF-7 and A431). Compounds 13g, 13h and 13k exhibited the highest activities against the examined cell lines with IC50 values ranging from 7.592 ±â€¯0.32 to 16.006 ±â€¯0.58 µM comparable to that of erlotinib (IC50 ranging from 4.99 ±â€¯0.09 to 13.914 ±â€¯0.36 µM). Furthermore, the most potent antitumor agent (13k) was selected for further studies to determine its effect on the cell cycle progression and apoptosis in MCF-7 cell line. The results indicated that this compound arrests G2/M phase of the cell cycle and it is a good apoptotic agent. Finally, molecular docking studies showed a good binding pattern of the synthesized compounds with the prospective target, EGFRWT and EGFRT790M.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Receptor ErbB-2/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
14.
J Enzyme Inhib Med Chem ; 34(1): 1668-1677, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31530043

RESUMO

Herein, four novel 4-arylaminoquinazoline derivatives with N,N-diethyl(aminoethyl)amino moiety were designed, synthesised and evaluated on biological activities in vitro. All synthesised compounds have inhibitory effects against tumour cells (SW480, A549, A431 and NCI-H1975). In particular, 4-(3-chloro-4-(3-fluorobenzyloxy)phenylamino)-6-(5-((N,N-diethyl(aminoethyl))aminomethyl)furan-2-yl)quinazoline (6a) and 6-(5-((N,N-diethylethyl)aminomethyl)furan-2-yl)-4-(4-(E)-(propen-1-yl)phenylamino)quinazoline (6d) were potent antitumour agents which showed high antiproliferative activities against tumour cells in vitro. Moreover, compound 6a could induce late apoptosis of A549 cells at high concentrations and arrest cell cycle of A549 cells in the G0/G1 phase at tested concentrations. Also, compound 6a could inhibit the activity of wild type epidermal growth factor receptor tyrosine kinase (EGFRwt-TK) with IC50 value of 15.60 nM. Molecular docking showed that compound 6a formed three hydrogen bonds with EGFRwt-TK, while lapatinib formed only two hydrogen bonds with the receptor protein. It is believed that this work would be giving a reference for developing anti-cancer drugs targeted EGFR-TK.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
15.
Bioorg Med Chem ; 26(8): 2173-2185, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29576272

RESUMO

In present study, we described the synthesis and biological evaluation of a new class of EGFR inhibitors containing 2,9-disubstituted 8-phenylthio/phenylsulfinyl-9H-purine scaffold. Thirty-one compounds were synthesized. Among them, compound C9 displayed the IC50 of 29.4 nM against HCC827 cell line and 1.9 nM against EGFRL858R. Compound C12 showed moderate inhibitory activity against EGFRL858R/T790M/C797S (IC50 = 114 nM). Western bolt assay suggested that compound C9 significantly inhibited EGFR phosphorylation. In vivo test, compound C9 remarkably exhibited inhibitory effect on tumor growth at 5.0 mg/kg by oral administration in established nude mouse HCC827 xenograft model. These results indicate that the 2,9-disubstituted 8-phenylsulfinyl/phenylsulfinyl-9H-purine derivatives can act as potent EGFR(L858R) inhibitors and effective anticancer agents. Additionally, optimization of compound C12 may result in discovering the fourth-generation EGFR-TKIs.


Assuntos
Antineoplásicos/síntese química , Receptores ErbB/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Purinas/química , Administração Oral , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Estrutura Terciária de Proteína , Purinas/farmacologia , Purinas/uso terapêutico , Relação Estrutura-Atividade , Transplante Heterólogo
16.
Mol Divers ; 22(1): 173-181, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29197962

RESUMO

Cancer cells are described with features of uncontrolled growth, invasion and metastasis. The epidermal growth factor receptor subfamily of tyrosine kinases (EGFR-TK) plays a crucial regulatory role in the control of cellular proliferation and progression of various cancers. Therefore, its inhibition might lead to the discovery of a new generation of anticancer drugs. In the present study, structure-based pharmacophore modeling, molecular docking and molecular dynamics simulations were applied to identify potential hits, which exhibited good inhibition on the proliferation of MCF-7 breast cancer cell line and favorable binding interactions on EGFR-TK. Selected compounds were examined for their anticancer activity against the Michigan Cancer Foundation-7 (MCF-7) breast cancer cell line which overexpresses EGFR using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction assay. Compounds 1 and 2, with an isoindoline-1-one core, induced significant inhibition of breast cancer cells proliferation with IC[Formula: see text] values 327 and 370 nM, respectively.


Assuntos
Antineoplásicos/química , Desenho de Fármacos , Receptores ErbB/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Feminino , Humanos , Conformação Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade
17.
J Enzyme Inhib Med Chem ; 33(1): 1516-1528, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30274538

RESUMO

A series of 2-arylbenzo[b]furan-appended 4-aminoquinazoline hybrids were prepared and evaluated for cytotoxicity in vitro against the human lung cancer (A549), colorectal adenocarcinoma (Caco-2), hepatocellular carcinoma (C3A) and cervical cancer (HeLa) cell lines. Compounds 10d and 10j exhibited significant cytotoxicity against the C3A and Caco-2 cell lines and induced apoptosis in these cell lines. Likewise, compounds 10d and 10e exhibited significant inhibitory activity towards epidermal growth factor receptor-tyrosine kinase phosphorylation (IC50 values of 29.3 nM and 31.1 nM, respectively) against Gefitinib (IC50 = 33.1 nM). Molecular docking of compounds 10 into EGFR-TK active site suggests that they bind to the region of EGFR like Gefitinib does. [Formula: see text].


Assuntos
Benzofuranos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Receptores ErbB/antagonistas & inibidores , Quinazolinas/química , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Benzofuranos/química , Sítios de Ligação , Linhagem Celular Tumoral , Inibidores Enzimáticos/síntese química , Receptores ErbB/metabolismo , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Fosforilação , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade
18.
Int J Mol Sci ; 19(8)2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065164

RESUMO

A series of indole-aminoquinazolines was prepared via amination of the 2-aryl-4-chloroquinazolines with the 7-amino-2-aryl-5-bromoindoles. It was then evaluated for cytotoxicity in vitro against human lung cancer (A549), epithelial colorectal adenocarcinoma (Caco-2), hepatocellular carcinoma (C3A), breast adenocarcinoma (MCF-7), and cervical cancer (HeLa) cells. A combination on the quinazoline and indole moieties of a 2-phenyl and 2-(4-fluorophenyl) rings in compound 4b; 2-(4-fluorophenyl) and 3-chlorophenyl rings in compound 4f; or the two 2-(4-fluorophenyl) rings in compound 4g, resulted in significant and moderate activity against the Caco-2 and C3A cell lines. The indole-aminoquinazoline hybrids compounds 4f and 4g induced apoptosis in Caco-2 and C3A cells, and were also found to exhibit moderate (IC50 = 52.5 nM) and significant (IC50 = 40.7 nM) inhibitory activity towards epidermal growth factor receptor (EGFR) against gefitinib (IC50 = 38.9 nM). Molecular docking suggests that 4a⁻h could bind to the ATP region of EGFR like erlotinib.


Assuntos
Aminoquinolinas/química , Antineoplásicos/farmacologia , Indóis/química , Simulação de Acoplamento Molecular , Células A549 , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Células CACO-2 , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Gefitinibe , Células HeLa , Humanos , Células MCF-7 , Estrutura Molecular , Quinazolinas/farmacologia , Relação Estrutura-Atividade
19.
J Enzyme Inhib Med Chem ; 32(1): 935-944, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28718672

RESUMO

A new series of quinazolinone compounds 16-34 incorporating isatin moieties was synthesized. The antitumor efficacy of the compounds against MDA-MB-231, a breast cancer cell line, and LOVO, a colon cancer cell line, was assessed. Compounds 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, and 34 displayed potent antitumor activity against MDA-MB-231 and LOVO cells (IC50: 10.38-38.67 µM and 9.91-15.77 µM, respectively); the comparative IC50 values for 5-fluorouracil and erlotinib in these cells lines were 70.28 µM, 22.24 µM and 15.23 µM, 25.31 µM respectively. The EGFR-TK assay and induction of apoptosis for compound 31 were investigated to assess its potential cytotoxic activity as a representative example of the novel synthesized compounds. At a concentration of 10 µM, compound 31 exhibited efficient inhibitory effect against EGFR-TK and induced apoptosis in MDA-MB-231 cells. Furthermore, a molecular docking study for compound 31 and erlotinib was performed to verify the binding mode toward the EGFR kinase enzyme, and showed a similar interaction as that with erlotinib alone. Graphical Abstract: Compound 31 showed potent antitumor activity and efficient inhibitory effect against EGFR-TK and induced apoptosis of MDA-MB-231 cells at a concentration of 10 µM.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Isatina/farmacologia , Simulação de Acoplamento Molecular , Quinazolinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/metabolismo , Humanos , Isatina/química , Estrutura Molecular , Quinazolinas/química , Relação Estrutura-Atividade
20.
Bioorg Med Chem ; 24(2): 179-90, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26706113

RESUMO

In present study, 4-anilinoquinazolines scaffold, arylurea and tertiary amine moiety were combined to design, synthesize gefitinib analogs and discover novel anticancer agents. A series of 4-anilinoquinazoline derivatives (1, 2, 3 and 4) bearing arylurea and tertiary amine moiety at its 6-position were synthesized. Their antiproliferative activities in vitro were evaluated via MTT assay against A431 cell and A549 cell. The SAR of the title compounds was discussed. The compounds 2d, 2i and 2j with potent antiproliferative activities were evaluated their inhibitory activity against EGFR-TK. Compound 2j displayed potent inhibitory activity against EGFR-TK. In addition, compound 2j, at 50 mg/kg, can completely inhibit cancer growth in established nude mouse A549 xenograft model in vivo. These results suggest that the 4-anilinoquinazoline derivatives bearing diarylurea and tertiary amino moiety at its 6-position can serve as anticancer agents and EGFR inhibitors.


Assuntos
Aminas/farmacologia , Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Ureia/farmacologia , Aminas/química , Compostos de Anilina/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinazolinas/química , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA