Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 133(18)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32878942

RESUMO

Cellular polarization underlies many facets of cell behavior, including cell growth. The rod-shaped fission yeast Schizosaccharomyces pombe is a well-established, genetically tractable system for studying growth polarity regulation. S. pombe cells elongate at their two cell tips in a cell cycle-controlled manner, transitioning from monopolar to bipolar growth in interphase when new ends established by the most recent cell division begin to extend. We previously identified cytokinesis as a critical regulator of new end growth and demonstrated that Fic1, a cytokinetic factor, is required for normal polarized growth at new ends. Here, we report that Fic1 is phosphorylated on two C-terminal residues, which are each targeted by multiple protein kinases. Endogenously expressed Fic1 phosphomutants cannot support proper bipolar growth, and the resultant defects facilitate the switch into an invasive pseudohyphal state. Thus, phosphoregulation of Fic1 links the completion of cytokinesis to the re-establishment of polarized growth in the next cell cycle. These findings broaden the scope of signaling events that contribute to regulating S. pombe growth polarity, underscoring that cytokinetic factors constitute relevant targets of kinases affecting new end growth.This article has an associated First Person interview with Anthony M. Rossi, joint first author of the paper.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Divisão Celular , Polaridade Celular/genética , Citocinese/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
2.
Gastroenterol Hepatol ; 45(8): 585-592, 2022 Oct.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-34942279

RESUMO

INTRODUCTION: Heterozygous defects in genes implicated in Progressive Familial Intrahepatic Cholestasis have been described in milder forms of cholestatic diseases. Our aim is to describe clinical, laboratory and imaging characteristics as well as treatment and outcome of a cohort of pediatric patients with heterozygous mutations in ATP8B1, ABCB11 or ABCB4. PATIENTS AND METHODS: We present a retrospective descriptive study including pediatric patients with at least one heterozygosis defect in ATP8B1, ABCB11 or ABCB4 diagnosed after a cholestatic episode. Clinical, diagnostic and outcome data were collected including gene analysis (panel of PFIC NextGeneDx®). RESULTS: 7 patients showed a heterozygous mutation: 3 patients in ABCB4, 1 in ABCB11, 2 in ABCB4 and ABCB11 and 1 in ATP8B1. The median onset age was 5.5 years with a median time of follow-up of 6 years. The initial presentation was pruritus followed by asymptomatic hypertransaminasemia and persistent cholestasis. Two patients had family history of gallbladder stones and mild hepatitis. All showed elevated transaminases and bile acids, high gamma glutamyl-transferase (GGT) in 3 and conjugated bilirubin in 2 patients. Liver biopsy showed inflammatory infiltrate or mild fibrosis with normal immunohistochemistry. All patients were treated with ursodeoxycholic acid, two patients requiring the addition of resincholestyramine. During follow-up, 3 patients suffered limited relapses of pruritus. No disease progression was observed. CONCLUSION: Heterozygous mutations in genes coding proteins of the hepatocellular transport system can cause cholestatic diseases with great phenotypic variability. The presence of repeated episodes of hypertransaminasemia or cholestasis after a trigger should force us to rule out the presence of these heterozygous mutations in genes involved in CIFP.


Assuntos
Colestase Intra-Hepática , Colestase , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Ácidos e Sais Biliares , Bilirrubina , Criança , Pré-Escolar , Colestase Intra-Hepática/diagnóstico , Colestase Intra-Hepática/genética , Humanos , Mutação , Prurido/genética , Estudos Retrospectivos , Transaminases/genética , Ácido Ursodesoxicólico/uso terapêutico , gama-Glutamiltransferase
4.
J Hepatol ; 67(6): 1253-1264, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28733223

RESUMO

BACKGROUND & AIMS: The bile salt export pump (BSEP, ABCB11), multidrug resistance protein 3 (MDR3, ABCB4) and the ATPase familial intrahepatic cholestasis 1 (FIC1, ATP8B1) mediate bile formation. This study aimed to determine the contribution of mutations and common variants in the FIC1, BSEP and MDR3 genes to cholestatic disorders of differing disease onset and severity. METHODS: Coding exons with flanking intron regions of ATP8B1, ABCB11, and ABCB4 were sequenced in cholestatic patients with assumed genetic cause. The effects of new variants were evaluated by bioinformatic tools and 3D protein modeling. RESULTS: In 427 patients with suspected inherited cholestasis, 149 patients carried at least one disease-causing mutation in FIC1, BSEP or MDR3, respectively. Overall, 154 different mutations were identified, of which 25 were novel. All 13 novel missense mutations were disease-causing according to bioinformatics analyses and homology modeling. Eighty-two percent of patients with at least one disease-causing mutation in either of the three genes were children. One or more common polymorphism(s) were found in FIC1 in 35.3%, BSEP in 64.3% and MDR3 in 72.6% of patients without disease-causing mutations in the respective gene. Minor allele frequencies of common polymorphisms in BSEP and MDR3 varied in our cohort compared to the general population, as described by gnomAD. However, differences in ethnic background may contribute to this effect. CONCLUSIONS: In a large cohort of patients, 154 different variants were detected in FIC1, BSEP, and MDR3, 25 of which were novel. In our cohort, frequencies for risk alleles of BSEP (p.V444A) and MDR3 (p.I237I) polymorphisms were significantly overrepresented in patients without disease-causing mutation in the respective gene, indicating that these common variants can contribute to a cholestatic phenotype. LAY SUMMARY: FIC1, BSEP, and MDR3 represent hepatobiliary transport proteins essential for bile formation. Genetic variants in these transporters underlie a broad spectrum of cholestatic liver diseases. To confirm a genetic contribution to the patients' phenotypes, gene sequencing of these three major cholestasis-related genes was performed in 427 patients and revealed 154 different variants of which 25 have not been previously reported in a database. In patients without a disease-causing mutation, common genetic variants were detected in a high number of cases, indicating that these common variants may contribute to cholestasis development.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Colestase/genética , Mutação , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Estudos de Coortes , Variação Genética , Humanos , Lactente , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Adulto Jovem
5.
Biochem Soc Trans ; 43(5): 1003-10, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517915

RESUMO

Bile is synthesized in the liver and is essential for the emulsification of dietary lipids and lipid-soluble vitamins. It is a complex mixture of amphiphilic bile acids (BAs; which act as detergent molecules), the membrane phospholipid phosphatidylcholine (PC), cholesterol and a variety of endogenous metabolites and waste products. Over the last 20 years, the combined effort of clinicians, geneticists, physiologists and biochemists has shown that each of these bile components is transported across the canalicular membrane of the hepatocyte by its own specific ATP-binding cassette (ABC) transporter. The bile salt export pump (BSEP) ABCB11 transports the BAs and drives bile flow from the liver, but it is now clear that two lipid transporters, ABCB4 (which flops PC into the bile) and the P-type ATPase ATP8B1/CDC50 (which flips a different phospholipid in the opposite direction) play equally critical roles that protect the biliary tree from the detergent activity of the bile acids. Understanding the interdependency of these lipid floppases and flippases has allowed the development of an assay to measure ABCB4 function. ABCB4 harbours numerous mis-sense mutations which probably reflects the spectrum of liver disease rooted in ABCB4 aetiology. Characterization of the effect of these mutations at the protein level opens the possibility for the development of personalized prognosis and treatment.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácidos e Sais Biliares/metabolismo , Fígado/metabolismo , Fosfolipídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Ácidos e Sais Biliares/química , Transporte Biológico/genética , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Hepatopatias/genética , Hepatopatias/metabolismo , Modelos Biológicos , Mutação , Fosfolipídeos/química
6.
Clin Liver Dis ; 26(3): 371-390, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35868680

RESUMO

Bile acid transport is a complex physiologic process, of which disruption at any step can lead to progressive intrahepatic cholestasis (PFIC). The first described PFIC disorders were originally named as such before identification of a genetic cause. However, advances in clinical molecular genetics have led to the identification of additional disorders that can cause these monogenic inherited cholestasis syndromes, and they are now increasingly referred to by the affected protein causing disease. The list of PFIC disorders is expected to grow as more causative genes are discovered. Here forth, we present a comprehensive overview of known PFIC disorders.


Assuntos
Colestase Intra-Hepática , Colestase , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/metabolismo , Humanos
7.
J Clin Exp Hepatol ; 12(2): 454-460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35535061

RESUMO

Background/Aims: This study aimed to delineate the clinical profile of children diagnosed with progressive familial intrahepatic cholestasis (PFIC). Methods: This study was a retrospective analysis of case records of children in the tertiary care hospital, with the diagnosis of PFIC from January 2017 to January 2020. The diagnosis was made using clinical and laboratory parameters and with genetic testing when available. Medical and surgical management was according to the departmental protocol. Liver transplant was offered to children with end-stage liver disease, intractable pruritus, or severe growth failure. Result: There were 13 identified PFIC cases (familial intrahepatic cholestasis 1 [FIC1] deficiency-4, bile salt export pump (BSEP) deficiency-3, tight junction protein [TJP2] deficiency 3, multidrug-resistant protein 3 [MDR3] deficiency 2 and farnesoid X receptor deficiency-1). PFIC subtypes 1, 2, and 5 presented in infancy, whereas MDR3 presented in childhood. TJP2 deficiency had varied age of presentation from infancy to adolescence. Jaundice with or without pruritus was present in most cases. Genetic testing was carried out in 10 children, of which five had a homozygous mutation, three had a compound heterozygous mutation, and two had a heterozygous mutation. Three children (FIC1-2 and TJP2-1) underwent biliary diversion, of which clinical improvement was seen in two. Six children underwent liver transplantation, which was successful in four. Conclusion: Byler's disease was the most common subtype. A clinicopathologic correlation with molecular diagnosis leads to early diagnosis and management. Liver transplantation provides good outcomes in children with end-stage liver disease.

8.
Eur J Med Genet ; 64(7): 104245, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33991701

RESUMO

While rare diseases collectively affect ~300 million people worldwide, the prevalence of each disease concerns a relatively small number of patients. Usually, only limited data with regard to natural history are available. Multicenter initiatives are needed to aggregate data and answer clinically relevant research questions. In 2017, we launched the NAtural course and Prognosis of PFIC and Effect of biliary Diversion (NAPPED) consortium. In three years, NAPPED created a global network focused on rare genetic liver diseases in the Progressive Familial Intrahepatic Cholestasis (PFIC) spectrum. During these years, we have learned important lessons which we feel should be taken into account when initiating and leading a global consortium. First, it is essential to 'keep it simple' from the start. Research questions, case report forms (CRFs) and data acquisition should be limited and clear to stay focused and keep the workload low for new participants. Secondly, early rewards and research output are needed to keep momentum and motivation. Quick output can only follow a clean and simple design. Thirdly, the leading team should be in touch and accessible. Ideally, an involved PhD-candidate is appointed as primary contact person. Lastly, be inclusive and actively involve all participants the consortium's course. Global consortia are critical for personalized medicine in rare diseases. Also, they are essential for setting up trials to investigate generic drugs and personalized therapies. We hope to herewith stimulate others that are starting (or are planning to start) a global consortium, ultimately to help improve the care for patients with a rare disease.


Assuntos
Colestase Intra-Hepática/genética , Doenças Genéticas Inatas/genética , Guias de Prática Clínica como Assunto , Doenças Raras/genética , Colestase Intra-Hepática/diagnóstico , Colestase Intra-Hepática/terapia , Consenso , Bases de Dados Factuais , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/terapia , Humanos , Doenças Raras/diagnóstico , Doenças Raras/terapia
9.
Acta Gastroenterol Belg ; 84(3): 477-486, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34599573

RESUMO

Benign recurrent intrahepatic cholestasis (BRIC) is a rare genetic disorder that is characterized by episodes of cholestasis followed by complete resolution. The episodic nature of BRIC raises concerns about its possible trigger factors. Indeed, case reports of this orphan disease have associated BRIC to some triggers. In the absence of any reviews, we reviewed BRIC trigger factors and its pathophysiology. The study consisted of a systematic search for case reports using PubMed. Articles describing a clear case of BRIC associated with a trigger were included resulting in 22 articles that describe 35 patients. Infection was responsible for 54.3% of triggered episodes, followed by hormonal, drugs, and miscellaneous causes reporting as 30%, 10%, and 5.7% respectively. Females predominated with 62.9%. The longest episode ranged between 3 months to 2 years with a mean of 32.37 weeks. The mean age of the first episode was 14.28 ranging between 3 months to 48 years. Winter and autumn were the major seasons during which episodes happened. Hence, BRIC is potentially triggered by infection, which is most commonly a viral infection, hormonal disturbances as seen in oral contraceptive pills and pregnancy state, and less commonly by certain drugs and other causes. The appearance of cholestasis during the first two trimesters of pregnancy compared to intrahepatic cholestasis of pregnancy could help to differentiate between the two conditions. The possible mechanism of BRIC induction implicates a role of BSEP and ATP8B1. While estrogen, drugs, and cytokines are known to affect BSEP, less is known about their action on ATP8B1.


Assuntos
Colestase Intra-Hepática , Colestase , Colestase Intra-Hepática/diagnóstico , Feminino , Humanos , Lactente , Gravidez
10.
Eur J Med Genet ; 64(11): 104317, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34478903

RESUMO

The Progressive Familial Intrahepatic Cholestasis (PFIC) disease spectrum encompasses a variety of genetic diseases that affect the bile production and the secretion of bile acids. Typically, the first presentation of these diseases is in early childhood, frequently followed by a severe course necessitating liver transplantation before adulthood. Except for transplantation, treatment modalities have been rather limited and frequently only aim at the symptoms of cholestasis, such as cholestatic pruritus. In recent years, progress has been made in understanding the pathophysiology of these diseases and new treatment modalities have been emerging. Herewith we summarize the latest developments in the field and formulate the current key questions and opportunities for further progress.


Assuntos
Colestase Intra-Hepática/genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Ácidos e Sais Biliares/genética , Ácidos e Sais Biliares/metabolismo , Colestase Intra-Hepática/patologia , Colestase Intra-Hepática/terapia , Terapia Genética/métodos , Humanos
11.
J Clin Exp Hepatol ; 4(1): 25-36, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25755532

RESUMO

Progressive familial intrahepatic cholestasis (PFIC) is a group of rare disorders which are caused by defect in bile secretion and present with intrahepatic cholestasis, usually in infancy and childhood. These are autosomal recessive in inheritance. The estimated incidence is about 1 per 50,000 to 1 per 100,000 births, although exact prevalence is not known. These diseases affect both the genders equally and have been reported from all geographical areas. Based on clinical presentation, laboratory findings, liver histology and genetic defect, these are broadly divided into three types-PFIC type 1, PFIC type 2 and PFIC type 3. The defect is in ATP8B1 gene encoding the FIC1 protein, ABCB 11 gene encoding BSEP protein and ABCB4 gene encoding MDR3 protein in PFIC1, 2 and 3 respectively. The basic defect is impaired bile salt secretion in PFIC1/2 whereas in PFIC3, it is reduced biliary phospholipid secretion. The main clinical presentation is in the form of cholestatic jaundice and pruritus. Serum gamma glutamyl transpeptidase (GGT) is normal in patients with PFIC1/2 while it is raised in patients with PFIC3. Treatment includes nutritional support (adequate calories, supplementation of fat soluble vitamins and medium chain triglycerides) and use of medications to relieve pruritus as initial therapy followed by biliary diversion procedures in selected patients. Ultimately liver transplantation is needed in most patients as they develop progressive liver fibrosis, cirrhosis and end stage liver disease. Due to the high risk of developing liver tumors in PFIC2 patients, monitoring is recommended from infancy. Mutation targeted pharmacotherapy, gene therapy and hepatocyte transplantation are being explored as future therapeutic options.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA