Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Chem ; 148: 107436, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735265

RESUMO

BACKGROUND: Camptothecin (CPT), a pentacyclic alkaloid with antitumor properties, is derived from the Camptotheca acuminata. Topotecan and irinotecan (CPT derivatives) were first approved by the Food and Drug Administration for cancer treatment over 25 years ago and remain key anticancer drugs today. However, their use is often limited by clinical toxicity. Despite extensive development efforts, many of these derivatives have not succeeded clinically, particularly in their effectiveness against pancreatic cancer which remains modest. AIM OF THE STUDY: This study aimed to evaluate the therapeutic activity of FLQY2, a CPT derivative synthesized in our laboratory, against pancreatic cancer, comparing its efficacy and mechanism of action with those of established clinical drugs. METHODS: The cytotoxic effects of FLQY2 on cancer cells were assessed using an MTT assay. Patient-derived organoid (PDO) models were employed to compare the sensitivity of FLQY2 to existing clinical drugs across various cancers. The impact of FLQY2 on apoptosis and cell cycle arrest in Mia Paca-2 pancreatic cancer cells was examined through flow cytometry. Transcriptomic and proteomic analyses were conducted to explore the underlying mechanisms of FLQY2's antitumor activity. Western blotting was used to determine the levels of proteins regulated by FLQY2. Additionally, the antitumor efficacy of FLQY2 in vivo was evaluated in a pancreatic cancer xenograft model. RESULTS: FLQY2 demonstrated (1) potent cytotoxicity; (2) superior tumor-suppressive activity in PDO models compared to current clinical drugs such as gemcitabine, 5-fluorouracil, cisplatin, paclitaxel, ivosidenib, infinitinib, and lenvatinib; (3) significantly greater tumor inhibition than paclitaxel liposomes in a pancreatic cancer xenograft model; (4) robust antitumor effects, closely associated with the inhibition of the TOP I and PDK1/AKT/mTOR signaling pathways. In vitro studies revealed that FLQY2 inhibited cell proliferation, colony formation, induced apoptosis, and caused cell cycle arrest at nanomolar concentrations. Furthermore, the combination of FLQY2 and gemcitabine exhibited significant inhibitory and synergistic effects. CONCLUSION: The study confirmed the involvement of topoisomerase I and the PDK1/AKT/mTOR pathways in mediating the antitumor activity of FLQY2 in treating Mia Paca-2 pancreatic cancer. Therefore, FLQY2 has potential as a novel therapeutic option for patients with pancreatic cancer.


Assuntos
Antineoplásicos , Apoptose , Camptotecina , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Camptotecina/farmacologia , Camptotecina/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Animais , Camundongos , Apoptose/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Camundongos Nus , Células Tumorais Cultivadas , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA