RESUMO
Escherichia coli ST131 is a multidrug-resistant lineage associated with the global spread of extended-spectrum ß-lactamase-producing organisms. Particularly, ST131 clade C1 is the most predominant clade in Japan, harboring blaCTX-M-14 at a high frequency. However, the process of resistance gene acquisition and spread remains unclear. Here, we performed whole-genome sequencing of 19 E. coli strains belonging to 12 STs and 12 fimH types collected between 1997 and 2016. Additionally, we analyzed the full-length genome sequences of 96 ST131-H30 clade C0 and C1 strains, including those obtained from this study and those registered in public databases, to understand how ST131 clade C1 acquired and spread blaCTX-M-14. We detected conjugative IncFII plasmids and IncB/O/K/Z plasmids carrying blaCTX-M-14 in diverse genetic lineages of E. coli strains from the 1990s to the 2010s, suggesting that these plasmids played an important role in the spread of blaCTX-M-14. Molecular phylogenetic and molecular clock analyses of the 96 ST131-H30 clade C0 and C1 strains identified 8 subclades. Strains harboring blaCTX-M-14 were clustered in subclades 4 and 5, and it was inferred that clade C1 acquired blaCTX-M-14 around 1993. All 34 strains belonging to subclade 5 possessed blaCTX-M-14 with ISEcp1 upstream at the same chromosomal position, indicating their common ancestor acquired blaCTX-M-14 in a single ISEcp1-mediated transposition event during the early formation of the subclade around 1999. Therefore, both the horizontal transfer of plasmids carrying blaCTX-M-14 to diverse genetic lineages and chromosomal integration in the predominant genetic lineage have contributed to the spread of blaCTX-M-14.
Assuntos
Farmacorresistência Bacteriana Múltipla , Escherichia coli , beta-Lactamases , Humanos , Antibacterianos/farmacologia , beta-Lactamases/genética , Cromossomos Bacterianos/genética , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Japão , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos/genética , Sequenciamento Completo do GenomaRESUMO
BACKGROUND: Production of extended-spectrum ß-lactamases (ESBLs) is a common resistance mechanism in Enterobacteriaceae, leading to serious hospital-acquired infections. This study aimed to assess phenotypic, phylogenetic, and antibiotic resistance patterns among ESBL-producing Escherichia coli isolates recovered from two rural tertiary hospitals in Thailand. RESULTS: Among 467 Enterobacteriaceae isolates, E. coli was the most prevalent 356 (76.2%) followed by K. pneumoniae 88 (18.8%), K. aerogenes 8 (1.7%), K. variicola 3 (0.6%), K. quasipneumoniae 1 (0.2%%), K. oxytoca 1 (0.2%), and unidentified 9 (1.9%). Of the 202 cephalosporin-resistant E. coli isolates, 195 (96.5%) were ESBL-producing and 7 (3.5%) were non-ESBL-producing. Clermont typing revealed that phylogroup B2 was predominant (43.3%), followed by phylogroups F (11.3%), D (10.3%), C (9.7%), and A (8.7%). Among the beta-lactamase-encoding genes, blaCTX-M (83.6%) and blaTEM (81.0%) were widely found among the isolates, and blaCTX-M-1 (60.7%) was the most common among the five blaCTX-M subgroups detected. The predominant ESBL was blaCTX-M-15 (58.3%). All isolates were resistant to cefotaxime (100%) and ampicillin (100%), followed by ciprofloxacin (91.3â%), ceftazidime (72.8â%), and tetracycline (64.1%). CONCLUSION: Our findings show that phylogroup B2 was the most prevalent phylogroup among ESBL-producing E. coli isolates in northeastern Thailand. Notably, the isolates mostly carried the blaCTX-M gene(s).
Assuntos
Antibacterianos , Infecções por Escherichia coli , Escherichia coli , beta-Lactamases , Humanos , Antibacterianos/farmacologia , beta-Lactamases/genética , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/classificação , Escherichia coli/enzimologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia , Testes de Sensibilidade Microbiana , Filogenia , Prevalência , Centros de Atenção Terciária/estatística & dados numéricos , Tailândia/epidemiologiaRESUMO
BACKGROUND: Urinary tract infections (UTIs) are the second most common infection, affecting 150 million people each year worldwide. Enterobacteriaceae species expressing extended-spectrum ß-lactamases (ESBLs) are on the rise across the globe and are becoming a severe problem in the therapeutic management of clinical cases of urinary tract infection. Knowledge of the prevalence and antibiogram profile of such isolates is essential to develop an appropriate treatment methodology. This study aimed to investigate the prevalence of Enterobacteriaceae isolates exhibiting ESBL and their selective oral antibiogram profile at the district general hospital, Polonnaruwa. RESULTS: A total of 4386 urine specimens received to the Microbiology Laboratory during the study period. Among them, 1081 (24.6%) showed positive results for urine culture while 200/1081 specimens showed ESBL isolates. Out of the selected 200 specimen's majority (67.5%) of samples received from the In-Patient Department. There were 200 patients and reported that 115 (57.5%) were females and 85 (42.5%) were males. The majority (51%) of the patients belong to the age group of 55-74 years. Among the ESBLs positive specimens, the majority 74.5% (n = 149) identified organisms were E. coli followed by Klebsiella spp.17.5% (n = 35), Enterobacteriaceae 7% (n = 14) and only1% (n = 2) isolate of Proteus spp. Mecillinam (87.92%) and Nitrofurantoin (83.2%) showed higher effectiveness against E. coli. Nitrofurantoin showed the highest effectiveness against Klebsiella spp. (40%), other Enterobacteriaceae spp. (100%). Proteus spp. showed 100% effectiveness and resistance respectively against Ciprofloxacin, Cotrimoxazole and Nitrofurantoin. CONCLUSION: The most predominant ESBLs producing uro-pathogen was the E. coli in the study setting and E. coli had higher sensitivity rate against Mecillinam. Among currently used oral antibiotics Nitrofurantoin was the best choice for UTIs caused by ESBL producers.
Assuntos
Antibacterianos , Infecções por Enterobacteriaceae , Enterobacteriaceae , Testes de Sensibilidade Microbiana , Infecções Urinárias , beta-Lactamases , Humanos , Infecções Urinárias/microbiologia , Infecções Urinárias/tratamento farmacológico , Feminino , Pessoa de Meia-Idade , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Masculino , beta-Lactamases/metabolismo , Idoso , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/enzimologia , Enterobacteriaceae/isolamento & purificação , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Adulto , Adulto Jovem , Idoso de 80 Anos ou mais , Adolescente , Nitrofurantoína/farmacologia , Nitrofurantoína/uso terapêutico , Prevalência , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Escherichia coli/enzimologiaRESUMO
BACKGROUND: ESBL-producing Escherichia coli pose a growing health risk in community and healthcare settings. We investigated the resistome, virulome, mobilome, and genetic relatedness of multidrug-resistant (MDR) E. coli isolates from patients and their environment in a Ghanaian teaching hospital. MATERIALS AND METHODS: Twenty-three MDR ESBL-producing or carbapenem-resistant E. coli isolates from a collection of MDR Gram-negative bacteria (GNB) from patients and environments were selected for genomic analyses. Whole genome sequencing and bioinformatics tools were used to analyze genomic characteristics and phylogeny. RESULTS: The prevalence and incidence of rectal carriage of ESBL E. coli among patients were 13.65% and 11.32% respectively. The ß-lactamase genes, blaTEM-1B (10 isolates) and blaCTX-M-15 (12 isolates) were commonly associated with IncFIB plasmid replicons and co-occurred with aminoglycoside, macrolide, and sulfamethoxazole/trimethoprim resistance. Insertion sequences, transposons, and class I integrons were found with blaCTX-M-15. Carriage and environmental isolates carried multiple virulence genes, with terC being the most prevalent in 21 isolates. Seventeen sequence types (STs) were identified, including a novel ST (ST13846). Phylogenetic analysis grouped the isolates into four main clusters, with one outlier. High genetic relatedness was observed between two carriage isolates of ST940 and between a carriage isolate and an environmental isolate of ST648. Isolates with different STs, collected at different times and locations, also showed genetic similarities. CONCLUSION: We identified ESBL-producing E. coli with diverse genomic characteristics circulating in different hospital directorates. Clonal relatedness was observed among isolates from patients and the environment, as well as between different patients, suggesting transmission within and between sources.
Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli , Escherichia coli , Hospitais de Ensino , Filogenia , beta-Lactamases , Humanos , Gana/epidemiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , beta-Lactamases/genética , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia , Antibacterianos/farmacologia , Sequenciamento Completo do Genoma , Plasmídeos/genética , Testes de Sensibilidade Microbiana , Genoma Bacteriano/genética , Genômica , Fatores de Virulência/genética , Masculino , Feminino , AdultoRESUMO
Dumpsites generate leachates containing bacteria that may carry antibiotic resistance genes, such as extended spectrum ß-lactamase (ESBL). However, the contribution of dumpsite leachates in the environmental spread of ESBL genes has not been investigated in greater detail. This study aimed to quantify the impact of Ajakanga dumpsite leachate on the spread of ESBL genes through surface water. The susceptibility of Escherichia coli isolated from dumpsite leachate and the accompanying surface water to selected antibiotics was assessed by the standardized disc diffusion method. The isolates were evaluated for phenotypic ESBL production using the double disc synergy test (DDST). The detection of ESBL genes in the isolates was carried out using a primer-specific polymerase chain reaction (PCR). Escherichia coli isolates from leachate (n = 26/32) and surface water (n = 9/12) expressed ESBL phenotype. The ESBL-producing isolates showed the highest level of resistance to the 3rd generation cephalosporin antibiotics: cefotaxime (100%), cefpodoxime (97%), ceftazidime (97%), with low resistance observed to imipenem (6%) and azithromycin (3%). All the isolates were multidrug-resistant, showing resistance to three or more classes of antibiotics. All the ESBL-producing E. coli obtained carried blaCTX-M, 21/35 (60%) carried blaTEM while none of the isolates bore blaSHV. This study found that ESBL-producing Escherichia coli from dumpsite leachate and nearby surface water had identical resistance signatures indicating the relatedness of the isolates, and that dumpsite leachate could contribute to the transfer of ESBL-producing bacteria and their genes to receiving surface water. This study has necessitated the need for a review of the guidelines and operational procedures of dumpsites to forestall a potential public health challenge.
Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Testes de Sensibilidade Microbiana , beta-Lactamases , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Resíduos Sólidos , Microbiologia da ÁguaRESUMO
BACKGROUND & AIMS: The alarming rise of antibiotic resistance presents a substantial and worrisome issue within the context of biliary obstruction, specifically in the treatment of cholangitis. This abovementioned scenario underscores the critical importance of addressing extended spectrum ß-lactamase (ESBL) producers in the biliary system to adequately tackle cholangitis using third-generation cephalosporins. Hence, we aimed to determine the frequency of ESBL and carbapenemases among biliary Escherichia coli and Klebsiella pneumoniae isolated from patients with biliary obstruction. METHODS: In this cross-sectional study, bile samples were collected via aspiration from patients diagnosed with biliary obstruction during the endoscopic retrograde cholangiopancreatography (ERCP) procedure. Subsequent culturing of these samples was performed, followed by phenotypic and molecular assessments for the detection of ESBL- and carbapenemase-producing strains of E. coli and K. pneumoniae. RESULTS: Approximately 23.5 % of patients with biliary obstruction harbored biliary ESBL-producers, with the majority (70.2 %) being diagnosed with cholangitis. Moreover, 2.1 % of patients had biliary carbapenemase-producing K. pneumoniae strains. Molecular analysis confirmed the high prevalence of blaCTX-M and blaTEM in E. coli, and blaTEM and blaSHV in K. pneumoniae. Additionally, the presence of biliary K. pneumoniae harboring blaKPC, blaNDM, and blaIMP was observed. CONCLUSION: Our study reveals a noteworthy observation that over half of patients experiencing biliary obstruction harbor ESBL-producing bacteria in their biliary tract. Notably, we discovered a significant link between ESBL producers and the risk of cholangitis. These findings raise important concerns regarding the suitability of employing third-generation cephalosporins as initial treatment for cholangitis and other similar biliary infections.
RESUMO
BACKGROUND: Pulmonary abscesses resulting from epididymitis caused by extended spectrum ß-lactamase-producing hypervirulent Klebsiella pneumoniae (ESBL-hvKp) in a nondiabetic patient are extremely uncommon. The infection caused by this disseminated drug-resistant bacteria, which is generally considered an intractable case, poses a potential challenge in clinical practice. CASE PRESENTATION: In this case report, we present the clinical course of a 71-year-old male patient with epididymitis, who subsequently developed cough and dyspnea following anti-infection treatment. Imaging examinations revealed severe pneumonia and pulmonary abscess. The infection of ESBL-hvKp in the epididymis led to bacteremia and subsequent lung lesions. Due to poor response to anti-infection therapy, the patient required an extended duration of anti-infection treatment and ultimately chosed to discontinue treatment. CONCLUSIONS: Acute epididymitis caused by ESBL-hvKP infection can result in the spread of the infection through the bloodstream, leading to severe pneumonia and lung abscess. Given the critical condition of the patient, even with active anti-infection treatment, there is a risk of treatment failure or potentially fatal outcomes.
Assuntos
Epididimite , Infecções por Klebsiella , Klebsiella pneumoniae , Abscesso Pulmonar , beta-Lactamases , Humanos , Masculino , Klebsiella pneumoniae/patogenicidade , Idoso , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , beta-Lactamases/metabolismo , Epididimite/microbiologia , Epididimite/tratamento farmacológico , Abscesso Pulmonar/microbiologia , Abscesso Pulmonar/tratamento farmacológico , Antibacterianos/uso terapêuticoRESUMO
BACKGROUND: Infections resulting from multidrug-resistant Enterobacterales (MDR-E) pose a growing global threat, presenting challenges in treatment and contributing significantly to morbidity and mortality rates. The main objective of this study was to characterize phenotypically and genetically extended-spectrum ß-lactamase- and carbapenemase- producing Enterobacterales (ESBLE and CPE respectively) isolated from clinical samples in the West Bank, Palestine. METHODS: A cross sectional study was conducted in October 2023 on clinical bacterial isolates collected from five governmental hospitals in the West Bank, Palestine. The isolates obtained from the microbiology laboratories of the participating hospitals, underwent identification and antibiotic susceptibility testing (AST) using the VITEK® 2 Compact system. ESBL production was determined by the Vitek2 Compact system. A modified carbapenem inactivation method (mCIM) was employed to identify carbapenemase-producing Enterobacterales (CPE). Resistance genes were detected by real-time PCR. RESULTS: Out of the total 1380 collected isolates, we randomly selected 600 isolates for analysis. Our analysis indicated that 287 (47.83%) were extended-spectrum beta-lactamase producers (ESBLE), and 102 (17%) as carbapenem-resistant Enterobacterales (CRE) isolates. A total of 424 isolates (70.67%) were identified as multidrug-resistant Enterobacterales (MDRE). The most prevalent ESBL species were K. pneumoniae (n = 124; 43.2%), E. coli (n = 119; 41.5%) and E. cloacae (n = 31; 10.8%). Among the CRE isolates, 85 (83.33%) were carbapenemase-producing Enterobacterales (CPE). The most frequent CRE species were K. pneumoniae (n = 63; 61.7%), E. coli (n = 25; 24.5%) and E. cloacae (n = 13; 12.8%). Additionally, 47 (7.83%) isolates exhibited resistance to colistin (CT), with 38 (37.62%) being CT-resistant CRE and 9 (3.14%) being CT-resistant ESBLE while sensitive to carbapenems. We noticed that 11 isolates (6 Klebsiella pneumoniae and 5 Enterobacter cloacae complex) demonstrated sensitivity to carbapenems by phenotype but carried silent CPE genes (1 blaOXA48, and 6 blaNDM, 4 blaOXA48, blaNDM). ESBL-producing Enterobacterales strains exhibited varied resistance patterns across different antibiotic classes. E. coli isolates showed notable 48% resistance to trimethoprim/sulfamethoxazole. K. pneumoniae isolates displayed a significant resistance to trimethoprim/sulfamethoxazole, nitrofurantoin, and fosfomycin (54%, 90%, and 70% respectively). E. cloacae isolates showed complete resistance to nitrofurantoin and fosfomycin. P. mirabilis isolates exhibited high resistance against fluoroquinolones (83%), and complete resistance to trimethoprim/sulfamethoxazole, nitrofurantoin and fosfomycin. CONCLUSION: This study showed the high burden of the ESBLE and CRE among the samples collected from the participating hospitals. The most common species were K. pneumoniae and E. coli. There was a high prevalence of blaCTXm. Adopting both conventional and molecular techniques is essential for better surveillance of the emergence and spread of antimicrobial-resistant Enterobacterales infections in Palestine.
Assuntos
Antibacterianos , Proteínas de Bactérias , Farmacorresistência Bacteriana Múltipla , Infecções por Enterobacteriaceae , Enterobacteriaceae , Testes de Sensibilidade Microbiana , beta-Lactamases , Humanos , beta-Lactamases/genética , Estudos Transversais , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/epidemiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , Oriente Médio/epidemiologia , Feminino , Adulto , Enterobacteriaceae/genética , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/enzimologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Adulto Jovem , Adolescente , Idoso , Criança , Carbapenêmicos/farmacologia , Pré-EscolarRESUMO
AIMS: The purpose of this work was to study extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli (ESBL-EC) in freshwaters, hospital effluents, and wastewaters during two sampling campaigns in 2021. METHODS AND RESULTS: Water sampling was performed at 24 stations in the Ourthe watershed in Belgium. A total of 644 ESBL (n = 642) and AmpC (n = 2) E. coli strains were isolated. Disk-diffusion assays were performed following the EUCAST's recommendations. All strains were tested for the presence of blaCTX-M-1, blaCTX-M-2, and blaCTX-M-9 gene groups by PCR. Genes belonging to blaCTX-M-1 and blaCTX-M-9 groups were detected, respectively, in 73.6% and 14.9% of the strains. No blaCTX-M-2 group's gene was found. A subset of strains (n = 40) was selected for whole genome sequencing. Escherichia coli serotype O18: H7 ST 1463 was predominant (n = 14) in the sequenced strains and showed pathogenicity in the Galleria mellonella larvae model. ß-lactamase genes identified were blaCTX-M (n = 21), with blaCTX-M-15 mostly represented (n = 15), as well as blaTEM (n = 11), blaOXA (n = 7), blaSHV (n = 9), and carbapenemase (CP) genes were observed in several strains-blaKPC-3 (n = 19), blaNDM-1 (n = 1), blaVIM-1 (n = 2), and blaOXA-244 (n = 2)-even from freshwaters. CONCLUSIONS: ESBL-EC are widely distributed in the aquatic environment in Belgium and contain a variety of ESBL and CP genes.
Assuntos
Escherichia coli , Água Doce , Hospitais , Águas Residuárias , beta-Lactamases , beta-Lactamases/genética , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Águas Residuárias/microbiologia , Água Doce/microbiologia , Animais , Bélgica , Microbiologia da Água , Sequenciamento Completo do Genoma , Mariposas/microbiologia , Proteínas de Bactérias/genética , Antibacterianos/farmacologiaRESUMO
BACKGROUND: Antibiotic resistance is one of the most serious global health problems and threatens the effective treatment of bacterial infections. Of greatest concern are infections caused by extended-spectrum ß-lactamase-producing Escherichia coli (ESBL-EC). The aim of our study was to evaluate the prevalence and molecular characteristics of ESBL-EC isolated over an 18-year pre-COVID period from lower respiratory tract (LRT) samples collected from selected Slovenian hospitals. OBJECTIVES AND METHODS: All isolates were identified by MALDI-TOF and phenotypically confirmed as ESBLs by a disk diffusion assay. Using a PCR approach, 487 non-repetitive isolates were assigned to phylogroups, sequence type groups, and clonal groups. Isolates were also screened for virulence-associated genes (VAGs) and antimicrobial resistance genes. RESULTS: The prevalence of ESBL-EC isolates from LRT in a large university hospital was low (1.4%) in 2005 and increased to 10.8% by 2019. The resistance profile of 487 non-repetitive isolates included in the study showed a high frequency of group 1 blaCTX-M (77.4%; n = 377), blaTEM (54.4%; n = 265) and aac(6')-Ib-cr (52%; n = 253) genes and a low proportion of blaSHV and qnr genes. Isolates were predominantly assigned to phylogroup B2 (73.1%; n = 356), which was significantly associated with clonal group ST131. The ST131 group accounted for 67.6% (n = 329) of all isolates and had a higher number of virulence factor genes than the non-ST131 group. The virulence gene profile of ST131 was consistent with that of other extraintestinal pathogenic E. coli (ExPEC) strains and was significantly associated with ten of sixteen virulence factor genes tested. Using ERIC-PCR fingerprinting, isolates with the same ERIC-profile in samples from different patients, and at different locations and sampling dates were confirmed, indicating the presence of "hospital-adapted" strains. CONCLUSION: Our results suggest that the ESBL-EC isolates from LRT do not represent a specific pathotype, but rather resemble other ExPEC isolates, and may be adapted to the hospital environment. To our knowledge, this is the first study of ESBL-EC isolated from LRT samples collected over a long period of time.
Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Eslovênia/epidemiologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Fatores de Virulência/genética , beta-Lactamases/genética , Sistema RespiratórioRESUMO
BACKGROUND: The present study aimed to investigate the prevalence and molecular characterization of extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli (E. coli) isolated from dairy cattle with endometritis in China. The prevalence of ESBL-producing E. coli in sample was detected using ChromID ESBL agar, and genotyping of the ESBL producers was performed by PCR and DNA sequencing. RESULTS: The results revealed that the proportion of positive pathogens tested was 69.76% (180/258) in samples obtained from cows diagnosed with clinical endometritis, with E. coli accounting for 170 out of the 180 positive samples. The infection rate of isolated E. coli was 39.14% (101/258), and co-infections with other pathogens were prevalent. Furthermore, among the 158 E. coli isolates, 50 strains were identified as ESBL producers, with TEM and CTX-M prevalence rates at 78.00% and 32.00%, respectively. Drug sensitivity experiments indicated that 50 isolates of ESBL- producing E. coli were multidrug resistance (MDR), with 48.0% of them exhibiting positive results for both the class 1 integron gene and five gene cassettes associated with resistance to trimethoprim (dfr1 and dfrA17) and aminoglycosides (aadA1, aadA5, and dfrA1), respectively. CONCLUSION: This investigation demonstrated a substantial prevalence and heightened level of antimicrobial resistance among ESBL-producing E. coli isolates derived from dairy cattle infected with endometritis in China.
Assuntos
Doenças dos Bovinos , Endometrite , Feminino , Animais , Bovinos , Endometrite/epidemiologia , Endometrite/veterinária , Escherichia coli/genética , Prevalência , China/epidemiologia , beta-Lactamases/genética , Doenças dos Bovinos/epidemiologiaRESUMO
INTRODUCTION: Carbapenems and piperacillin/tazobactam (PIPC/TAZ) are commonly used as the initial therapy to treat extended-spectrum ß-lactamase (ESBL)-producing Enterobacterales in acute cholangitis. However, the overuse of these antibiotics contributes to the spread of antimicrobial resistance. Cefmetazole (CMZ) is stable to hydrolysis by ESBLs, so it may be an alternative to carbapenems and PIPC/TAZ. However, the effectiveness of CMZ compared with that of carbapenems and PIPC/TAZ as the initial therapy for acute cholangitis is unknown. METHODS: We conducted a retrospective cohort study at a university hospital between April 1, 2014, and December 31, 2022. Patients with bacteremic acute cholangitis who received CMZ, carbapenems, or PIPC/TAZ as the initial therapy were included. The patients were divided into a CMZ group and a carbapenems or PIPC/TAZ (CP) group to compare patient outcomes. RESULTS: A total of 99 patients (54 in the CMZ group and 45 in the CP group) were analyzed. The baseline characteristics of the patients were similar and 30-day mortality did not differ between groups (4% vs. 7%, P = 0.66). However, the CMZ group had a shorter length of stay (LOS) (8 days vs. 15 days, P < 0.001) and lower mean antibiotic cost (98.92 USD vs. 269.49 USD, P < 0.001) than the CP group. CONCLUSIONS: In bacteremic acute cholangitis, initial therapy with CMZ may contribute to a shorter LOS and lower antibiotic costs than treatment with carbapenems and PIPC/TAZ, without worsening patient outcomes.
Assuntos
Bacteriemia , Cefmetazol , Humanos , Cefmetazol/uso terapêutico , Estudos Retrospectivos , Piperacilina/uso terapêutico , Carbapenêmicos/uso terapêutico , Ácido Penicilânico/uso terapêutico , Combinação Piperacilina e Tazobactam/uso terapêutico , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológicoRESUMO
A 21-year-old previously healthy Japanese woman visited an outpatient clinic because of abdominal pain, watery diarrhea, vomiting, and mild fever that had started on the previous day. She traveled to rural and urban areas of Rwanda and returned to Japan 3 days before. Stool culture yielded the Plesiomonas shigelloides strain TMCH301018, against which minimum inhibitory concentrations of cefotaxime and cefotaxime-clavulanate were 128 and ≤0.12/4 µg/mL, respectively. The strain had the blaCTX-M-27 gene and an IncA/C replicon-type plasmid. Moreover, a transformant produced by introduction of an IncA/C plasmid extracted from TMCH301018 into Escherichia coli DH5α was positive for the blaCTX-M-27 gene and fulfilled the criteria of extended-spectrum ß-lactamase (ESBL) production described by the Clinical and Laboratory Standards Institute, indicating that TMCH301018 produced ESBL of CTX-M-27 and the ESBL-encoding gene was located on an IncA/C plasmid. Pathogenicity of TMCH301018 for the patient's complaints was uncertain because a molecular assay detected other enteropathogens in the stool specimen and the symptoms improved within 2 days with administration of oral ciprofloxacin, to which TMCH301018 was not susceptible. To our knowledge, this is the first report describing the isolation of ESBL-producing P. shigelloides.
RESUMO
Escherichia coli is a facultative anaerobic bacterium that causes urinary tract and bloodstream infections. Generally, E. coli is easily identified in routine clinical microbiology laboratories. Herein, we report a case of pyelonephritis with bacteremia due to extended-spectrum ß-lactamase (ESBL) producing E. coli, which delayed the identification of the isolate as it exhibited carbon dioxide (CO2)-dependent growth. The patient was a 62-year-old man who presented with nausea and an altered mental status. Contrast-enhanced computed tomography revealed multiple abscesses in the left kidney. The anaerobic bottles of the two sets of blood cultures were positive, but growth on a routine aerobic culture was weak. Identification of the isolate was delayed because it grew only on agar plates incubated in a 5 % CO2 atmosphere. The isolate was suspected to be an ESBL-producing strain based on antimicrobial susceptibility testing, which was confirmed by polymerase chain reaction analysis. The patient was successfully treated with administering meropenem and nephrectomy. To the best-of-our-knowledge, this is the first reported case of a human infection caused by ESBL-producing carbon-dioxide-dependent E. coli.
RESUMO
OBJECTIVES: An increasing number of drug-resistant bacteria have been identified recently. In particular, drug-resistant bacteria have been linked to unfavorable prognoses in patients with bacteremia, highlighting the need for rapid testing. Our previous studies have focused on the utility of a drug susceptibility testing microfluidic (DSTM) method using microfluidic channels. A system with this DSTM method for screening for ß-lactamases can rapidly detect extended-spectrum ß-lactamases (ESBLs) and metallo-ß-lactamases (MBLs). In this study, we have evaluated the clinical utility of pre-treatment for screening positive blood cultures using the DSTM method. METHODS: A total of 178 positive blood cultures and five simulated samples of MBL-producing bacteria were prepared at Kochi University Hospital, Japan. The pretreatment consisted of a two-step centrifugation. The obtained sediments were screened with the DSTM method for the production of ß-lactamase based on morphological changes in the bacteria after 3 h of incubation. RESULTS: The pretreatment functioned properly for all samples. Of the 25 ESBL samples, 21 were positive for ESBLs. Four false-negative samples, all obtained from the same patient, contained CTX-M-2 enzyme-producing Proteus mirabilis and showed insusceptibility to an ESBL inhibitor. The simulated samples prepared for MBL screening were positive for MBLs. CONCLUSIONS: When combined with a method for rapidly identifying bacterial species, DSTM may enable patients with bloodstream infections to start receiving appropriate treatment within 4 h after positive blood cultures are screened.
Assuntos
Antibacterianos , Bacteriemia , Hemocultura , Testes de Sensibilidade Microbiana , beta-Lactamases , beta-Lactamases/metabolismo , Humanos , Testes de Sensibilidade Microbiana/métodos , Hemocultura/métodos , Bacteriemia/microbiologia , Bacteriemia/diagnóstico , Bacteriemia/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Japão , Microfluídica/métodosRESUMO
Klebsiella pneumoniae is one of the most prevalent bacteria causing urinary tract infections (UTIs). Its increasing resistance to a wide array of antibiotics limits available treatment options. This study investigated the characteristics and trends of antimicrobial resistance in K. pneumoniae isolated from UTIs in Crete, Greece, during 2017 and 2022. Among the 11,946 Enterobacteriaceae isolated from urine specimens, a total of 1,771 K. pneumoniae isolates were identified (14.8%), with an isolation frequency secondary to Escherichia coli (66.3%). K. pneumoniae isolates increased over the years, with a peak in the year 2022. Higher resistance rates were detected in ciprofloxacin (41%), trimethoprim/sulfamethoxazole (TMP/SMX) (38.1%) and nitrofurantoin (33.9%). Resistance to ciprofloxacin, amoxicillin/clavulanic acid, tigecycline, and TMP/SMX significantly increased from 33.7%, 24%, 6%, and 33.1%, respectively, over the years 2017-2019, to 47.8%, 34.2%, 14.3% and 42.8%, respectively, over the period 2020-2022. ESBL production and carbapenem resistance were decreased by 2.2% and 3.7%, respectively, over the two three-year periods (2017-2019 and 2020-2022). Among the 278 carbapenem-resistant K. pneumoniae (CRKP) isolates, 164 (59%), 66 (23.7%), 18 (6.5%) and 16 (5.8%) were positive for KPC, NDM, VIM and OXA-48 enzymes, respectively. Only 14 (5%) isolates harboured two carbapenemase genes, namely 10 (3.6%) both blaNDM and blaVIM, and 4 (1.4%) both blaKPC and blaNDM. Females, inpatients and the elderly were more frequently affected by CRKP. The frequency of multidrug-resistant (MDR) and extensively drug-resistant (XDR) isolates were 32.6% and 7.7%, respectively. Continuous surveillance of local microbial prevalence and monitoring of antimicrobial resistance patterns provide critical information to guide the empiric therapy for UTIs and control the spread of MDR bacteria.
Assuntos
Antibacterianos , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Infecções Urinárias , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/genética , Grécia/epidemiologia , Infecções Urinárias/microbiologia , Infecções Urinárias/epidemiologia , Feminino , Masculino , Antibacterianos/farmacologia , Pessoa de Meia-Idade , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , Idoso , Adulto , Adulto Jovem , Idoso de 80 Anos ou mais , beta-Lactamases/genética , Adolescente , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Criança , Pré-Escolar , Lactente , Proteínas de Bactérias/genéticaRESUMO
The extended-spectrum ß-lactamases (ESßLs) are bacterial enzymes capable of hydrolyzing penicillins, cephalosporins, and aztreonam. The prevalence of ESßL is increasing among clinically significant microorganisms worldwide, drastically reducing the therapeutic management of infectious diseases. The study aimed to determine the drug susceptibility of ESßL-positive clinical isolates acquired from patients hospitalized in Lodz, central Poland, and analyze the prevalence of specific genes, determining acquired resistance in these bacteria. The samples of ESßL-positive clinical isolates were gathered in 2022 from medical microbiological laboratories in the city of Lodz, central Poland. The strains were subjected to biochemical identification and antimicrobial susceptibility testing following EUCAST guidelines. The presence of studied genes (blaCTX-M, blaSHV, blaTEM, blaPER, blaVEB) was confirmed by PCR. Over 50% of studied isolates were resistant to gentamicin, cefepime, ceftazidime and ciprofloxacin. The most common ESßL gene was blaCTX-M. In most isolates, the resistance genes occurred simultaneously. The blaPER was not detected in any of the tested strains. ESßL-producing strains are largely susceptible to the currently available antibiotics. The observation of the coexistence of different genes in most clinical isolates is alarming.
Assuntos
Antibacterianos , Infecções por Enterobacteriaceae , Enterobacteriaceae , Testes de Sensibilidade Microbiana , beta-Lactamases , Humanos , beta-Lactamases/genética , beta-Lactamases/metabolismo , Polônia/epidemiologia , Antibacterianos/farmacologia , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Enterobacteriaceae/genética , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/enzimologia , Epidemiologia Molecular , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Ciprofloxacina/farmacologiaRESUMO
ESBL-producing Escherichia coli strains threaten public health and obligate the use of last-resort antibiotics. This study identified 15 E. coli isolates through 16S rRNA and gyrB genes, specific to E. coli, in 120 egg samples (12.5%). Antibiotic resistance was detected according to the EUCAST and CLSI in E. coli isolates. 2 isolates were susceptible to all antibiotics, one isolate was resistant to one antibiotic, one isolate was resistant to 2 antibiotics, and 11 E. coli isolates (73.3%) had multidrug resistance. Most frequent antibiotic resistances were detected against ampicillin (80%), tetracycline (66.6%), and chloramphenicol (66.6%). A double-disc confirmation test was used to detect ESBL production, and blaTEM, blaSHV, blaCTX-M and blaOXA genes were searched by PCR. The blaTEM (100%) gene was found in all resistant E. coli isolates, and the blaCTX-M gene was detected in only 3 (20%) E. coli isolates. None of the E. coli isolates contained the genes responsible for carbapenem and colistin resistance. Our results show that multi-drug antibiotic resistance and the blaTEM gene are frequent in E. coli from table eggs in Istanbul. This is the first preliminary study on ESBL-producing E. coli isolates in table eggs in Türkiye.
Assuntos
Ovos , Escherichia coli , beta-Lactamases , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Animais , Ovos/microbiologia , Turquia/epidemiologia , Antibacterianos/farmacologia , Galinhas/microbiologia , Farmacorresistência Bacteriana/genéticaRESUMO
A CTX-M-65âproducing Salmonella enterica serovar Infantis clone, probably originating in Latin America and initially reported in the United States, has emerged in Taiwan. Chicken meat is the most likely primary carrier. Four of the 9 drug resistance genes have integrated into the chromosome: blaCTX-M-65, tet(A), sul1, and aadA1.
Assuntos
Salmonella enterica , beta-Lactamases , Estados Unidos , Animais , Sorogrupo , Taiwan/epidemiologia , beta-Lactamases/genética , Salmonella enterica/genética , Cromossomos , Antibacterianos/farmacologia , Galinhas , Plasmídeos , Farmacorresistência Bacteriana Múltipla/genéticaRESUMO
OXA-48-producing Enterobacterales have now widely disseminated throughout the world. Several variants have now been reported, differing by just a few amino-acid substitutions or deletions, mostly in the region of the loop ß5-ß6. As OXA-48 hydrolyzes carbapenems but lacks significant expanded-spectrum cephalosporin (ESC) hydrolytic activity, ESCs were suggested as a therapeutic option. Here, we have characterized OXA-517, a natural variant of OXA-48- with an Arg214Lys substitution and a deletion of Ile215 and Glu216 in the ß5-ß6 loop, capable of hydrolyzing at the same time ESC and carbapenems. MICs values of E. coli expressing blaOXA-517 gene revealed reduced susceptibility to carbapenems (similarly to OXA-48) and resistance to ESCs. Steady-state kinetic parameters revealed high catalytic efficiencies for ESCs and carbapenems. The blaOXA-517 gene was located on a ca. 31-kb plasmid identical to the prototypical IncL blaOXA-48-carrying plasmid except for an IS1R-mediated deletion of 30.7-kb in the tra operon. The crystal structure of OXA-517, determined to 1.86 Å resolution, revealed an expanded active site compared to that of OXA-48, which allows for accommodation of the bulky ceftazidime substrate. Our work illustrates the remarkable propensity of OXA-48-like carbapenemases to evolve through mutation/deletion in the ß5-ß6 loop to extend its hydrolysis profile to encompass most ß-lactam substrates.