Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 182(5): 1125-1139.e18, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32822574

RESUMO

Maternal decidual NK (dNK) cells promote placentation, but how they protect against placental infection while maintaining fetal tolerance is unclear. Here we show that human dNK cells highly express the antimicrobial peptide granulysin (GNLY) and selectively transfer it via nanotubes to extravillous trophoblasts to kill intracellular Listeria monocytogenes (Lm) without killing the trophoblast. Transfer of GNLY, but not other cell death-inducing cytotoxic granule proteins, strongly inhibits Lm in human placental cultures and in mouse and human trophoblast cell lines. Placental and fetal Lm loads are lower and pregnancy success is greatly improved in pregnant Lm-infected GNLY-transgenic mice than in wild-type mice that lack GNLY. This immune defense is not restricted to pregnancy; peripheral NK (pNK) cells also transfer GNLY to kill bacteria in macrophages and dendritic cells without killing the host cell. Nanotube transfer of GNLY allows dNK to protect against infection while leaving the maternal-fetal barrier intact.


Assuntos
Antígenos de Diferenciação de Linfócitos T/imunologia , Bactérias/imunologia , Movimento Celular/imunologia , Células Matadoras Naturais/imunologia , Trofoblastos/imunologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Feminino , Células HeLa , Humanos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placenta/imunologia , Placenta/microbiologia , Gravidez , Ratos , Células THP-1 , Trofoblastos/microbiologia
2.
Proc Natl Acad Sci U S A ; 121(40): e2403003121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39325428

RESUMO

Trophoblast stem (TS) cells have the unique capacity to differentiate into specialized cell types, including extravillous trophoblast (EVT) cells. EVT cells invade into and transform the uterus where they act to remodel the vasculature facilitating the redirection of maternal nutrients to the developing fetus. Disruptions in EVT cell development and function are at the core of pregnancy-related disease. WNT-activated signal transduction is a conserved regulator of morphogenesis of many organ systems, including the placenta. In human TS cells, activation of canonical WNT signaling is critical for maintenance of the TS cell stem state and its downregulation accompanies EVT cell differentiation. We show that aberrant WNT signaling undermines EVT cell differentiation. Notum, palmitoleoyl-protein carboxylesterase (NOTUM), a negative regulator of canonical WNT signaling, was prominently expressed in first-trimester EVT cells developing in situ and up-regulated in EVT cells derived from human TS cells. Furthermore, NOTUM was required for optimal human TS cell differentiation to EVT cells. Activation of NOTUM in EVT cells is driven, at least in part, by endothelial Per-Arnt-Sim (PAS) domain 1 (also called hypoxia-inducible factor 2 alpha). Collectively, our findings indicate that canonical Wingless-related integration site (WNT) signaling is essential for maintenance of human trophoblast cell stemness and regulation of human TS cell differentiation. Downregulation of canonical WNT signaling via the actions of NOTUM is required for optimal EVT cell differentiation.


Assuntos
Diferenciação Celular , Linhagem da Célula , Trofoblastos , Via de Sinalização Wnt , Trofoblastos/metabolismo , Trofoblastos/citologia , Humanos , Diferenciação Celular/genética , Feminino , Gravidez , Linhagem da Célula/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Trofoblastos Extravilosos
3.
Proc Natl Acad Sci U S A ; 119(28): e2120667119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867736

RESUMO

Abnormal placentation has been noticed in a variety of pregnancy complications such as miscarriage, early-onset preeclampsia, and fetal growth restriction. Defects in the developmental program of extravillous trophoblasts (EVTs), migrating from placental anchoring villi into the maternal decidua and its vessels, is thought to be an underlying cause. Yet, key regulatory mechanisms controlling commitment and differentiation of the invasive trophoblast lineage remain largely elusive. Herein, comparative gene expression analyses of HLA-G-purified EVTs, isolated from donor-matched placenta, decidua, and trophoblast organoids (TB-ORGs), revealed biological processes and signaling pathways governing EVT development. In particular, bioinformatics analyses and manipulations in different versatile trophoblast cell models unraveled transforming growth factor-ß (TGF-ß) signaling as a crucial pathway driving differentiation of placental EVTs into decidual EVTs, the latter showing enrichment of a secretory gene signature. Removal of Wingless signaling and subsequent activation of the TGF-ß pathway were required for the formation of human leukocyte antigen-G+ (HLA-G+) EVTs in TB-ORGs that resemble in situ EVTs at the level of global gene expression. Accordingly, TGF-ß-treated EVTs secreted enzymes, such as DAO and PAPPA2, which were predominantly expressed by decidual EVTs. Their genes were controlled by EVT-specific induction and genomic binding of the TGF-ß downstream effector SMAD3. In summary, TGF-ß signaling plays a key role in human placental development governing the differentiation program of EVTs.


Assuntos
Placentação , Fator de Crescimento Transformador beta , Trofoblastos , Feminino , Antígenos HLA-G/metabolismo , Humanos , Gravidez , Fator de Crescimento Transformador beta/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo
4.
J Biol Chem ; 299(5): 104650, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36972789

RESUMO

Human trophoblast stem cells (hTSCs) have emerged as a powerful tool to model early placental development in vitro. Analogous to the epithelial cytotrophoblast in the placenta, hTSCs can differentiate into cells of the extravillous trophoblast (EVT) lineage or the multinucleate syncytiotrophoblast (STB). Here we present a chemically defined culture system for STB and EVT differentiation of hTSCs. Notably, in contrast to current approaches, we neither utilize forskolin for STB formation nor transforming growth factor-beta (TGFß) inhibitors or a passage step for EVT differentiation. Strikingly, the presence of a single additional extracellular cue-laminin-111-switched the terminal differentiation of hTSCs from STB to the EVT lineage under these conditions. In the absence of laminin-111, STB formation occurred, with cell fusion comparable to that obtained with differentiation mediated by forskolin; however, in the presence of laminin-111, hTSCs differentiated to the EVT lineage. Protein expression of nuclear hypoxia-inducible factors (HIF1α and HIF2α) was upregulated during EVT differentiation mediated by laminin-111 exposure. A heterogeneous mixture of Notch1+ EVTs in colonies and HLA-G+ single-cell EVTs were obtained without a passage step, reminiscent of heterogeneity in vivo. Further analysis showed that inhibition of TGFß signaling affected both STB and EVT differentiation mediated by laminin-111 exposure. TGFß inhibition during EVT differentiation resulted in decreased HLA-G expression and increased Notch1 expression. On the other hand, TGFß inhibition prevented STB formation. The chemically defined culture system for hTSC differentiation established herein facilitates quantitative analysis of heterogeneity that arises during hTSC differentiation and will enable mechanistic studies in vitro.


Assuntos
Diferenciação Celular , Técnicas Citológicas , Laminina , Células-Tronco , Trofoblastos , Humanos , Diferenciação Celular/efeitos dos fármacos , Colforsina/farmacologia , Colforsina/metabolismo , Antígenos HLA-G/genética , Antígenos HLA-G/metabolismo , Laminina/farmacologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Meios de Cultura/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas Citológicas/métodos
5.
Biol Reprod ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39303127

RESUMO

Recurrent miscarriage (RM) is a chronic and heterogeneous pregnancy disorder lacking effective treatment. Alterations at the maternal-fetal interface are commonly observed in RM, with the loss of certain cell subpopulations believed to be a key cause. Through single-cell sequencing of RM patients and healthy donors, we aim to identify aberrancy of cellular features in RM tissues, providing new insights into the research. Natural killer (NK) cells, the most abundant immune cells in the decidua, are traditionally classified into dNK1, dNK2, and dNK3. In this study, we identified a new subset, dNK1/2, absent in RM tissues. This subset was named because it expresses biomarkers of both dNK1 and dNK2. With further analysis, we discovered that dNK1/2 cells play roles in immunoregulation and cytokine secretion. On the villous side of the interface, a notable decrease of extravillous trophoblast (EVT) cells was identified in RM tissues. We clustered EVTs into EVT1 (absent in RM) and EVT2 (retained in RM). Pseudotime analysis revealed distinct differentiation paths, identifying CCNB1, HMGB1, and NPM1 as EVT1 biomarkers. Additionally, we found that EVT1 is involved in the regulation of cell death, while EVT2 exhibited more angiogenic activity. Cell communication analysis revealed that interaction between EVT1 and dNK1/2 mediates chemotaxis and endothelial cell regulation, crucial for spiral artery remodeling. The loss of this interaction may impair decidualization, which is associated with RM. In summary, we propose that the loss of dNK1/2 and EVT1 cells is a significant pathological feature of RM.

6.
J Transl Med ; 22(1): 674, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039496

RESUMO

BACKGROUND: Preeclampsia, especially early-onset preeclampsia (EO-PE), is a pregnancy complication that has serious consequences for the health of both the mother and the fetus. Although abnormal placentation due to mitochondrial dysfunction is speculated to contribute to the development of EO-PE, the underlying mechanisms have yet to be fully elucidated. METHODS: The expression and localization of Siglec-6 in the placenta from normal pregnancies, preterm birth and EO-PE patients were examined by RT-qPCR, Western blot and IHC. Transwell assays were performed to evaluate the effect of Siglec-6 on trophoblast cell migration and invasion. Seahorse experiments were conducted to assess the impact of disrupting Siglec-6 expression on mitochondrial function. Co-IP assay was used to examine the interaction of Siglec-6 with SHP1/SHP2. RNA-seq was employed to investigate the mechanism by which Siglec-6 inhibits mitochondrial function in trophoblast cells. RESULTS: The expression of Siglec-6 in extravillous trophoblasts is increased in placental tissues from EO-PE patients. Siglec-6 inhibits trophoblast cell migration and invasion and impairs mitochondrial function. Mechanismly, Siglec-6 inhibits the activation of NF-κB by recruiting SHP1/SHP2, leading to increased expression of GPR20. Notably, the importance of GPR20 function downstream of Siglec-6 in trophoblasts is supported by the observation that GPR20 downregulation rescues defects caused by Siglec-6 overexpression. Finally, overexpression of Siglec-6 in the placenta induces a preeclampsia-like phenotype in a pregnant mouse model. CONCLUSIONS: This study indicates that the regulatory pathway Siglec-6/GPR20 has a crucial role in regulating trophoblast mitochondrial function, and we suggest that Siglec-6 and GPR20 could serve as potential markers and targets for the clinical diagnosis and therapy of EO-PE.


Assuntos
Movimento Celular , Mitocôndrias , Pré-Eclâmpsia , Receptores Acoplados a Proteínas G , Trofoblastos , Regulação para Cima , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Humanos , Gravidez , Feminino , Mitocôndrias/metabolismo , Regulação para Cima/genética , Trofoblastos/metabolismo , Animais , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Movimento Celular/genética , Lectinas/metabolismo , Placenta/metabolismo , Camundongos , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos B/metabolismo , Antígenos de Diferenciação de Linfócitos B/genética , Adulto
7.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34785597

RESUMO

Zika virus (ZIKV) during pregnancy infects fetal trophoblasts and causes placental damage and birth defects including microcephaly. Little is known about the anti-ZIKV cellular immune response at the maternal-fetal interface. Decidual natural killer cells (dNK), which directly contact fetal trophoblasts, are the dominant maternal immune cells in the first-trimester placenta, when ZIKV infection is most hazardous. Although dNK express all the cytolytic molecules needed to kill, they usually do not kill infected fetal cells but promote placentation. Here, we show that dNK degranulate and kill ZIKV-infected placental trophoblasts. ZIKV infection of trophoblasts causes endoplasmic reticulum (ER) stress, which makes them dNK targets by down-regulating HLA-C/G, natural killer (NK) inhibitory receptor ligands that help maintain tolerance of the semiallogeneic fetus. ER stress also activates the NK activating receptor NKp46. ZIKV infection of Ifnar1 -/- pregnant mice results in high viral titers and severe intrauterine growth restriction, which are exacerbated by depletion of NK or CD8 T cells, indicating that killer lymphocytes, on balance, protect the fetus from ZIKV by eliminating infected cells and reducing the spread of infection.


Assuntos
Células Matadoras Naturais/imunologia , Trofoblastos/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Feminino , Feto/imunologia , Antígenos HLA-C , Tolerância Imunológica , Camundongos , Placenta/imunologia , Placentação , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Receptores KIR
8.
BMC Genomics ; 24(1): 618, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853336

RESUMO

BACKGROUND: Extravillous trophoblast cell (EVT) differentiation and its communication with maternal decidua especially the leading immune cell type natural killer (NK) cell are critical events for placentation. However, appropriate in vitro modelling system and regulatory programs of these two events are still lacking. Recent trophoblast organoid (TO) has advanced the molecular and mechanistic research in placentation. Here, we firstly generated the self-renewing TO from human placental villous and differentiated it into EVTs (EVT-TO) for investigating the differentiation events. We then co-cultured EVT-TO with freshly isolated decidual NKs for further study of cell communication. TO modelling of EVT differentiation as well as EVT interaction with dNK might cast new aspect for placentation research. RESULTS: Single-cell RNA sequencing (scRNA-seq) was applied for comprehensive characterization and molecular exploration of TOs modelling of EVT differentiation and interaction with dNKs. Multiple distinct trophoblast states and dNK subpopulations were identified, representing CTB, STB, EVT, dNK1/2/3 and dNKp. Lineage trajectory and Seurat mapping analysis identified the close resemblance of TO and EVT-TO with the human placenta characteristic. Transcription factors regulatory network analysis revealed the cell-type specific essential TFs for controlling EVT differentiation. CellphoneDB analysis predicted the ligand-receptor complexes in dNK-EVT-TO co-cultures, which relate to cytokines, immunomodulation and angiogenesis. EVT was known to affect the immune properties of dNK. Our study found out that on the other way around, dNKs could exert effects on EVT causing expression changes which are functionally important. CONCLUSION: Our study documented a single-cell atlas for TO and its applications on EVT differentiation and communications with dNKs, and thus provide methodology and novel research cues for future study of human placentation.


Assuntos
Placenta , Trofoblastos , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Decídua/metabolismo , Diferenciação Celular , Organoides , Células Matadoras Naturais/metabolismo , Movimento Celular
9.
Development ; 147(2)2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31871275

RESUMO

Early placental development and the establishment of the invasive trophoblast lineage take place within a low oxygen environment. However, conflicting and inconsistent findings have obscured the role of oxygen in regulating invasive trophoblast differentiation. In this study, the effect of hypoxic, normoxic and atmospheric oxygen on invasive extravillous pathway progression was examined using a human placental explant model. Here, we show that exposure to low oxygen enhances extravillous column outgrowth and promotes the expression of genes that align with extravillous trophoblast (EVT) lineage commitment. By contrast, supra-physiological atmospheric levels of oxygen promote trophoblast proliferation while simultaneously stalling EVT progression. Low oxygen-induced EVT differentiation coincided with elevated transcriptomic levels of lysyl oxidase (LOX) in trophoblast anchoring columns, in which functional experiments established a role for LOX activity in promoting EVT column outgrowth. The findings of this work support a role for low oxygen in potentiating the differentiation of trophoblasts along the extravillous pathway. In addition, these findings generate insight into new molecular processes controlled by oxygen during early placental development.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Oxigênio/farmacologia , Proteína-Lisina 6-Oxidase/metabolismo , Trofoblastos/citologia , Adulto , Hipóxia Celular/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Modelos Biológicos , Transcriptoma/genética , Adulto Jovem
10.
Biol Reprod ; 108(5): 709-719, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-36892411

RESUMO

With the development of the embryo, the totipotent blastomere undergoes the first lineage decision to the inner cell mass (ICM) and the trophectoderm (TE). The ICM forms the fetus while the TE forms the placenta, which is one of the unique organs in mammals serving as the interface between maternal and fetal bloodstreams. Proper trophoblast lineage differentiation is crucial for correct placental and fetal development, including the TE progenitor self-renewal and its differentiation toward mononuclear cytotrophoblast, which later either develops into invasive extravillous trophoblast, remodeling the uterine vascular, or fuses into multinuclear syncytiotrophoblast, secreting pregnancy-sustaining hormone. Aberrant differentiation and gene expression of trophoblast lineage is associated with severe pregnancy disorders and fetal growth restriction. This review focuses on the early differentiation and key regulatory factors of trophoblast lineage, which have been poorly elucidated. Meanwhile, the recent development of trophoblast stem cells, trophectoderm stem cells, and blastoids derived from pluripotent stem cells bring the accessible model to investigate the profound mystery of embryo implantation and placentation and were also summarized.


Assuntos
Células-Tronco Pluripotentes , Trofoblastos , Animais , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Placenta/metabolismo , Placentação/genética , Diferenciação Celular/genética , Expressão Gênica , Mamíferos
11.
Mol Hum Reprod ; 29(8)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37369038

RESUMO

The remodeling of uterine spiral arteries is a complex process requiring the dynamic action of various cell types. During early pregnancy, extravillous trophoblast (EVT) cells differentiate and invade the vascular wall, replacing the vascular smooth muscle cells (VSMCs). Several in vitro studies have shown that EVT cells play an important role in promoting VSMC apoptosis, however, the mechanism underlying this process is not fully understood. In this study, we demonstrated that EVT-conditioned media and EVT-derived exosomes could induce VSMC apoptosis. Through data mining and experimental verification, it was demonstrated that the EVT exosome miR-143-3p induced VSMC apoptosis in both VSMCs and a chorionic plate artery (CPA) model. Furthermore, FAS ligand was also expressed on the EVT exosomes and may play a co-ordinated role in apoptosis induction. These data clearly demonstrated that VSMC apoptosis is mediated by EVT-derived exosomes and their cargo of miR-143-3p as well as their cell surface presentation of FASL. This finding increases our understanding of the molecular mechanisms underlying the regulation of VSMC apoptosis during spiral artery remodeling.


Assuntos
Exossomos , MicroRNAs , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Músculo Liso Vascular/metabolismo , Exossomos/genética , Artéria Uterina/metabolismo , Apoptose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos de Músculo Liso/metabolismo
12.
Mod Pathol ; 36(2): 100035, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36853788

RESUMO

Preeclampsia (PE) is a heterogeneous disease for which the current clinical classification system is based on the presence or absence of specific clinical features. PE-associated placentas also show heterogeneous findings on pathologic examination, suggesting that further subclassification is possible. We combined clinical, pathologic, immunohistochemical, and transcriptomic profiling of placentas to develop integrated signatures for multiple subclasses of PE. In total, 303 PE and 1388 nonhypertensive control placentas were included. We found that maternal vascular malperfusion (MVM) in the placenta was associated with preterm PE with severe features and with small-for-gestational-age neonates. Interestingly, PE placentas with either MVM or no histologic pattern of injury showed a linear decrease in proliferative (p63+) cytotrophoblast per villous area with increasing gestational age, similar to placentas obtained from the nonhypertensive patient cohort; however, PE placentas with fetal vascular malperfusion or villitis of unknown etiology lost this phenotype. This is mainly because of cases of fetal vascular malperfusion in placentas of patients with preterm PE and villitis of unknown etiology in placentas of patients with term PE, which are associated with a decrease or increase, respectively, in the cytotrophoblast per villous area. Finally, a transcriptomic analysis identified pathways associated with hypoxia, inflammation, and reduced cell proliferation in PE-MVM placentas and further subclassified this group into extravillous trophoblast-high and extravillous trophoblast-low PE, confirmed using an immunohistochemical analysis of trophoblast lineage-specific markers. Our findings suggest that within specific histopathologic patterns of placental injury, PE can be subclassified based on specific cellular and molecular defects, allowing the identification of pathways that may be targeted for diagnostic and therapeutic purposes.


Assuntos
Patologia Clínica , Pré-Eclâmpsia , Feminino , Gravidez , Humanos , Trofoblastos , Placenta , Pré-Eclâmpsia/genética , Transcriptoma
13.
Hum Reprod ; 38(6): 1047-1059, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37075311

RESUMO

STUDY QUESTION: How does an altered maternal hormonal environment, such as that seen during superovulation with gonadotropins in ART, impact human uterine immune cell distribution and function during the window of implantation? SUMMARY ANSWER: Hormonal stimulation with gonadotropins alters abundance of maternal immune cells including uterine natural killer (uNK) cells and reduces uNK cell ability to promote extravillous trophoblast (EVT) invasion. WHAT IS KNOWN ALREADY: An altered maternal hormonal environment, seen following ART, can lead to increased risk for adverse perinatal outcomes associated with disordered placentation. Maternal immune cells play an essential role in invasion of EVTs, a process required for proper establishment of the placenta, and adverse perinatal outcomes have been associated with altered immune cell populations. How ART impacts maternal immune cells and whether this can in turn affect implantation and placentation in humans remain unknown. STUDY DESIGN, SIZE, DURATION: A prospective cohort study was carried out between 2018 and 2021 on 51 subjects: 20 from natural cycles 8 days after LH surge; and 31 from stimulated IVF cycles 7 days after egg retrieval. PARTICIPANTS/MATERIALS, SETTING, METHODS: Endometrial biopsies and peripheral blood samples were collected during the window of implantation in subjects with regular menstrual cycles or undergoing superovulation. Serum estradiol and progesterone levels were measured by chemiluminescent competitive immunoassay. Immune cell populations in blood and endometrium were analyzed using flow cytometry. uNK cells were purified using fluorescence-activated cell sorting and were subjected to RNA sequencing (RNA-seq). Functional changes in uNK cells due to hormonal stimulation were evaluated using the implantation-on-a-chip (IOC) device, a novel bioengineered platform using human primary cells that mimics early processes that occur during pregnancy in a physiologically relevant manner. Unpaired t-tests, one-way ANOVA, and pairwise multiple comparison tests were used to statistically evaluate differences. MAIN RESULTS AND THE ROLE OF CHANCE: Baseline characteristics were comparable for both groups. As expected, serum estradiol levels on the day of biopsy were significantly higher in stimulated (superovulated) patients (P = 0.0005). In the setting of superovulation, we found an endometrium-specific reduction in the density of bulk CD56+ uNK cells (P < 0.05), as well as in the uNK3 subpopulation (P = 0.025) specifically (CD103+ NK cells). In stimulated samples, we also found that the proportion of endometrial B cells was increased (P < 0.0001). Our findings were specific to the endometrium and not seen in peripheral blood. On the IOC device, uNK cells from naturally cycling secretory endometrium promote EVT invasion (P = 0.03). However, uNK cells from hormonally stimulated endometrium were unable to significantly promote EVT invasion, as measured by area of invasion, depth of invasion, and number of invaded EVTs by area. Bulk RNA-seq of sorted uNK cells from stimulated and unstimulated endometrium revealed changes in signaling pathways associated with immune cell trafficking/movement and inflammation. LIMITATIONS, REASONS FOR CAUTION: Patient numbers utilized for the study were low but were enough to identify significant overall population differences in select immune cell types. With additional power and deeper immune phenotyping, we may detect additional differences in immune cell composition of blood and endometrium in the setting of hormonal stimulation. Flow cytometry was performed on targeted immune cell populations that have shown involvement in early pregnancy. A more unbiased approach might identify changes in novel maternal immune cells not investigated in this study. We performed RNA-seq only on uNK cells, which demonstrated differences in gene expression. Ovarian stimulation may also impact gene expression and function of other subsets of immune cells, as well as other cell types within the endometrium. Finally, the IOC device, while a major improvement over existing in vitro methods to study early pregnancy, does not include all possible maternal cells present during early pregnancy, which could impact functional effects seen. Immune cells other than uNK cells may impact invasion of EVTs in vitro and in vivo, though these remain to be tested. WIDER IMPLICATIONS OF THE FINDINGS: These findings demonstrate that hormonal stimulation affects the distribution of uNK cells during the implantation window and reduces the proinvasive effects of uNK cells during early pregnancy. Our results provide a potential mechanism by which fresh IVF cycles may increase risk of disorders of placentation, previously linked to adverse perinatal outcomes. STUDY FUNDING/COMPETING INTEREST(S): Research reported in this publication was supported by the University of Pennsylvania University Research Funding (to M.M.), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (P50HD068157 to M.M., S.S., and S.M.), National Center for Advancing Translational Sciences of the National Institutes of Health (TL1TR001880 to J.K.), the Institute for Translational Medicine and Therapeutics of the Perelman School of Medicine at the University of Pennsylvania, the Children's Hospital of Philadelphia Research Institute (to S.M.G.), and the National Institute of Allergy and Infectious Diseases (K08AI151265 to S.M.G.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. All authors declare no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Implantação do Embrião , Útero , Gravidez , Feminino , Criança , Humanos , Estudos Prospectivos , Útero/metabolismo , Endométrio , Células Matadoras Naturais , Estradiol/metabolismo
14.
Reprod Biol Endocrinol ; 21(1): 60, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393260

RESUMO

BACKGROUND: Throughout the course of pregnancy, small maternal spiral arteries that are in contact with fetal tissue undergo structural remodeling, lose smooth muscle cells, and become less responsive to vasoconstrictors. Additionally, placental extravillous trophoblasts invade the maternal decidua to establish an interaction between the fetal placental villi with the maternal blood supply. When successful, this process enables the transport of oxygen, nutrients, and signaling molecules but an insufficiency leads to placental ischemia. In response, the placenta releases vasoactive factors that enter the maternal circulation and promote maternal cardiorenal dysfunction, a hallmark of preeclampsia (PE), the leading cause of maternal and fetal death. An underexplored mechanism in the development of PE is the impact of membrane-initiated estrogen signaling via the G protein-coupled estrogen receptor (GPER). Recent evidence indicates that GPER activation is associated with normal trophoblast invasion, placental angiogenesis/hypoxia, and regulation of uteroplacental vasodilation, and these mechanisms could explain part of the estrogen-induced control of uterine remodeling and placental development in pregnancy. CONCLUSION: Although the relevance of GPER in PE remains speculative, this review provides a summary of our current understanding on how GPER stimulation regulates some of the features of normal pregnancy and a potential link between its signaling network and uteroplacental dysfunction in PE. Synthesis of this information will facilitate the development of innovative treatment options.


Assuntos
Pré-Eclâmpsia , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Feminino , Humanos , Gravidez , Estrogênios , Placenta
15.
Cell Mol Life Sci ; 79(6): 345, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35661923

RESUMO

Human pregnancy depends on the proper development of the embryo prior to implantation and the implantation of the embryo into the uterine wall. During the pre-implantation phase, formation of the morula is followed by internalization of blastomeres that differentiate into the pluripotent inner cell mass lineage, while the cells on the surface undergo polarization and differentiate into the trophectoderm of the blastocyst. The trophectoderm mediates apposition and adhesion of the blastocyst to the uterine epithelium. These processes lead to a stable contact between embryonic and maternal tissues, resulting in the formation of a new organ, the placenta. During implantation, the trophectoderm cells start to differentiate and form the basis for multiple specialized trophoblast subpopulations, all of which fulfilling specific key functions in placentation. They either differentiate into polar cells serving typical epithelial functions, or into apolar invasive cells that adapt the uterine wall to progressing pregnancy. The composition of these trophoblast subpopulations is crucial for human placenta development and alterations are suggested to result in placenta-associated pregnancy pathologies. This review article focuses on what is known about very early processes in human reproduction and emphasizes on morphological and functional aspects of early trophoblast differentiation and subpopulations.


Assuntos
Placentação , Trofoblastos , Blastocisto/metabolismo , Diferenciação Celular/fisiologia , Implantação do Embrião , Feminino , Humanos , Placenta , Gravidez
16.
Cell Mol Life Sci ; 79(7): 384, 2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35753002

RESUMO

The use of in vitro tools to study trophoblast differentiation and function is essential to improve understanding of normal and abnormal placental development. The relative accessibility of human placentae enables the use of primary trophoblasts and placental explants in a range of in vitro systems. Recent advances in stem cell models, three-dimensional organoid cultures, and organ-on-a-chip systems have further shed light on the complex microenvironment and cell-cell crosstalk involved in placental development. However, understanding each model's strengths and limitations, and which in vivo aspects of human placentation in vitro data acquired does, or does not, accurately reflect, is key to interpret findings appropriately. To help researchers use and design anatomically accurate culture models, this review both outlines our current understanding of placental development, and critically considers the range of established and emerging culture models used to study this, with a focus on those derived from primary tissue.


Assuntos
Placenta , Placentação , Diferenciação Celular , Feminino , Humanos , Gravidez , Células-Tronco , Trofoblastos
17.
Arch Gynecol Obstet ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37535133

RESUMO

PURPOSE: The term of placenta accreta spectrum (PAS) disorder includes all grades of abnormal placentation. It is crucial for pathologist provide standardized diagnostic assessment to evaluate the outcome of management strategies. Moreover, a correct and safe diagnosis is useful in the medico-legal field when it becomes difficult for the gynecologist to demonstrate the suitability and legitimacy of demolitive treatment. The purposes of our study were: (1) to assess histopathologic features according to the recent guidelines; (2) to determine if immunohistochemistry can be useful to identify extravillous trophoblast (EVT) and to measure the depth of infiltration into the myometrium to improve the diagnosis of PAS. METHODS: The retrospective study was conducted on 30 cases of gravid hysterectomy with histopathologic diagnosis of PAS. To identify the depth of EVT, immunohistochemical stainings were performed using anti MNF116 (cytokeratins 5, 6, 8, 17, 19), actin-SM, HPL (Human Placental Lactogen), vimentin and GATA3 antibodies. RESULTS: Our cases were graded based on the degree of invasion of the myometrium. Ten were grade 1 (33.3%), 12 grade 2 (40%) and 8 grade 3A (26.7%). EVT invasion was best seen and evident by double immunostainings with actin-SM and cytokeratins, actin-SM and HPL, actin-SM and GATA3. CONCLUSION: The role of pathologist is decisive to determine the different grades of PAS. A better understanding of the depth of myometrial invasion can be achieved by the use of immunohistochemistry affording an important tool to obtain reproducible grading of PAS. This purpose is crucial in the setting of postoperative quality reviews and particularly in the forensic medicine field.

18.
Reprod Med Biol ; 22(1): e12537, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614815

RESUMO

Purpose: Extravillous trophoblasts (EVTs) invade the endometrium to establish a fetomaternal interaction during pregnancy. Epidermal growth factor (EGF) and heparin-binding EGF-like growth factor (HB-EGF) stimulate EVT invasion by binding to the EGF receptor (EGFR). We examined the role of the small GTP-binding protein Rap1 in EGF- and HB-EGF-stimulated EVT invasion. Methods: Expression of Rap1 in the first-trimester placenta was examined by immunohistochemistry. Effect of EGF or HB-EGF on Rap1 activation (GTP-Rap1) and Rap1 knockdown on invasion was assessed in EVT cell line (HTR-8/SVneo). In addition, effect of Rap1 knockdown and Rap1GAP (a Rap1 inactivator) overexpression on the activation of EGF signaling and EGFR expression were examined. Results: Rap1 was expressed by EVTs, villous cytotrophoblasts, and syncytiotrophoblasts in the placenta. EGF and HB-EGF activated Rap1 and promoted invasion of HTR-8/SVneo, and these effects were inhibited by Rap1 knockdown. The EGF- and HB-EGF-induced phosphorylation of AKT, ERK1/2, p38MAPK, and Src was inhibited by Rap1 knockdown. Furthermore, the knockdown of Rap1 reduced the EGFR protein level. Overexpression of Rap1GAP repressed EGF- and HB-EGF-induced Rap1 activation and reduced EGFR expression. Conclusion: Rap1 may function as a mediator of EGF and HB-EGF signaling pathways and can modulate EGFR expression in EVTs during placental development.

19.
J Biol Chem ; 296: 100386, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556374

RESUMO

The trophectoderm layer of the blastocyst-stage embryo is the precursor for all trophoblast cells in the placenta. Human trophoblast stem (TS) cells have emerged as an attractive tool for studies on early trophoblast development. However, the use of TS cell models is constrained by the limited genetic diversity of existing TS cell lines and restrictions on using human fetal tissue or embryos needed to generate additional lines. Here we report the derivation of two distinct stem cell types of the trophectoderm lineage from human pluripotent stem cells. Analogous to villous cytotrophoblasts in vivo, the first is a CDX2- stem cell comparable with placenta-derived TS cells-they both exhibit identical expression of key markers, are maintained in culture and differentiate under similar conditions, and share high transcriptome similarity. The second is a CDX2+ stem cell with distinct cell culture requirements, and differences in gene expression and differentiation, relative to CDX2- stem cells. Derivation of TS cells from pluripotent stem cells will significantly enable construction of in vitro models for normal and pathological placental development.


Assuntos
Fator de Transcrição CDX2/metabolismo , Células-Tronco Embrionárias/citologia , Placenta/citologia , Células-Tronco Pluripotentes/citologia , Trofoblastos/citologia , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem da Célula , Meios de Cultura , Células-Tronco Embrionárias/metabolismo , Feminino , Humanos , Placenta/metabolismo , Células-Tronco Pluripotentes/metabolismo , Gravidez , Trofoblastos/metabolismo
20.
Biol Reprod ; 106(3): 540-550, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-34791028

RESUMO

The Bone Morphogenetic Protein (BMP) pathway is involved in numerous developmental processes, including cell growth, apoptosis, and differentiation. In mouse embryogenesis, BMP signaling is a well-known morphogen for both mesoderm induction and germ cell development. Recent evidence points to a potential role in development of the extraembryonic compartment, including trophectoderm-derived tissues. In this study, we investigated the effect of BMP signaling in both mouse and human trophoblast stem cells (TSC) in vitro, evaluating the expression and activation of the BMP signaling response machinery, and the effect of BMP signaling manipulation during TSC maintenance and differentiation. Both mouse trophoblast stem cells (mTSC) and human trophoblast stem cells (hTSC) expressed various BMP ligands and the receptors BMPR1A and BMPR2, necessary for BMP response, and displayed maximal active BMP signaling when undifferentiated. We also observed a conserved modulatory role of BMP signaling during trophoblast differentiation, whereby maintenance of active BMP signaling blunted differentiation of TSC in both species. Conversely, the effect of BMP signaling on the undifferentiated state of TSC appeared to be species-specific, with SMAD-independent signaling important in maintenance of mTSC, and a more subtle role for both SMAD-dependent and -independent BMP signaling in hTSC. Altogether, these data establish an autocrine role for the BMP pathway in the trophoblast compartment. As specification and correct differentiation of the extraembryonic compartment are fundamental for implantation and early placental development, insights on the role of the BMP signaling in early development might prove useful in the setting of in vitro fertilization as well as targeting trophoblast-associated placental dysfunction.


Assuntos
Placenta , Trofoblastos , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/fisiologia , Feminino , Humanos , Camundongos , Placenta/metabolismo , Gravidez , Células-Tronco/metabolismo , Trofoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA