Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Reprod Biol Endocrinol ; 22(1): 71, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907244

RESUMO

BACKGROUND: Premutations in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene, defined as between 55 and 200 CGGs, have been implicated in fragile X-associated primary ovarian insufficiency (FXPOI). Only 20% of female premutation carriers develop early ovulatory dysfunction, the reason for this incomplete penetrance is unknown. This study validated the mathematical model in premutation alleles, after assigning each allele a score representing allelic complexity. Subsequently, allelic scores were used to investigate the impact of allele complexity on age at amenorrhea for 58 premutation cases (116 alleles) previously published. METHODS: The allelic score was determined using a formula previously described by our group. The impact of each allelic score on age at amenorrhea was analyzed using Pearson's test and a contour plot generated to visualize the effect. RESULTS: Correlation of allelic score revealed two distinct complexity behaviors in premutation alleles. No significant correlation was observed between the allelic score of premutation alleles and age at amenorrhea. The same lack of significant correlation was observed regarding normal-sized alleles, despite a nearly significant trend. CONCLUSIONS: Our results suggest that the use of allelic scores combination have the potential to explain female infertility, namely the development of FXPOI, or ovarian dysfunction, despite the lack of correlation with age at amenorrhea. Such a finding is of great clinical significance for early identification of females at risk of ovulatory dysfunction, enhancement of fertility preservation techniques, and increasing the probability for a successful pregnancy in females with premutations. Additional investigation is necessary to validate this hypothesis.


Assuntos
Alelos , Amenorreia , Proteína do X Frágil da Deficiência Intelectual , Insuficiência Ovariana Primária , Humanos , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Amenorreia/genética , Insuficiência Ovariana Primária/genética , Adulto , Heterozigoto , Mutação , Síndrome do Cromossomo X Frágil/genética , Fatores Etários , Adulto Jovem , Adolescente
2.
Mov Disord ; 39(3): 519-525, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38124331

RESUMO

BACKGROUND: Men with fragile X-associated tremor/ataxia syndrome (FXTAS) often develop executive dysfunction, characterized by disinhibition, frontal dyscontrol of movement, and working memory and attention changes. Although cross-sectional studies have suggested that earlier executive function changes may precede FXTAS, the lack of longitudinal studies has made it difficult to address this hypothesis. OBJECTIVE: To determine whether executive function deterioration experienced by premutation carriers (PC) in daily life precedes and predicts FXTAS. METHODS: This study included 66 FMR1 PC ranging from 40 to 78 years (mean, 59.5) and 31 well-matched healthy controls (HC) ages 40 to 75 (mean, 57.7) at baseline. Eighty-four participants returned for 2 to 5 follow up visits over a duration of 1 to 9 years (mean, 4.6); 28 of the PC developed FXTAS. The Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A) was completed by participants and their spouses/partners at each visit. RESULTS: Longitudinal mixed model regression analyses showed a greater decline with age in PC compared to HC on the Metacognition Index (MI; self-initiation, working memory, organization, task monitoring). Conversion to FXTAS was associated with worsening MI and Behavioral Regulation Index (BRI; inhibition, flexibility, emotion modulation). For spouse/partner report, FXTAS conversion was associated with worsening MI. Finally, increased self-report executive function problems at baseline significantly predicted later development of FXTAS. CONCLUSIONS: Executive function changes experienced by male PC represent a prodrome of the later movement disorder. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Síndrome do Cromossomo X Frágil , Transtornos dos Movimentos , Adulto , Humanos , Masculino , Função Executiva/fisiologia , Tremor , Estudos Longitudinais , Estudos Transversais , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/complicações , Ataxia , Transtornos dos Movimentos/complicações
3.
Hum Genomics ; 17(1): 60, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420260

RESUMO

This review discusses the discovery, epidemiology, pathophysiology, genetic etiology, molecular diagnosis, and medication-based management of fragile X syndrome (FXS). It also highlights the syndrome's variable expressivity and common comorbid and overlapping conditions. FXS is an X-linked dominant disorder associated with a wide spectrum of clinical features, including but not limited to intellectual disability, autism spectrum disorder, language deficits, macroorchidism, seizures, and anxiety. Its prevalence in the general population is approximately 1 in 5000-7000 men and 1 in 4000-6000 women worldwide. FXS is associated with the fragile X messenger ribonucleoprotein 1 (FMR1) gene located at locus Xq27.3 and encodes the fragile X messenger ribonucleoprotein (FMRP). Most individuals with FXS have an FMR1 allele with > 200 CGG repeats (full mutation) and hypermethylation of the CpG island proximal to the repeats, which silences the gene's promoter. Some individuals have mosaicism in the size of the CGG repeats or in hypermethylation of the CpG island, both produce some FMRP and give rise to milder cognitive and behavioral deficits than in non-mosaic individuals with FXS. As in several monogenic disorders, modifier genes influence the penetrance of FMR1 mutations and FXS's variable expressivity by regulating the pathophysiological mechanisms related to the syndrome's behavioral features. Although there is no cure for FXS, prenatal molecular diagnostic testing is recommended to facilitate early diagnosis. Pharmacologic agents can reduce some behavioral features of FXS, and researchers are investigating whether gene editing can be used to demethylate the FMR1 promoter region to improve patient outcomes. Moreover, clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 and developed nuclease defective Cas9 (dCas9) strategies have promised options of genome editing in gain-of-function mutations to rewrite new genetic information into a specified DNA site, are also being studied.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Masculino , Humanos , Feminino , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/epidemiologia , Síndrome do Cromossomo X Frágil/genética , Transtorno do Espectro Autista/genética , Metilação de DNA/genética , Mosaicismo , Variação Biológica da População , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
4.
Reprod Biomed Online ; 49(1): 103779, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38678742

RESUMO

RESEARCH QUESTION: Do cytosine-guanine-guanine (CGG) repeats of the FMR1 gene affect ovarian function, ovarian response and assisted reproductive technology (ART) outcomes in Chinese women? DESIGN: A retrospective cohort study of 5869 women who underwent 8932 ART cycles at Women's Hospital, School of Medicine, Zhejiang University between January 2018 and June 2021. Basic hormone level, oocyte yield, embryo quality and the rate of live birth were considered as main outcome measures to evaluate the effects of CGG repeats on ovarian function, ovarian response and ART outcomes. RESULTS: The CGG repeats were negatively related to serum anti-Müllerian hormone (AMH), oestradiol, antral follicle count (AFC) and oocyte yield. A significant association was found between serum AMH, oestradiol and AFC even after age was controlled for. No statistically significant association, however, was found between CGG repeats and embryo quality or live birth rate. Ovarian function mediated the association between CGG repeats and ovarian response. CONCLUSION: Increased CGG repeats on the FMR1 gene were associated with diminished ovarian function and poor ovarian response, and ovarian function played an intermediary role in the relationship between CGG repeats and ovarian response.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Reserva Ovariana , Humanos , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Adulto , Reserva Ovariana/genética , Estudos Retrospectivos , China , Hormônio Antimülleriano/sangue , Técnicas de Reprodução Assistida , Gravidez , Expansão das Repetições de Trinucleotídeos , População do Leste Asiático
5.
Sensors (Basel) ; 24(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38676203

RESUMO

FXTAS is a neurodegenerative disorder occurring in some Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene premutation carriers (PMCs) and is characterized by cerebellar ataxia, tremor, and cognitive deficits that negatively impact balance and gait and increase fall risk. Dual-tasking (DT) cognitive-motor paradigms and challenging balance conditions may have the capacity to reveal markers of FXTAS onset. Our objectives were to determine the impact of dual-tasking and sensory and stance manipulation on balance in FXTAS and potentially detect subtle postural sway deficits in FMR1 PMCs who are asymptomatic for signs of FXTAS on clinical exam. Participants with FXTAS, PMCs without FXTAS, and controls underwent balance testing using an inertial sensor system. Stance, vision, surface stability, and cognitive demand were manipulated in 30 s trials. FXTAS participants had significantly greater total sway area, jerk, and RMS sway than controls under almost all balance conditions but were most impaired in those requiring vestibular control. PMCs without FXTAS had significantly greater RMS sway compared with controls in the feet apart, firm, single task conditions both with eyes open and closed (EC) and the feet together, firm, EC, DT condition. Postural sway deficits in the RMS postural sway variability domain in asymptomatic PMCs might represent prodromal signs of FXTAS. This information may be useful in providing sensitive biomarkers of FXTAS onset and as quantitative balance measures in future interventional trials and longitudinal natural history studies.


Assuntos
Ataxia , Síndrome do Cromossomo X Frágil , Equilíbrio Postural , Tremor , Humanos , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Tremor/genética , Tremor/fisiopatologia , Equilíbrio Postural/fisiologia , Masculino , Pessoa de Meia-Idade , Feminino , Ataxia/genética , Ataxia/fisiopatologia , Idoso , Biomarcadores , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Adulto , Sintomas Prodrômicos
6.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125677

RESUMO

In this study, the potential role and interaction of the APOε and KLOTHO genes on the penetrance of fragile X-associated tremor/ataxia syndrome (FXTAS) and on the IQ trajectory were investigated. FXTAS was diagnosed based on molecular, clinical and radiological criteria. Males with the premutation (PM) over 50 years, 165 with and 34 without an FXTAS diagnosis, were included in this study and were compared based on their APO (ε2-ε3-ε4) and KLOTHO variant (KL-VS) genotypes. The effect of APOε4 on FXTAS stage and on diagnosis did not differ significantly by KL-VS genotype with interaction effect p = 0.662 and p = 0.91, respectively. In the FXTAS individuals with an APOε2 allele, a marginal significance was observed towards a larger decline in verbal IQ (VIQ) in individuals with an APOε4 allele compared to those without an APOε4 allele (p = 0.071). In conclusion, our findings suggest that the APOε4 and KL-VS genotypes alone or through their interaction effect do not appear to predispose to either FXTAS diagnosis or stage in male carriers of the PM allele. A further study is needed to establish the trend of IQ decline in the FXTAS individuals who carry APOε4 with APOε2 compared to those without APOε4.


Assuntos
Ataxia , Síndrome do Cromossomo X Frágil , Glucuronidase , Proteínas Klotho , Tremor , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Alelos , Apolipoproteínas E/genética , Ataxia/genética , Síndrome do Cromossomo X Frágil/genética , Predisposição Genética para Doença , Genótipo , Glucuronidase/genética , Penetrância , Tremor/genética
7.
Int J Mol Sci ; 25(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39063191

RESUMO

Fragile X syndrome (FXS) is caused by the full mutation in the FMR1 gene on the Xq27.3 chromosome region. It is the most common monogenic cause of autism spectrum disorder (ASD) and inherited intellectual disability (ID). Besides ASD and ID and other symptoms, individuals with FXS may exhibit sleep problems and impairment of circadian rhythm (CR). The Drosophila melanogaster models of FXS, such as dFMR1B55, represent excellent models for research in the FXS field. During this study, sleep patterns and CR in dFMR1B55 mutants were analyzed, using a new platform based on continuous high-resolution videography integrated with a highly-customized version of an open-source software. This methodology provides more sensitive results, which could be crucial for all further research in this model of fruit flies. The study revealed that dFMR1B55 male mutants sleep more and can be considered weak rhythmic flies rather than totally arrhythmic and present a good alternative animal model of genetic disorder, which includes impairment of CR and sleep behavior. The combination of affordable videography and software used in the current study is a significant improvement over previous methods and will enable broader adaptation of such high-resolution behavior monitoring methods.


Assuntos
Ritmo Circadiano , Modelos Animais de Doenças , Drosophila melanogaster , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Sono , Animais , Síndrome do Cromossomo X Frágil/genética , Ritmo Circadiano/genética , Drosophila melanogaster/genética , Sono/fisiologia , Proteína do X Frágil da Deficiência Intelectual/genética , Masculino , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Comportamento Animal , Mutação , Gravação em Vídeo , Feminino
8.
Int J Mol Sci ; 23(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35216055

RESUMO

Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by the full mutation as well as highly localized methylation of the fragile X mental retardation 1 (FMR1) gene on the long arm of the X chromosome. Children with FXS are commonly co-diagnosed with Autism Spectrum Disorder, attention and learning problems, anxiety, aggressive behavior and sleep disorder, and early interventions have improved many behavior symptoms associated with FXS. In this review, we performed a literature search of original and review articles data of clinical trials and book chapters using MEDLINE (1990-2021) and ClinicalTrials.gov. While we have reviewed the biological importance of the fragile X mental retardation protein (FMRP), the FXS phenotype, and current diagnosis techniques, the emphasis of this review is on clinical interventions. Early non-pharmacological interventions in combination with pharmacotherapy and targeted treatments aiming to reverse dysregulated brain pathways are the mainstream of treatment in FXS. Overall, early diagnosis and interventions are fundamental to achieve optimal clinical outcomes in FXS.


Assuntos
Síndrome do Cromossomo X Frágil/genética , Animais , Encéfalo/patologia , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/patologia , Humanos , Fenótipo
9.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36012355

RESUMO

Fragile X syndrome (FXS) is the most common inherited cause of intellectual disabilities and the second most common cause after Down syndrome. FXS is an X-linked disorder due to a full mutation of the CGG triplet repeat of the FMR1 gene which codes for a protein that is crucial in synaptogenesis and maintaining functions of extracellular matrix-related proteins, key for the development of normal neuronal and connective tissue including collagen. In addition to neuropsychiatric and behavioral problems, individuals with FXS show physical features suggestive of a connective tissue disorder including loose skin and joint laxity, flat feet, hernias and mitral valve prolapse. Disturbed collagen leads to hypermobility, hyperextensible skin and tissue fragility with musculoskeletal, cardiovascular, immune and other organ involvement as seen in hereditary disorders of connective tissue including Ehlers−Danlos syndrome. Recently, FMR1 premutation repeat expansion or carrier status has been reported in individuals with connective tissue disorder-related symptoms. We examined a cohort of females with features of a connective tissue disorder presenting for genetic services using next-generation sequencing (NGS) of a connective tissue disorder gene panel consisting of approximately 75 genes. In those females with normal NGS testing for connective tissue disorders, the FMR1 gene was then analyzed using CGG repeat expansion studies. Three of thirty-nine females were found to have gray zone or intermediate alleles at a 1:13 ratio which was significantly higher (p < 0.05) when compared with newborn females representing the general population at a 1:66 ratio. This association of connective tissue involvement in females with intermediate or gray zone alleles reported for the first time will require more studies on how the size variation may impact FMR1 gene function and protein directly or in relationship with other susceptibility genes involved in connective tissue disorders.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Alelos , Tecido Conjuntivo/metabolismo , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Humanos , Recém-Nascido , Mutação , Expansão das Repetições de Trinucleotídeos , Repetições de Trinucleotídeos
10.
Int J Mol Sci ; 23(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35628235

RESUMO

A dynamic mutation in exon 1 of the FMR1 gene causes Fragile X-related Disorders (FXDs), due to the expansion of an unstable CGG repeat sequence. Based on the CGG sequence size, two types of FMR1 alleles are possible: "premutation" (PM, with 56-200 CGGs) and "full mutation" (FM, with >200 triplets). Premutated females are at risk of transmitting a FM allele that, when methylated, epigenetically silences FMR1 and causes Fragile X syndrome (FXS), a very common form of inherited intellectual disability (ID). Expansions events of the CGG sequence are predominant over contractions and are responsible for meiotic and mitotic instability. The CGG repeat usually includes one or more AGG interspersed triplets that influence allele stability and the risk of transmitting FM to children through maternal meiosis. A unique mechanism responsible for repeat instability has not been identified, but several processes are under investigations using cellular and animal models. The formation of unusual secondary DNA structures at the expanded repeats are likely to occur and contribute to the CGG expansion. This review will focus on the current knowledge about CGG repeat instability addressing the CGG sequence expands.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Alelos , DNA , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Humanos , Mutação
11.
Neurobiol Dis ; 136: 104740, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31927143

RESUMO

This review aims to assemble many years of research and clinical experience in the fields of neurodevelopment and neuroscience to present an up-to-date understanding of the clinical presentation, molecular and brain pathology associated with Fragile X syndrome, a neurodevelopmental condition that develops with the full mutation of the FMR1 gene, located in the q27.3 loci of the X chromosome, and Fragile X-associated tremor/ataxia syndrome a neurodegenerative disease experienced by aging premutation carriers of the FMR1 gene. It is important to understand that these two syndromes have a very distinct clinical and pathological presentation while sharing the same origin: the mutation of the FMR1 gene; revealing the complexity of expansion genetics.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Animais , Ataxia/genética , Ataxia/metabolismo , Ataxia/patologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Tremor/genética , Tremor/metabolismo , Tremor/patologia
12.
BMC Neurol ; 20(1): 145, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312236

RESUMO

BACKGROUND: Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late onset, X-linked genetic, neurodegenerative disorder caused by a "premutation (PM)" in the fragile X mental retardation 1 (FMR1) gene. Here we report a case of FXTAS from mainland of China who presented with rare orthostatic tremor. A review of tremor of FXTAS in the literature is also included. CASE PRESENTATION: A 67-year-old right-handed farmer started with tremor of both legs 8 years ago which was present while standing but absent when sitting or lying and progressed with unsteady gait one and a half years ago. The brain MRI showed high intensity signal in the bilateral middle cerebellar peduncles (MCP) in T2-weighted and fluid-attenuated inversion recovery (FLAIR) images and gene test for premutation for FMR1 was positive with 101 CGG repeats. The patient met the the diagnosis of definite FXTAS. Clonazepam and topiramate were administered to control tremor. We reviewed the literature and identified 64 cases with detailed clinical and genetic information. Orthostatic tremor associated with FXTAS is very rare. We found 85.2% patients reported tremor,42.6% with intention tremor,36.1% with kinetic tremor,32.8% with rest tremor and 29.5% with posture tremor. 37.7% of patients who have tremor showed at least two types of tremor. There were 6 patients with isolated rest tremor. There was 2 patient with voice tremor and 6 with head tremor. We also found that 74.6% FXTAS patients had family history of FMR1 gene associated diseases including Fragile X syndrome (FXS), FXTAS or fragile X-associated primary ovarian insufficiency (FXPOI). CONCLUSIONS: Adding our data to the available literature suggests that orthostatic tremor could be a rare initial manifestation of FXTAS and the review will increasing our understanding the phenotype of tremor in FXTAS. Family history of FMR1 gene associated diseases might be an important clue to the diagnosis.


Assuntos
Ataxia , Síndrome do Cromossomo X Frágil , Tremor , Idoso , Anticonvulsivantes/uso terapêutico , Ataxia/diagnóstico , Ataxia/tratamento farmacológico , Ataxia/genética , Ataxia/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Clonazepam/uso terapêutico , Síndrome do Cromossomo X Frágil/diagnóstico , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Topiramato/uso terapêutico , Tremor/diagnóstico , Tremor/tratamento farmacológico , Tremor/genética , Tremor/fisiopatologia
13.
Int J Mol Sci ; 21(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086711

RESUMO

Fragile X syndrome (FXS) is a leading single-gene cause of intellectual disability (ID) with autism features. This study analysed diagnostic and prognostic utility of the Fragile X-Related Epigenetic Element 2 DNA methylation (FREE2m) assessed by Methylation Specific-Quantitative Melt Analysis and the EpiTYPER system, in retrospectively retrieved newborn blood spots (NBS) and newly created dried blood spots (DBS) from 65 children with FXS (~2-17 years). A further 168 NBS from infants from the general population were used to establish control reference ranges, in both sexes. FREE2m analysis showed sensitivity and specificity approaching 100%. In FXS males, NBS FREE2m strongly correlated with intellectual functioning and autism features, however associations were not as strong for FXS females. Fragile X mental retardation 1 gene (FMR1) mRNA levels in blood were correlated with FREE2m in both NBS and DBS, for both sexes. In females, DNAm was significantly increased at birth with a decrease in childhood. The findings support the use of FREE2m analysis in newborns for screening, diagnostic and prognostic testing in FXS.


Assuntos
Transtorno Autístico/genética , Metilação de DNA/genética , Síndrome do Cromossomo X Frágil/genética , Deficiência Intelectual/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Epigênese Genética , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Gac Med Mex ; 156(1): 60-66, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32026885

RESUMO

Fragile X syndrome is the monogenetic condition that produces more cases of autism and intellectual disability. The repetition of CGG triplets (> 200) and their methylation entail the silencing of the FMR1 gene. The FMRP protein (product of the FMR1 gene) interacts with ribosomes by controlling the translation of specific messengers, and its loss causes alterations in synaptic connectivity. Screening for fragile X syndrome is performed by polymerase chain reaction. Current recommendation of the American Academy of Pediatrics is to test individuals with intellectual disability, global developmental retardation or with a family history of presence of the mutation or premutation. Hispanic countries such as Colombia, Chile and Spain report high prevalence of fragile X syndrome and have created fragile X national associations or corporations that seek to bring patients closer to available diagnostic and treatment networks.


El síndrome X frágil es la condición monogenética que produce más casos de autismo y de discapacidad intelectual. La repetición de tripletes CGG (> 200) y su metilación conllevan el silenciamiento del gen FMR1. La proteína FMRP (producto del gen FMR1) interacciona con los ribosomas, controlando la traducción de mensajeros específicos y su pérdida produce alteraciones de la conectividad sináptica. El tamizaje de síndrome X frágil se realiza por reacción en cadena de la polimerasa. La recomendación actual de la Academia Americana de Pediatría es realizar pruebas a quienes presenten discapacidad intelectual, retraso global del desarrollo o antecedentes familiares de afección por la mutación o premutación. Países hispanos como Colombia, Chile y España reportan altas prevalencias de síndrome X frágil y han creado asociaciones o corporaciones nacionales de X frágil que buscan acercar a los pacientes a redes disponibles de diagnóstico y tratamiento.


Assuntos
Transtorno Autístico/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Deficiência Intelectual/genética , Transtorno do Deficit de Atenção com Hiperatividade/genética , Lista de Checagem , Pré-Escolar , Feminino , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/diagnóstico , Síndrome do Cromossomo X Frágil/terapia , Inativação Gênica , Testes Genéticos , Humanos , Masculino , Mutação , Linhagem , Fenótipo , Ribossomos/metabolismo , Fatores Sexuais , Transmissão Sináptica
15.
BMC Med Genet ; 20(1): 81, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31096929

RESUMO

BACKGROUND: The prevalence of CGG repeat expansion mutation in FMR1 gene varies among different populations. In this study, we investigated the prevalence of this mutation in women of reproductive age from northern China. METHODS: A total of 11,891 pre-conceptional or pregnant women, including 5037 pregnant women and 7357 women with the history of spontaneous abortion or induced abortion due to delayed growth of the embryos, were recruited. The number of CGG repeats in FMR1 was measured by the TRP-PCR method. We also offered genetic counseling and prenatal diagnosis to the women carrying pre-mutation or full mutation alleles. RESULTS: The prevalence of pre-mutation in reproductive women in northern China was 1/410, higher than that in southern China and Korea but lower than that in western countries. We also found that the prevalence of pre-mutation was relatively high (1/320) in women with abortion history. CONCLUSION: Screening for CGG repeat expansion mutation in FMR1 should be recommended to the women with the history of spontaneous abortion or induced abortion due to delayed growth of the embryos.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Mutação , Reprodução , Repetições de Trinucleotídeos , Adolescente , China , Estudos de Coortes , Feminino , Humanos , Gravidez , Resultado da Gravidez , Adulto Jovem
16.
Genet Med ; 20(12): 1627-1634, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29595813

RESUMO

PURPOSE: Developmental delay phenotypes have been associated with FMR1 premutation (PM: 55-200 CGG repeats) and "gray zone" (GZ: 45-54 CGG repeats) alleles. However, these associations have not been confirmed by larger studies to be useful in pediatric diagnostic or screening settings. METHODS: This study determined the prevalence of PM and GZ alleles in two independent cohorts of 19,076 pediatric referrals to developmental delay diagnostic testing through Victorian Clinical Genetics Service (cohort 1: N = 10,235; cohort 2: N = 8841), compared with two independent general population cohorts (newborn screening N = 1997; carrier screening by the Victorian Clinical Genetics Service prepair program N = 14,249). RESULTS: PM and GZ prevalence rates were not significantly increased (p > 0.05) in either developmental delay cohort (male PM: 0.12-0.22%; female PM: 0.26-0.33%; male GZ: 0.68-0.69%; female GZ: 1.59-2.13-%) compared with general population cohorts (male PM: 0.20%; female PM: 0.27-0.82%; male GZ: 0.79%; female GZ: 1.43-2.51%). Furthermore, CGG size distributions were comparable across datasets, with each having a modal value of 29 or 30 and ~1/3 females and ~1/5 males having at least one allele with ≤26 CGG repeats. CONCLUSION: These data do not support the causative link between PM and GZ expansions and developmental-delay phenotypes in pediatric settings.


Assuntos
Deficiências do Desenvolvimento/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Expansão das Repetições de Trinucleotídeos/genética , Adolescente , Alelos , Criança , Pré-Escolar , Deficiências do Desenvolvimento/epidemiologia , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Síndrome do Cromossomo X Frágil/fisiopatologia , Testes Genéticos , Genética Populacional , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Caracteres Sexuais
17.
Mov Disord ; 33(4): 628-636, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29389022

RESUMO

BACKGROUND: Fragile X premutation carriers are at increased risk for fragile X-associated tremor ataxia syndrome (FXTAS), but to date we know little about prediction of onset and rate of progression and even less about treatment of this neurodegenerative disease. Thus, the longitudinal study of carriers, and the identification of potential biomarkers and prodromal states, is essential. Here we present results of baseline assessments from an ongoing longitudinal project. METHODS: The cohort consisted of 73 men, 48 with the fragile X mental retardation 1 (FMR1) premutation (55-200 cytosine-cytosine-guanine or CGG repeats) and 25 well-matched controls (< 40 repeats) aged between 40 and 75 years. At enrollment, none met criteria for FXTAS or had any clinically significant tremor or ataxia by blinded neurological examination. The battery consisted of measures of visual memory, spatial working memory, response inhibition, motor speed and control, planning and problem solving, sustained attention, and a standardized movement disorder evaluation. RESULTS: Contrary to expectations, there were no significant differences between premutation carriers and controls on any measure of executive function. However, the premutation carriers had significantly longer manual movement and reaction times than controls, and the significant interaction between CGG repeat and age revealed the slowest movement times among older carriers with higher CGG repeat alleles. A subset of premutation carriers had marginally lower scores on the ataxia evaluation, and they performed no differently from controls on the parkinsonism assessment. CONCLUSION: Early-developing cerebellar or fronto-motor tract white matter changes, previously documented in MRI studies, may underlie motor slowing that occurs before clinically observable neurological symptoms associated with FXTAS. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Envelhecimento , Ataxia/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Sintomas Prodrômicos , Tremor/genética , Expansão das Repetições de Trinucleotídeos/genética , Adulto , Fatores Etários , Idoso , Ataxia/complicações , Atenção , Estudos de Coortes , Feminino , Síndrome do Cromossomo X Frágil/complicações , Humanos , Inibição Psicológica , Inteligência , Masculino , Transtornos da Memória/etiologia , Memória de Curto Prazo/fisiologia , Pessoa de Meia-Idade , Estimulação Luminosa , RNA Mensageiro/metabolismo , Tempo de Reação , Análise de Regressão , Tremor/complicações
18.
Mov Disord ; 33(7): 1178-1181, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30153395

RESUMO

Background and Objective There is convincing evidence that small CGG expansion (41-54 repeats): FMR1 "gray zone" alleles (GZ) contribute to the risk of parkinsonism in males, but there is insufficient corresponding data in females. This study intends to fill this gap. Methods We screened whole-blood-derived DNA from a cohort of 601 females diagnosed with idiopathic PD, and from dry Guthrie blood spots from a local sample of 1,005 female newborns (population controls), for the size of the FMR1 CGG repeat using a PCR technique. Results We found a significant excess (8.2%) of GZ carriers compared with 5.2% in the control sample, with a P value of 0.009 for the difference in proportions. Conclusion FMR1 gray zone alleles are a significant risk factor for parkinsonism in females. These population data and occasional reports of FXTAS-like or parkinsonian manifestations in carriers suggest possible mechanisms whereby the effects of these alleles synergize with the existing pathologies underpinning parkinsonism. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Predisposição Genética para Doença/genética , Transtornos Parkinsonianos/genética , Expansão das Repetições de Trinucleotídeos/genética , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Frequência do Gene , Genótipo , Humanos , Transtornos Parkinsonianos/epidemiologia , Fatores de Risco , Fatores Sexuais
19.
Am J Med Genet A ; 176(1): 11-18, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29178241

RESUMO

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability, typically due to CGG-repeat expansions in the FMR1 gene leading to lack of expression. We identified a rare FMR1 gene mutation (c.413G>A), previously reported in a single patient and reviewed the literature for other rare FMR1 mutations. Our patient at 10 years of age presented with the classical findings of FXS including intellectual disability, autism, craniofacial findings, hyperextensibility, fleshy hands, flat feet, unsteady gait, and seizures but without the typical CGG-repeat expansion. He had more features of FXS than the previously reported patient with the same mutation. Twenty individuals reported previously with rare missense or nonsense mutations or other coding disturbances of the FMR1 gene ranged in age from infancy to 50 years; most were verbal with limited speech, had autism and hyperactivity, and all had intellectual disability. Four of the 20 individuals had a mutation within exon 15, three within exon 5, and two within exon 2. The FMR1 missense mutation (c.413G>A) is the same as in a previously reported male where it was shown that there was preservation of the post-synaptic function of the fragile X mental retardation protein (FMRP), the encoded protein of the FMR1 gene was preserved. Both patients with this missense mutation had physical, cognitive, and behavioral features similarly seen in FXS.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil/diagnóstico , Síndrome do Cromossomo X Frágil/genética , Mutação , Alelos , Criança , Análise Mutacional de DNA , Éxons , Fácies , Estudos de Associação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mutação de Sentido Incorreto , Fenótipo
20.
Cerebellum ; 15(5): 570-7, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27315125

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that occurs in FMR1 premutation carriers. The prevalence of FMR1 premutation carriers in the general population is relatively high, and although rare, a premutation in both X chromosomes may occur in females inheriting a premutation allele from each of both parent carriers. Here, we report the first female with an autozygous (homozygous by descendent) FMR1 premutation allele, who fulfills neurological and radiological FXTAS findings/criteria. Molecular characterization included CGG repeat length, AGG interruption pattern, FMR1 messenger RNA (mRNA), fragile X mental retardation protein (FMRP) level quantification, and single-nucleotide polymorphism (SNP) microarray. Neuroradiological assessment of 3-T magnetic resonance imaging and neurological and cognitive/neuropsychological evaluations were performed. Neurological and neuroradiological examination of the female with the same FMR1 allele in the premutation range (77 CGGs) demonstrated FXTAS features. Further familial evaluation showed a similar neuropsychiatric profile, with impairments in cognitive flexibility and visuospatial function, mainly. A unique family with an autozygous FMR1 premutation female is presented. Neurological/cognitive and neuroradiological examinations revealed FXTAS-specific findings in the female with the autozygous FMR1 premutation allele. The consistent molecular and cognitive/psychiatric phenotype in family members suggests that carrying one or two FMR1 premutation alleles has no effect on illness severity.


Assuntos
Ataxia/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Dosagem de Genes , Tremor/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Ataxia/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Família , Feminino , Síndrome do Cromossomo X Frágil/diagnóstico por imagem , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Tremor/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA