Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 843
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(9): e2213713120, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36812202

RESUMO

Indirect interactions via shared memory deposited on the field ("field memory") play an essential role in collective motions. Some motile species, such as ants and bacteria, use attractive pheromones to complete many tasks. Mimicking these kinds of collective behavior at the laboratory scale, we present a pheromone-based autonomous agent system with tunable interactions. In this system, colloidal particles leave phase-change trails reminiscent of the process of pheromone deposition by individual ants, and the trails attract other particles and themselves. To implement this, we combine two physical phenomena: the phase change of a Ge2Sb2Te5 (GST) substrate by self-propelled Janus particles (pheromone deposition) and the AC (alternating current) electroosmotic (ACEO) flow generated by this phase change (pheromone attraction). Laser irradiation causes the GST layer to crystalize locally beneath the Janus particles, owing to the lens heating effect. Under AC field application, the high conductivity of the crystalline trail causes a field concentration and generates ACEO flow, and we introduce this flow as an attractive interaction between the Janus particles and the crystalline trail. By changing the AC frequency and voltage, we can tune the attractive flow, i.e., the sensitivity of the Janus particles to the trail, and the isolated particles undergo diverse states of motion, from self-caging to directional motion. A swarm of Janus particles also shows different states of collective motion, including colony formation and line formation. This tunability enables a reconfigurable system driven by a pheromone-like memory field.

2.
Proc Natl Acad Sci U S A ; 119(27): e2200845119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759673

RESUMO

Gated protein channels act as rapid, reversible, and fully-closeable nanoscale valves to gate chemical transport across the cell membrane. Replicating or outperforming such a high-performance gating and valving function in artificial solid-state nanopores is considered an important yet unsolved challenge. Here we report a bioinspired rapid and reversible nanopore gating strategy based on controlled nanoparticle blockage. By using rigid or soft nanoparticles, we respectively achieve a trapping blockage gating mode with volatile memory where gating is realized by electrokinetically trapped nanoparticles near the pore and contact blockage gating modes with nonvolatile memory where gating is realized by a nanoparticle physically blocking the pore. This gating strategy can respond to an external voltage stimulus (∼200 mV) or pressure stimulus (∼1 atm) with response time down to milliseconds. In particular, when 1,2-diphytanoyl-sn-glycero-3-phosphocholine liposomes are used as the nanoparticles, the gating efficiency, defined as the extent of nanopore closing compared to the opening state, can reach 100%. We investigate the mechanisms for this nanoparticle-blockage-enabled nanopore gating and use it to demonstrate repeatable controlled chemical releasing via single nanopores. Because of the exceptional spatial and temporal control offered by this nanopore gating strategy, we expect it to find applications for drug delivery, biotic-abiotic interfacing, and neuromorphic computing.


Assuntos
Ativação do Canal Iônico , Nanopartículas , Nanoporos , Lipossomos , Fosfatidilcolinas/química
3.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983851

RESUMO

The viscoelectric effect concerns the increase in viscosity of a polar liquid in an electric field due to its interaction with the dipolar molecules and was first determined for polar organic liquids more than 80 y ago. For the case of water, however, the most common polar liquid, direct measurement of the viscoelectric effect is challenging and has not to date been carried out, despite its importance in a wide range of electrokinetic and flow effects. In consequence, estimates of its magnitude for water vary by more than three orders of magnitude. Here, we measure the viscoelectric effect in water directly using a surface force balance by measuring the dynamic approach of two molecularly smooth surfaces with a controlled, uniform electric field between them across highly purified water. As the water is squeezed out of the gap between the approaching surfaces, viscous damping dominates the approach dynamics; this is modulated by the viscoelectric effect under the uniform transverse electric field across the water, enabling its magnitude to be directly determined as a function of the field. We measured a value for this magnitude, which differs by one and by two orders of magnitude, respectively, from its highest and lowest previously estimated values.

4.
Nano Lett ; 24(33): 10305-10312, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39133749

RESUMO

Nanoparticle manipulation requires careful analysis of the forces at play. Unfortunately, traditional force measurement techniques based on the particle velocity do not provide sufficient resolution, while balancing approaches involving counteracting forces are often cumbersome. Here, we demonstrate that a nanoparticle dielectrophoretic response can be quantitatively studied by a straightforward visual delineation of the dielectrophoretic trapping volume. We reveal this volume by detecting the width of the region depleted of gold nanoparticles by the dielectrophoretic force. Comparison of the measured widths for various nanoparticle sizes with numerical simulations obtained by solving the particle-conservation equation shows excellent agreement, thus providing access to the particle physical properties, such as polarizability and size. These findings can be further extended to investigate various types of nano-objects, including bio- and molecular aggregates, and offer a robust characterization tool that can enhance the control of matter at the nanoscale.

5.
Small ; : e2404932, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39165075

RESUMO

The practical application of aqueous zinc (Zn) metal batteries (ZMBs) is hindered by the complicated hydrogen evolution, passivation reactions, and dendrite growth of Zn metal anodes. Here, an ion-pumping quasi-solid electrolyte (IPQSE) with high Zn2+ transport kinetics enabled by the electrokinetic phenomena to realize high-performance quasi-solid state Zn metal batteries (QSSZMBs) is reported. The IPQSE is prepared through the in situ ring-opening polymerization of tetramethylolmethane-tri-ß-aziridinylpropionate in the aqueous electrolyte. The porous polymer framework with high zeta potential provides the IPQSE with an electrokinetic ion-pumping feature enabled by the electrokinetic effects (electro-osmosis and electrokinetic surface conduction), which significantly accelerates the Zn2+ transport, reduces the concentration polarization and overcomes the diffusion-limited current. Moreover, the Zn2+ affinity of the polymer and hydrogen bonding interactions in the IPQSE changes the Zn2+ coordination environment and reduces the amount of free H2O, which lowers the H2O activity and inhibits H2O-induced side reactions. Consequently, the highly reversible and stable Zn metal anodes are achieved. The assembled QSSZMBs based on the IPQSE display excellent cycling stability with high capacity retention and Coulombic efficiency. The high-performance quasi-solid state Zn metal pouch cells are demonstrated, showing great promise for the practical application of the IPQSE.

6.
Electrophoresis ; 45(7-8): 676-686, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350722

RESUMO

Understanding electrokinetic transport in nanochannels and nanopores is essential for emerging biological and electrochemical applications. The viscoelectric effect is an important mechanism implicated in the increase of local viscosity due to the polarization of a solvent under a strong electric field. However, most analyses of the viscoelectric effect have been limited to numerical analyses. In this work, we present a set of analytical solutions applicable to the physical description of viscoelectric effects in nanochannel electrokinetic systems. To achieve such closed-form solutions, we employ the Debye-Hückel approximation of small diffuse charge layer potentials compared to the thermal potential. We analyze critical parameters, including electroosmotic flow profiles, electroosmotic mobility, flow rate, and channel conductance. We compare and benchmark our analytical solutions with published predictions from numerical models. Importantly, we leverage these analytical solutions to identify essential thermophysical and nondimensional parameters that govern the behavior of these systems. We identify scaling parameters and relations among surface charge density, ionic strength, and nanochannel height.


Assuntos
Eletro-Osmose , Eletro-Osmose/métodos , Viscosidade , Nanotecnologia/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Nanoporos , Concentração Osmolar , Nanoestruturas/química
7.
Electrophoresis ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509871

RESUMO

Tween 20 is frequently added to particle suspensions for reducing the particle-wall adhesion and particle-particle aggregation in microfluidic devices. However, the influences of Tween 20 on the fluid and particle behaviors have been largely ignored. We present in this work the first experimental study of the effects of Tween 20 addition on the electrokinetic transport of fluids and particles in a polydimethylsiloxane microchannel. We find that adding 0.1% v/v Tween 20 to a buffer solution can significantly reduce the electroosmotic mobility as well as the electrokinetic and electrophoretic mobilities of polystyrene particles and yeast cells. Further increasing the Tween 20 concentration within the range typically used in microfluidic applications continues reducing these mobility values, but at a smaller rate. Our finding suggests that Tween 20 should be used with care in electrokinetic microdevices when the flow rate or particle/cell throughput is an important parameter.

8.
Electrophoresis ; 45(11-12): 1065-1079, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38195843

RESUMO

Polymer beads, especially polystyrene particles, have been extensively used as model species in insulator-based dielectrophoresis (iDEP) studies. Their use in alternating current iDEP (AC-iDEP) is less explored; however, an assessment in the low-frequency regime (≤10 kHz) allows to link surface conduction effects with the surface properties of polymer particles. Here, we provide a case study for various experimental conditions assessing sub-micrometer polystyrene particles with AC-iDEP and link to accepted surface conduction theory to predict and experimentally verify the observed AC-iDEP trapping behavior based on apparent zeta potential and solution conductivity. We find excellent agreement with the theoretical predictions, but also the occurrence of concentration polarization electroosmotic flow under the studied conditions, which have the potential to confound acting dielectrophoresis conditions. Furthermore, we study a case relevant to the assessment of microplastics in human and animal body fluids by mimicking the protein adsorption of high abundant proteins in blood by coating polystyrene beads with bovine serum albumin, a highly abundant protein in blood. Theoretical predictions and experimental observations confirm a difference in observed AC-iDEP behavior between coated and non-coated particles, which might be exploited for future studies of microplastics in blood to assess their exposure to humans and animals.


Assuntos
Eletroforese , Tamanho da Partícula , Poliestirenos , Soroalbumina Bovina , Poliestirenos/química , Eletroforese/métodos , Soroalbumina Bovina/química , Humanos , Condutividade Elétrica , Animais , Eletro-Osmose , Microplásticos/química , Adsorção , Propriedades de Superfície , Bovinos
9.
Electrophoresis ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738699

RESUMO

The viability detection of microalgae with the electrokinetic (EK) technique shows vast applications in the biology and maritime industry. However, due to the slight variations in the EK properties between alive and dead microalgae cells, the accuracy and practicability of this technique is limited. In this paper, the light illumination pretreatment was conducted to modify the EK velocity of microalgae for enhancing the EK difference. The effects of the illumination time and light color on the EK velocities of Chlorella vulgaris and Isochrysis galbana were systematically measured, and the EK differences between alive and dead cells were calculated and compared. The results indicate that under light illumination, the photosynthesis of the alive cells leads to the amplification of the zeta potential, leading toward increase in the EK difference along with the illumination time. By using light with different color spectra to treat the microalgae, it was found that the EK difference changes with the light color according to the following order: white light > red light > blue light > green light. The difference in EK potential with exposure to white light treatment surpasses over 10-fold in comparison to those without such treatment. The light pretreatment technique, as illustrated in this study, offers an advantageous strategy to enhance the EK difference between living and dead cells, proving beneficial in the field of microalgae biotechnology.

10.
Electrophoresis ; 45(13-14): 1252-1264, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38775263

RESUMO

Genetic factors, diet, lifestyle, and other factors lead to various complications in the body, such as obesity and other chronic diseases. The inflammatory state caused by excessive accumulation of body fat affects the pathways related to the control of glycemic homeostasis, leading to a high demand for insulin, to subsequent failure of stressed ß cells, and development of type 2 diabetes mellitus (T2DM). The study of new endocrine signalers, such as bile acids (BAs), becomes necessary as it allows the development of alternatives for T2DM treatment. In this work, a methodology was developed to quantify tauroursodeoxycholic BA (TUDCA) in liver cells of the HepG2 strain treated in hyperlipidic medium. This BA helps to improve insulin clearance by increasing the expression of the insulin-degrading enzyme, restoring sensitivity to this hormone, and making it viable for treating T2DM. Herein, a targeted metabolomic method for TUDCA determination in extracellular medium of hepatocyte matrices by micellar electrokinetic chromatography-UV was optimized, validated, and applied. The optimized background electrolyte was composed of 40 mmol/L sodium cholate and 30 mmol/L sodium tetraborate at pH 9.0. The following figures of merit were evaluated: linearity, limit of quantification, limit of detection, accuracy, and precision. Data obtained with the validated electrophoretic method showed a self-stimulation of TUDCA production in media supplemented only with BA. On the other hand, TUDCA concentration was reduced in the hyperlipidic medium. This suggests that, in these media, the effect of TUDCA is reduced, such as self-stimulated production and consequent regulation of glycemic homeostasis. Therefore, the results reinforce the need for investigating TUDCA as a potential T2DM biomarker as well as its use to treat several comorbidities, such as obesity and diabetes mellitus.


Assuntos
Cromatografia Capilar Eletrocinética Micelar , Diabetes Mellitus Tipo 2 , Obesidade , Ácido Tauroquenodesoxicólico , Ácido Tauroquenodesoxicólico/farmacologia , Ácido Tauroquenodesoxicólico/análise , Ácido Tauroquenodesoxicólico/metabolismo , Humanos , Obesidade/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Hep G2 , Cromatografia Capilar Eletrocinética Micelar/métodos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Reprodutibilidade dos Testes , Metabolômica/métodos , Modelos Lineares , Limite de Detecção
11.
Electrophoresis ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39329504

RESUMO

A method was developed for studying mass transfer kinetics at lipid bilayers of liposomes. Elution peaks of coumarin were measured by liposome electrokinetic chromatography (LEKC). Four types of phospholipids having different alkyl chains were used for preparing liposomes, which were used as pseudo-stationary phases in LEKC systems. Rate constants of permeation across lipid bilayers of liposomes or of adsorption at lipid membranes were determined by analyzing the first absolute and second central moments of the elution peaks measured by LEKC. The rate constants of permeation or adsorption tend to decrease with an increase in the carbon number of the alkyl chains of phospholipids. It was demonstrated that the moment analysis of elution peak profiles measured by LEKC is effective for determining lipid membrane permeability or adsorption kinetics. Compared with other conventional techniques, the method has some advantages for studying mass transfer kinetics at lipid bilayers. Solute permeation across or solute adsorption at real lipid bilayers of liposomes is analyzed. The principle of the method is the analysis of separation behavior in LEKC, which is different from that of the other ones. It is expected that the method contributes to the kinetic study of mass transfer at lipid bilayers from various perspectives.

12.
Environ Res ; 248: 118338, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38316390

RESUMO

The study investigated the influences of pure H2 and O2 introduction, simulating gases produced from the electrokinetic-enhanced bioremediation (EK-Bio), on TCE degradation, and the dynamic changes of the indigenous microbial communities. The dissolved hydrogen (DH) and oxygen (DO) concentrations ranged from 0.2 to 0.7 mg/L and 2.6 to 6.6 mg/L, respectively. The biological analysis was conducted by 16S rRNA sequencing and functional gene analyses. The results showed that the H2 introduction enhanced TCE degradation, causing a 90.4% TCE removal in the first 4 weeks, and 131.1 µM was reduced eventually. Accordingly, cis-dichloroethylene (cis-DCE) was produced as the only product. The following three ways should be responsible for this promoted TCE degradation. Firstly, the high DH rapidly reduced the oxidation-reduction potential (ORP) value to around -500 mV, beneficial to TCE microbial dechlorination. Secondly, the high DH significantly changed the community and promoted the enrichment of TCE anaerobic dechlorinators, such as Sulfuricurvum, Sulfurospirillum, Shewanella, Geobacter, and Desulfitobacterium, and increased the abundance of dechlorination gene pceA. Thirdly, the high DH promoted preferential TCE dechlorination and subsequent sulfate reduction. However, TCE bio-remediation did not occur in a high DO environment due to the reduced aerobic function or lack of functional bacteria or co-metabolic substrate. The competitive dissolved organic carbon (DOC) consumption and unfriendly microbe-microbe interactions also interpreted the non-degradation of TCE in the high DO environment. These results provided evidence for the mechanism of EK-Bio. Providing anaerobic obligate dechlorinators, and aerobic metabolic bacteria around the electrochemical cathodes and anodes, respectively, or co-metabolic substrates to the anode can be feasible methods to promote remediation of TCE-contaminated shallow aquifer under EK-Bio technology.


Assuntos
Tricloroetileno , Biodegradação Ambiental , Tricloroetileno/análise , Tricloroetileno/metabolismo , RNA Ribossômico 16S , Bactérias/metabolismo , Hidrogênio/análise , Hidrogênio/metabolismo , Oxigênio/análise , Oxigênio/metabolismo
13.
Environ Res ; 241: 117504, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38173247

RESUMO

Owing to the high risk of human exposure to arsenic-contaminated soil, reducing its toxicity is essential. This study used the electrokinetic (EK) process with iron-rich electrodes to synchronously achieve the accumulate, stabilize and detoxify soil arsenic. Changes in arsenic valence, leaching toxicity, and microbial communities related to toxicity were comprehensively considered. The results demonstrated that arsenic was mainly transported toward the anode and accumulated by electromigration owing to the negatively charged arsenic anions under EK conditions. The cathode approaching effectively promote arsenic movement to the anode; the largest As(T) transportation rate of 30.61% was achieved near the cathode (S4). The transportation ratio of As(III) was 1.84 times more than that of As(V). The As(III) content and leaching toxicity of soil arsenic in all treatments decreased after applying the EK process. In particular, the anode approaching effectively elevated the average ratios of soil As(III) oxidation and stabilization to 37.88% and 61.73%, respectively. Correspondingly, the total phospholipid fatty acid content increased substantially after EK treatment and showed a pollution stress elimination effect. The electrokinetic effect can essentially cause highly active and easily migrated arsenic to accumulate near the anode and middle sections. The electric field mediated iron mineralization and stabilized arsenic by oxidizing As(III) and reacting with newly formed iron-rich phases (S). Meanwhile, the electric field regulated the form of soil calcium from CaCO3 to CaSO4 and caused calcium-bound arsenic to change to a more stable form. According to these results, in situ stabilization and detoxification of arsenic-contaminated soil can be realized by the EK process, avoiding stabilizer addition and excavation.


Assuntos
Arsênio , Recuperação e Remediação Ambiental , Poluentes do Solo , Humanos , Cálcio , Poluentes do Solo/análise , Ferro , Solo
14.
Chirality ; 36(2): e23640, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38384157

RESUMO

Propranolol is currently considered as an emerging contaminant in water bodies. In this study, R- and S-propranolol were determined in river samples by electrokinetic chromatography (EKC) using nanodiamonds (NDs) and human serum albumin (HSA) as a pseudo-stationary phase in order to achieve enantioseparation. Previously, river samples were preconcentrated using a column filled with Amberlite® IR-120 and Dowex® 50WX8 resins. The setting up of influential factors such as temperature, voltage, pH, and HSA and NDs concentration is accurately described along this manuscript. A multivariate study and optimization was carried out to obtain the enantioseparation of propranolol (Rs = 2.91), which was reached under the following experimental conditions: voltage of 16 kV, temperature of 16°C, phosphate buffer pH 9.5, NDs of 0.20%, and HSA of 15 µmol l-1 . The recoveries of analytes under optimal conditions were higher than 98%. The limits of detection were 0.85 µg l-1 for R- and S-propranolol. The method was applied to real samples, and the obtained results in three different water sources studied were 1.02, 0.59, and 0.30 µg l-1 for the R-enantiomer and 0.99, 0.54, and 0.28 µg l-1 for the S-enantiomer. The accuracy of the proposed methodology (including bias and precision) has allowed us to propose it as a successful tool for the control of water quality.


Assuntos
Cromatografia Capilar Eletrocinética Micelar , Nanodiamantes , Humanos , Propranolol , Albumina Sérica Humana , Rios , Estereoisomerismo , Cromatografia Capilar Eletrocinética Micelar/métodos
15.
J Sep Sci ; 47(3): e2300921, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356221

RESUMO

Glutamine is the most abundant free proteinogenic α-amino acid. It is naturally produced in the organism and acts as a precursor for the synthesis of different biologically important molecules (such as proteins or nucleotides). However, under stressful conditions, the organism is unable to produce it in enough amounts to function properly. Thus, glutamine (Gln)-based supplements have become increasingly popular over the last decade. Since legal regulations establish that amino acid-based dietary supplements must contain only the L-enantiomer and not the racemate, adequate chiral methodologies are required to achieve their quality control. In this work, an analytical methodology based on the use of micellar electrokinetic chromatography is proposed for the rapid enantiomeric determination of DL-Gln in dietary supplements. Using (+)-1-(9-fluorenyl)-ethyl chloroformate as a derivatizing agent and ammonium perfluorooctanoate as separation medium, the Gln diastereoisomers formed under optimal conditions were separated in 8 min with a resolution of 2.8. The analytical characteristics of the method were evaluated in terms of linearity, precision, accuracy, and limits of detection/quantitation, and they were found appropriate for the analysis of L-Gln-based dietary supplements.


Assuntos
Cromatografia Capilar Eletrocinética Micelar , Glutamina , Cromatografia/métodos , Aminoácidos/química , Suplementos Nutricionais/análise , Estereoisomerismo , Cromatografia Capilar Eletrocinética Micelar/métodos
16.
Biomed Chromatogr ; 38(7): e5876, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38600635

RESUMO

The two-step preconcentration technique consisting of large-volume sample stacking (LVSS) and micelle to solvent stacking (MSS) in cyclodextrin-modified electrokinetic chromatography (CDEKC) was developed for the analysis of five cationic alkaloids in complex Chinese herbal prescriptions. Relevant parameters affecting separation and stacking performance were optimized separately. Under the optimal LVSS-MSS-CDEKC conditions, less analysis time and organic solvent were required, and the enhancement factors of analytes ranged from 12 to 15 compared with the normal CDEKC separation mode. Further, all validation results demonstrated good applicability and multiple alkaloids (epiberberine, dehydrocorydaline, jatrorrhizine, coptisine and berberine) in Yangxinshi tablet (YXST) have been simultaneously determined. This approach presents powerful potential for the determination of multiple components in complex preparations of Chinese medicine.


Assuntos
Alcaloides , Cromatografia Capilar Eletrocinética Micelar , Medicamentos de Ervas Chinesas , Comprimidos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Cromatografia Capilar Eletrocinética Micelar/métodos , Comprimidos/química , Alcaloides/análise , Alcaloides/química , Reprodutibilidade dos Testes , Micelas , Modelos Lineares , Ciclodextrinas/química , Limite de Detecção
17.
Int J Phytoremediation ; : 1-12, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120257

RESUMO

Mercury (Hg) pollution in Ghana through mining has become a serious environmental challenge. This study investigates the potential of Cirsium arvense to photostabilize Hg using electrokinetic current with or without an iodide solution in gold mine tailings heavily contaminated through mining activities in southern Ghana. An initial Hg concentration of 9.60 mg/kg using cold vapor atomic absorption spectrometry (CVAAS) was determined. The biological absorption coefficient, bioconcentration factor, and translocation factor of Hg have been presented. Cirsium arvense therefore had a higher bioconcentration factor (BCF) of 2.6-5.15 mg/kg, and a transfer factor (TF) of 0.24-0.36 indicating a higher efficiency for phytostabilization. Both the rate and time of extractions of Hg from the tailings by Cirsium arvense are efficiently improved in the combined electric current and iodide treatment. Plant and electric current combined treatment and plant and iodide combined treatment had only 60 and 50% phytostabilization rates, respectively. The combined plant, iodide, and electric current treatment has proven to be superior with about >90% Hg removal rate. Therefore, the combined plant, iodide, and electric current treatment resulted in a higher Hg removal efficiency by Cirsium arvense in a shorter period due to higher solubilization rate and electromigration effects on Hg species.

18.
Sensors (Basel) ; 24(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38894304

RESUMO

The streaming potential effect has a wide range of applications in geophysics. The core streaming potential experiment requires that there is no external circuit at both ends of the core, but a measurement circuit must be introduced to measure the voltage between both ends of the core which will cause an external circuit. In order to analyze the effect of measurement circuits on the streaming potential experiment, this paper proposes a core current source model, i.e., the core in the streaming potential experiment is regarded as a circuit composed of a current source whose output current is equal to the seepage current and the core resistance. By changing the resistance value of the external circuit, it is found that the seepage current is not affected by the external resistance but by the excitation pressure. Experiments on the streaming potential of 20 sandstone cores under distilled water, 0.01 mol/L, 0.02 mol/L, 0.05 mol/L, 0.1 mol/L, 0.2 mol/L, 0.4 mol/L, and 0.6 mol/L sodium chloride solutions revealed that the effect of the external circuit on the streaming potential signal increased with decreasing mineralization. For distilled water-saturated sandstone cores, the effect of the external circuit was about 2%.

19.
J Environ Manage ; 370: 122542, 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39312876

RESUMO

Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are emerging contaminants that widely exist in the environment. Effective reduction of ARB and ARGs from soil and water could be achieved by electrokinetic remediation (EKR) technology. In water, hydroxyl radicals (·OH) are proved to play a major role in the EKR process; while the reduction mechanism of ARB and ARGs is still unclear in soil. In this study, different concentrations of hydroxyl radical scavengers (salicylic acid) were added to the EKR system to explore the possible role of ·OH in the reduction of ARB and ARGs. The results showed that generally, ·OH played a more vital role in the reduction of ARB (65.24-72.46%) compared to the reduction of total cultivable bacteria (57.50%). And ·OH contributed to a higher reduction of sul genes (60.94%) compared to tet genes (47.71%) and integrons (36.02%). It was found that the abundance of Gram-negative bacteria (Chloroflexi, Acidobacteria and norank_c_Acidobacteria) was significantly reduced, and the correlation between norank_f_Gemmatimonadaceae and sul1 was weakened in the presence of ·OH. Correlation analysis indicated that the abundance of ARGs (especially sul1) was closely related to the Gram-negative bacteria (Proteobacteria, Acidobacteria, and Gemmatimonadetes) in the soil EKR treatment. Moreover, changes in bacterial community structure affected the abundance of ARB and ARGs indirectly. Overall, this study revealed the reduction mechanism of ARB and ARGs by ·OH in the soil EKR system for the first time. These findings provide valuable support for soil remediation efforts focusing on controlling antibiotic resistance.

20.
J Environ Manage ; 370: 122611, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39326082

RESUMO

The dredged soil obtained from maintenance activities of water bodies has emerged as a potential alternate fill material for infrastructure development. However, dredged soil requires stabilization due to high initial water content, low shear strength and high compressibility. Among several methods, stabilization of dredged soil by using electrokinetics is one of the effective ground improvement techniques that uses electric field to dewater and strengthen the soil. In this context, a series of experiments were conducted on dredged soil by using a combination of electrokinetic treatment with and without 6 kPa seating pressure (viz., low surcharge). A customized and patented electrokinetic dewatering (EKD) test set up was used for the three-dimensional electrokinetic treatment of soil. The potential difference (in the range of 6 V-48 V) within the soil was achieved by inserting stainless steel pipes of 21.4 mm outer diameter, 1.2 mm thickness, and 170 mm length. Two control tests (with and without seating pressure of 6 kPa) also were performed to understand the effectiveness of EKD. From the study, up to 1057% and 427% increase in dewatering was noted in EKD tests due to application of 24 V (optimum voltage noted in EKD tests) as compared to control tests, without and with seating pressure, respectively. Further, seating pressure with EKD resulted in effective control of crack formation in the dredged soil and uniform improvement in shear strength along the depth (up to 95 kPa). The combination of low surcharge with EKD, adopted in the study, is also expected to yield lower differential settlement, and hence better performance of geotechnical structures built on improved dredged soil. The novel 3-dimensional patented EKD test setup with Arduino-programmed automatic water pumping enables collecting and accurately measuring dewatered effluent volume, performing cone penetration tests on undisturbed soil, and collecting soil samples for determination of water content/physiochemical properties from different locations. Overall, the developed EKD setup can be utilized for evaluating the effectiveness and adopting real-time progress management for EKD or other ground improvement methods, and remediation of sludge, mine tailings, dredged sediments, and contaminated soils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA