Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396948

RESUMO

Endocannabinoid anandamide (AEA) and paracannabinoid lysophosphatidylinositol (LPI) play a significant role in cancer cell proliferation regulation. While anandamide inhibits the proliferation of cancer cells, LPI is known as a cancer stimulant. Despite the known endocannabinoid receptor crosstalk and simultaneous presence in the cancer microenvironment of both molecules, their combined activity has never been studied. We evaluated the effect of LPI on the AEA activity in six human breast cancer cell lines of different carcinogenicity (MCF-10A, MCF-7, BT-474, BT-20, SK-BR-3, MDA-MB-231) using resazurin and LDH tests after a 72 h incubation. AEA exerted both anti-proliferative and cytotoxic activity with EC50 in the range from 31 to 80 µM. LPI did not significantly affect the cell viability. Depending on the cell line, the response to the LPI-AEA combination varied from a decrease in AEA cytotoxicity to an increase in it. Based on the inhibitor analysis of the endocannabinoid receptor panel, we showed that for the former effect, an active GPR18 receptor was required and for the latter, an active CB2 receptor. The data obtained for the first time are important for the understanding the manner by which endocannabinoid receptor ligands acting simultaneously can modulate cancer growth at different stages.


Assuntos
Ácidos Araquidônicos , Neoplasias da Mama , Endocanabinoides , Lisofosfolipídeos , Humanos , Feminino , Endocanabinoides/farmacologia , Neoplasias da Mama/tratamento farmacológico , Alcamidas Poli-Insaturadas/farmacologia , Morte Celular , Receptor CB1 de Canabinoide , Microambiente Tumoral
2.
Molecules ; 29(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542895

RESUMO

The resolution of inflammation is the primary domain of specialised pro-resolving mediators (SPMs), which include resolvins, protectins, and their forms synthesised under the influence of aspirin and the maresins. The role of these SPMs has been discussed by many authors in the literature, with particular reference to neuroinflammation and significant neurological disorders. This review discusses the role of G protein-coupled receptor 18 (GPR18), resolvin D2 (RvD2) activity, and the GPR18-RvD2 signalling axis, as well as the role of small molecule ligands of GPR18 in inflammation in various health disorders (brain injuries, neuropathic pain, neurodegenerative/cardiometabolic/cardiovascular/gastrointestinal diseases, peritonitis, periodontitis, asthma and lung inflammation, Duchenne muscular dystrophy, SARS-CoV-2-induced inflammation, and placenta disorders. The idea of biological intervention through modulating GPR18 signalling is attracting growing attention because of its great therapeutic potential. With this paper, we aimed to present a comprehensive review of the most recent literature, perform a constructive view of data, and point out research gaps.


Assuntos
Ácidos Docosa-Hexaenoicos , Inflamação , Gravidez , Feminino , Humanos , Ácidos Docosa-Hexaenoicos/farmacologia , Inflamação/tratamento farmacológico , Transdução de Sinais , SARS-CoV-2 , Mediadores da Inflamação , Receptores Acoplados a Proteínas G
3.
Pharmacol Res ; 195: 106832, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37364787

RESUMO

Accumulating evidence suggests that inflammation plays an important role in the pathophysiology of the initiation and progression of cardiovascular and metabolic diseases (CVMDs). Anti-inflammation strategies and those that promote inflammation resolution have gradually become potential therapeutic approaches for CVMDs. Resolvin D2 (RvD2), a specialized pro-resolving mediator, exerts anti-inflammatory and pro-resolution effects through its receptor GPR18, a G protein-coupled receptor. Recently, the RvD2/GPR18 axis has received more attention due to its protective role in CVMDs, including atherosclerosis, hypertension, ischaemiareperfusion, and diabetes. Here, we introduce basic information about RvD2 and GPR18, summarize their roles in different immune cells, and review the therapeutic potential of the RvD2/GPR18 axis in CVMDs. In summary, RvD2 and its receptor GPR18 play an important role in the occurrence and development of CVMDs and are potential biomarkers and therapeutic targets.


Assuntos
Doenças Cardiovasculares , Doenças Metabólicas , Humanos , Ácidos Docosa-Hexaenoicos/uso terapêutico , Inflamação/tratamento farmacológico , Anti-Inflamatórios , Doenças Cardiovasculares/tratamento farmacológico , Doenças Metabólicas/tratamento farmacológico , Biomarcadores , Receptores Acoplados a Proteínas G
4.
Int Urogynecol J ; 34(7): 1559-1565, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36576541

RESUMO

INTRODUCTION AND HYPOTHESIS: There is currently no effective treatment for interstitial cystitis / bladder pain syndrome (IC/BPS) and thus seriously reduces the quality of life of patients. The purpose of this study is to analyze the structure and function of G protein coupled receptors related to IC/BPS by integrating bioinformatics and provide basis for the development of new drugs for IC/BPS. METHODS: We used ProtParam and DNAMAN to analyze the physical and chemical properties of GPR18 and GPR183 proteins. The secondary and tertiary structure, conservative domain, phosphorylation site of both proteins were predicted by ProtScale, PredictProtein, SWISS-MODEL and GPS5.0 respectively. Multiple sequence alignment of the proteins were carried out by DNAMAN and the phylogenetic tree was constructed by MEGA. Further, the molecular docking verification of cannabidiol and both proteins were carried out by using AutoDock Vin. RESULTS: GPR18 and GPR183 proteins were composed of 331 and 361 amino acids respectively. α-helix is the highest in the secondary structure of the two proteins. Both proteins contain seven transmembrane domains specific to G protein coupled receptors. And homology analysis showed that the two proteins had high homology. In terms of molecular docking, cannabidiol, a non psychoactive component extracted from the cannabis, can form effective molecular binding with GPR18 and GPR183 proteins. CONCLUSIONS: We identified the structures of GPR18 and GPR183 proteins and their highly homologous evolutionary properties. Furthermore, both proteins can form effective binding with cannabidiol which provides new insights for the development of IC/BPS drugs by targeting G protein coupled receptors.


Assuntos
Canabidiol , Cistite Intersticial , Humanos , Cistite Intersticial/complicações , Simulação de Acoplamento Molecular , Qualidade de Vida , Canabidiol/uso terapêutico , Filogenia
5.
Int J Mol Sci ; 24(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37240392

RESUMO

The lack of selective pharmacological tools has limited the full unraveling of G protein-coupled receptor 18 (GPR18) functions. The present study was aimed at discovering the activities of three novel preferential or selective GPR18 ligands, one agonist (PSB-KK-1415) and two antagonists (PSB-CB-5 and PSB-CB-27). We investigated these ligands in several screening tests, considering the relationship between GPR18 and the cannabinoid (CB) receptor system, and the control of endoCB signaling over emotions, food intake, pain sensation, and thermoregulation. We also assessed whether the novel compounds could modulate the subjective effects evoked by Δ9-tetrahydrocannabinol (THC). Male mice or rats were pretreated with the GPR18 ligands, and locomotor activity, depression- and anxiety-like symptoms, pain threshold, core temperature, food intake, and THC-vehicle discrimination were measured. Our screening analyses indicated that GPR18 activation partly results in effects that are similar to those of CB receptor activation, considering the impact on emotional behavior, food intake, and pain activity. Thus, the orphan GPR18 may provide a novel therapeutic target for mood, pain, and/or eating disorders, and further investigation is warranted to better discern its function.


Assuntos
Transtornos da Alimentação e da Ingestão de Alimentos , Roedores , Ratos , Masculino , Camundongos , Animais , Ligantes , Dor/tratamento farmacológico , Receptores de Canabinoides , Dronabinol/farmacologia , Receptor CB1 de Canabinoide , Relação Dose-Resposta a Droga , Receptores Acoplados a Proteínas G
6.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982628

RESUMO

GPR55 is a non-canonical cannabinoid receptor, important for cancer proliferation. Depending on the ligand, it induces either cell proliferation or death. The objective of the study was to establish the mechanisms of this multidirectional signaling. Using the CRISPR-Cas9 system, the GPR55, CB1, CB2, and GPR18 receptor knockouts of the MDA-MB-231 line were obtained. After the CB2 receptor knockout, the pro-apoptotic activity of the pro-apoptotic ligand docosahexaenoyl dopamine (DHA-DA) slightly increased, while the pro-proliferative activity of the most active synthetic ligand of the GPR55 receptor (ML-184) completely disappeared. On the original cell line, the stimulatory effect of ML-184 was removed by the CB2 receptor blocker and by GPR55 receptor knockout. Thus, it can be confidently assumed that when proliferation is stimulated with the participation of the GPR55 receptor, a signal is transmitted from the CB2 receptor to the GPR55 receptor due to the formation of a heterodimer. GPR18 was additionally involved in the implementation of the pro-apoptotic effect of DHA-DA, while the CB1 receptor is not involved. In the implementation of the pro-apoptotic action of DHA-DA, the elimination of Gα13 led to a decrease in cytotoxicity. The obtained data provide novel details to the mechanism of the pro-proliferative action of GPR55.


Assuntos
Neoplasias , Receptor CB2 de Canabinoide , Receptor CB2 de Canabinoide/genética , Ligantes , Receptores de Canabinoides/metabolismo , Transdução de Sinais , Proliferação de Células , Apoptose , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptor CB1 de Canabinoide , Neoplasias/genética
7.
Cell Mol Neurobiol ; 42(7): 2379-2392, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34089427

RESUMO

Early brain injury (EBI) is the early phase of secondary complications arising from subarachnoid hemorrhage (SAH). G protein-coupled receptor 18 (GPR18) can exert neuroprotective effects during ischemia. In this study, we investigated the roles of GPR18 in different brain regions during EBI using a GPR18 agonist, resolvin D2 (RvD2). Location and dynamics of GPR18 expression were assessed by immunohistochemistry and western blotting in a rat model of SAH based on endovascular perforation. RvD2 was given intranasally at 1 h after SAH, and SAH grade, brain water content and behavior were assayed before sacrifice. TUNEL and dihydroethidium staining of the cortex were performed at 24 h after SAH. Selected brain regions were also examined for pathway related proteins using immunofluorescence and Western blotting. We found that GPR18 was expressed in meninges, hypothalamus, cortex and white matter before EBI. After SAH, GPR18 expression was increased in meninges and hypothalamus but decreased in cortex and white matter. RvD2 improved neurological scores and brain edema after SAH. RvD2 attenuated mast cell degranulation and reduced expression of chymase and tryptase expression in the meninges. In the hypothalamus, RvD2 attenuated inflammation, increased expression of proopiomelanocortin and interleukin-10, as well as decreased expression of nerve peptide Y and tumor necrosis factor-α. In cortex, RvD2 alleviated oxidative stress and apoptosis, and protected the blood-brain barrier. RvD2 also ameliorated white matter injury by elevating myelin basic protein and suppressing amyloid precursor protein. Our results suggest that GPR18 may help protect multiple brain regions during EBI, particularly in the cortex and hypothalamus. Upregulating GPR18 by RvD2 may improve neurological functions in different brain regions via multiple mechanisms.


Assuntos
Edema Encefálico , Lesões Encefálicas , Fármacos Neuroprotetores , Hemorragia Subaracnóidea , Animais , Apoptose , Ácidos Docosa-Hexaenoicos , Ratos , Ratos Sprague-Dawley , Receptores de Canabinoides
8.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163351

RESUMO

GPR18 receptor protein was detected in the heart and vasculature and appears to play a functional role in the cardiovascular system. We investigated the effects of the new GPR18 agonists PSB-MZ-1415 and PSB-MZ-1440 and the new GPR18 antagonist PSB-CB-27 on isolated human pulmonary arteries (hPAs) and compared their effects with the previously proposed, but unconfirmed, GPR18 ligands NAGly, Abn-CBD (agonists) and O-1918 (antagonist). GPR18 expression in hPAs was shown at the mRNA level. PSB-MZ-1415, PSB-MZ-1440, NAGly and Abn-CBD fully relaxed endothelium-intact hPAs precontracted with the thromboxane A2 analog U46619. PSB-CB-27 shifted the concentration-response curves (CRCs) of PSB-MZ-1415, PSB-MZ-1440, NAGly and Abn-CBD to the right; O-1918 caused rightward shifts of the CRCs of PSB-MZ-1415 and NAGly. Endothelium removal diminished the potency and the maximum effect of PSB-MZ-1415. The potency of PSB-MZ-1415 or NAGly was reduced in male patients, smokers and patients with hypercholesterolemia. In conclusion, the novel GPR18 agonists, PSB-MZ-1415 and PSB-MZ-1440, relax hPAs and the effect is inhibited by the new GPR18 antagonist PSB-CB-27. GPR18, which appears to exhibit lower activity in hPAs from male, smoking or hypercholesterolemic patients, may become a new target for the treatment of pulmonary arterial hypertension.


Assuntos
Ácidos Araquidônicos , Artéria Pulmonar , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Ácidos Araquidônicos/farmacologia , Humanos , Ligantes , Masculino , Artéria Pulmonar/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
9.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35887268

RESUMO

The GPR18 receptor, often referred to as the N-arachidonylglycine receptor, although assigned (along with GPR55 and GPR119) to the new class A GPCR subfamily-lipid receptors, officially still has the status of a class A GPCR orphan. While its signaling pathways and biological significance have not yet been fully elucidated, increasing evidence points to the therapeutic potential of GPR18 in relation to immune, neurodegenerative, and cancer processes to name a few. Therefore, it is necessary to understand the interactions of potential ligands with the receptor and the influence of particular structural elements on their activity. Thus, given the lack of an experimentally solved structure, the goal of the present study was to obtain a homology model of the GPR18 receptor in the inactive state, meeting all requirements in terms of protein structure quality and recognition of active ligands. To increase the reliability and precision of the predictions, different contemporary protein structure prediction methods and software were used and compared herein. To test the usability of the resulting models, we optimized and compared the selected structures followed by the assessment of the ability to recognize known, active ligands. The stability of the predicted poses was then evaluated by means of molecular dynamics simulations. On the other hand, most of the best-ranking contemporary CADD software/platforms for its full usability require rather expensive licenses. To overcome this down-to-earth obstacle, the overarching goal of these studies was to test whether it is possible to perform the thorough CADD experiments with high scientific confidence while using only license-free/academic software and online platforms. The obtained results indicate that a wide range of freely available software and/or academic licenses allow us to carry out meaningful molecular modelling/docking studies.


Assuntos
Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G , Ligantes , Simulação de Acoplamento Molecular , Receptores Acoplados a Proteínas G/metabolismo , Reprodutibilidade dos Testes
10.
Int J Mol Sci ; 21(16)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824681

RESUMO

O-1602 and O-1918 are atypical cannabinoid ligands for GPR55 and GPR18, which may be novel pharmaceuticals for the treatment of obesity by targeting energy homeostasis regulation in skeletal muscle. This study aimed to determine the effect of O-1602 or O-1918 on markers of oxidative capacity and fatty acid metabolism in the skeletal muscle. Diet-induced obese (DIO) male Sprague Dawley rats were administered a daily intraperitoneal injection of O-1602, O-1918 or vehicle for 6 weeks. C2C12 myotubes were treated with O-1602 or O-1918 and human primary myotubes were treated with O-1918. GPR18 mRNA was expressed in the skeletal muscle of DIO rats and was up-regulated in red gastrocnemius when compared with white gastrocnemius. O-1602 had no effect on mRNA expression on selected markers for oxidative capacity, fatty acid metabolism or adiponectin signalling in gastrocnemius from DIO rats or in C2C12 myotubes, while APPL2 mRNA was up-regulated in white gastrocnemius in DIO rats treated with O-1918. In C2C12 myotubes treated with O-1918, PGC1α, NFATc1 and PDK4 mRNA were up-regulated. There were no effects of O-1918 on mRNA expression in human primary myotubes derived from obese and obese T2DM individuals. In conclusion, O-1602 does not alter mRNA expression of key pathways important for skeletal muscle energy homeostasis in obesity. In contrast, O-1918 appears to alter markers of oxidative capacity and fatty acid metabolism in C2C12 myotubes only. GPR18 is expressed in DIO rat skeletal muscle and future work could focus on selectively modulating GPR18 in a tissue-specific manner, which may be beneficial for obesity-targeted therapies.


Assuntos
Anisóis/farmacologia , Canabidiol/análogos & derivados , Cicloexanos/farmacologia , Homeostase , Músculo Esquelético/efeitos dos fármacos , Obesidade/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Animais , Canabidiol/farmacologia , Linhagem Celular , Células Cultivadas , Ácidos Graxos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
11.
Molecules ; 25(6)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197469

RESUMO

The aim of the research was to assess the impact of O-1602-novel GPR55 and GPR18 agonist-in the rat model of detrusor overactivity (DO). Additionally, its effect on the level of specific biomarkers was examined. To stimulate DO, 0.75% retinyl acetate (RA) was administered to female rats' bladders. O-1602, at a single dose of 0.25 mg/kg, was injected intra-arterially during conscious cystometry. Furthermore, heart rate, blood pressure, and urine production were monitored for 24 h, and the impact of O-1602 on the levels of specific biomarkers was evaluated. An exposure of the urothelium to RA changed cystometric parameters and enhanced the biomarker levels. O-1602 did not affect any of the examined cystometric parameters or levels of biomarkers in control rats. However, the O-1602 injection into animals with RA-induced DO ameliorated the symptoms of DO and caused a reversal in the described changes in the concentration of CGRP, OCT3, BDNF, and NGF to the levels observed in the control, while the values of ERK1/2 and VAChT were significantly lowered compared with the RA-induced DO group, but were still statistically higher than in the control. O-1602 can improve DO, and may serve as a promising novel substance for the pharmacotherapy of bladder diseases.


Assuntos
Canabidiol/análogos & derivados , Agonistas de Receptores de Canabinoides , Receptores de Canabinoides/metabolismo , Receptores Acoplados a Proteínas G , Bexiga Urinária Hiperativa/tratamento farmacológico , Animais , Canabidiol/síntese química , Canabidiol/química , Canabidiol/farmacologia , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/farmacologia , Feminino , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Bexiga Urinária Hiperativa/metabolismo , Bexiga Urinária Hiperativa/fisiopatologia
12.
Int J Mol Sci ; 20(9)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075933

RESUMO

The orphan G-protein coupled receptor (GPCR), GPR18, has been recently proposed as a potential member of the cannabinoid family as it recognizes several endogenous, phytogenic, and synthetic cannabinoids. Potential therapeutic applications for GPR18 include intraocular pressure, metabolic disorders, and cancer. GPR18 has been reported to have high constitutive activity, i.e., activation/signaling occurs in the absence of an agonist. This activity can be reduced significantly by the A3.39N mutation. At the intracellular (IC) ends of (transmembrane helices) TMH3 and TMH6 in GPCRs, typically, a pair of oppositely charged amino acids form a salt bridge called the "ionic lock". Breaking of this salt bridge creates an IC opening for coupling with G protein. The GPR18 "ionic lock" residues (R3.50/S6.33) can form only a hydrogen bond. In this paper, we test the hypothesis that the high constitutive activity of GPR18 is due to the weakness of its "ionic lock" and that the A3.39N mutation strengthens this lock. To this end, we report molecular dynamics simulations of wild-type (WT) GPR18 and the A3.39N mutant in fully hydrated (POPC) phophatidylcholine lipid bilayers. Results suggest that in the A3.39N mutant, TMH6 rotates and brings R3.50 and S6.33 closer together, thus strengthening the GPR18 "ionic lock".


Assuntos
Modelos Moleculares , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Íons , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Receptores Acoplados a Proteínas G/química , Sódio/química
13.
Int J Mol Sci ; 20(18)2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31500240

RESUMO

Omega-3 fatty acids are important to pregnancy and neonatal development and health. One mechanism by which omega-3 fatty acids exert their protective effects is through serving as substrates for the generation of specialized pro-resolving lipid mediators (SPM) that potently limit and resolve inflammatory processes. We recently identified that SPM levels are increased in maternal blood at delivery as compared to umbilical cord blood, suggesting the placenta as a potential site of action for maternal SPM. To explore this hypothesis, we obtained human placental samples and stained for the SPM resolvin D2 (RvD2) receptor GPR18 via immunohistochemistry. In so doing, we identified GPR18 expression in placental vascular smooth muscle and extravillous trophoblasts of the placental tissues. Using in vitro culturing, we confirmed expression of GPR18 in these cell types and further identified that stimulation with RvD2 led to significantly altered responsiveness (cytoskeletal changes and pro-inflammatory cytokine production) to lipopolysaccharide inflammatory stimulation in human umbilical artery smooth muscle cells and placental trophoblasts. Taken together, these findings establish a role for SPM actions in human placental tissue.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Músculo Liso Vascular/citologia , Receptores Acoplados a Proteínas G/genética , Trofoblastos/citologia , Adulto , Células Cultivadas , Ácidos Graxos Ômega-3/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Idade Materna , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Placenta/citologia , Placenta/efeitos dos fármacos , Placenta/metabolismo , Gravidez , Receptores Acoplados a Proteínas G/metabolismo , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Adulto Jovem
14.
Cell Physiol Biochem ; 50(2): 629-639, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30308517

RESUMO

BACKGROUND/AIMS: Acute respiratory tract infection (ARTI) is the most common reason for outpatient physician office visits. Although powerful and significant in the treatment of infections, antibiotics used for ARTI inappropriately have been an important contributor to antibiotic resistance. We previously reported that Shufeng Jiedu Capsule (SJC) can effectively amplify anti-inflammatory signaling during infection. In this study, we aimed to systematically explore its composition and the mechanism of its effects in ARTI. METHODS: Pseudomonas aeruginosa (PAK) strain was used to generate a mouse model of ARTI, which were then treated with different drugs or compounds to determine the corresponding anti-inflammatory roles. High-performance liquid chromatography-quadrupole time of flight-tandem mass spectrometry. was conducted to detect the chemical compounds in SJC. RNAs from the lung tissues of mice were prepared for microarray analysis to reveal globally altered genes and the pathways involved after SJC treatment. RESULTS: SJC significantly inhibited the expression and secretion of inflammatory factors from PAK-induced mouse lung tissues or lipopolysaccharide-induced peritoneal macrophages. Verbenalin, one of the bioactive compounds identified in SJC, also showed notable anti-inflammatory effects. Microarray data revealed numerous differentially expressed genes among the different treatment groups; here, we focused on studying the role of GPR18. We found that the anti-inflammatory role of verbenalin was attenuated in GPR18 knockout mice compared with wild-type mice, although no statistically significant difference was observed in the untreated PAK-induced mice types. CONCLUSION: Our data not only showed the chemical composition of SJC, but also demonstrated that verbenalin was a significant anti-inflammatory compound, which may function through GPR18.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Glicosídeos Iridoides/uso terapêutico , Receptores Acoplados a Proteínas G/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Cápsulas/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citocinas/análise , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Inflamação/patologia , Glicosídeos Iridoides/química , Glicosídeos Iridoides/farmacologia , Lipopolissacarídeos/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos
15.
Neurochem Res ; 43(12): 2384-2392, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30443715

RESUMO

Neuroinflammation induced by protruded nucleus pulposus (NP) has been shown to play a significant role in facilitation of radicular pain. Resolvin D2 (RvD2), a novel member of resolvin family, exhibits potent anti-inflammatory, pro-resolving and antinociceptive effects. But the effect of RvD2 in radicular pain remains unknown. The radicular pain rat models were induced by application of NP to L5 dorsal root ganglion. Each animal received intrathecal injections of vehicle or RvD2 (10 ng µl-1 or 100 ng µl-1). Mechanical thresholds were determined by measuring the paw withdrawal threshold for 7 days. The expressions of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and transforming growth factor-ß1 (TGF-ß1) in ipsilateral lumbar segment of rat spinal dorsal horns were measured by using ELISA and real time-PCR. Western blot was used to measure the expressions of phosphorylated Akt (p-Akt) and phosphorylated glycogen synthase kinase 3 beta (p-GSK-3ß). The expressions and distributions of RvD2 receptor, G-protein-coupled receptor 18 (GPR18), were also explored in the spinal cord of rats by using double-label immunofluorescence. RvD2 treatment caused significant reductions in the intensity of mechanical hypersensitivity and spinal expressions of TNF-α and IL-6. Meanwhile, RvD2 increased the expressions of TGF-ß1 and regulated Akt/GSK-3ß signaling. Furthermore, immunofluorescence showed that GPR18 colocalized with neurons and astrocytes in spinal cord. The results suggested that RvD2 might attenuate mechanical allodynia via regulating the expressions of inflammatory mediators and activation of Akt/GSK-3ß signal pathway. RvD2 might offer a hopeful method for radicular pain therapy.


Assuntos
Ácidos Docosa-Hexaenoicos/administração & dosagem , Glicogênio Sintase Quinase 3 beta/metabolismo , Mediadores da Inflamação/metabolismo , Dor/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Radiculopatia/metabolismo , Receptores de Canabinoides/metabolismo , Animais , Mediadores da Inflamação/antagonistas & inibidores , Injeções Espinhais , Deslocamento do Disco Intervertebral/tratamento farmacológico , Deslocamento do Disco Intervertebral/metabolismo , Vértebras Lombares , Masculino , Dor/tratamento farmacológico , Radiculopatia/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
16.
Int Immunopharmacol ; 137: 112418, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38901244

RESUMO

Acute lung injury (ALI) is a life-threatening disease characterized by severe lung inflammation and intestinal microbiota disorder. The GPR18 receptor has been demonstrated to be a potential therapeutic target against ALI. Extracting Naringin dihydrochalcone (NDC) from the life-sustaining orange peel is known for its diverse anti-inflammatory properties, yet the specific action target remains uncertain. In the present study, we identified NDC as a potential agonist of the GPR18 receptor using virtual screening and investigated the pharmacological effects of NDC on sepsis-induced acute lung injury in rats and explored underlying mechanisms. In in vivo experiments, CLP-induced ALI model was established by cecum puncture and treated with NDC gavage one hour prior to drug administration, lung histopathology and inflammatory cytokines were evaluated, and feces were subjected to 16s rRNA sequencing and untargeted metabolomics analysis. In in vitro experiments, the anti-inflammatory properties were exerted by evaluating NDC targeting the GPR18 receptor to inhibit lipopolysaccharide (LPS)-induced secretion of TNF-α, IL-6, IL-1ß and activation of inflammatory signaling pathways in MH-S cells. Our findings showed that NDC significantly ameliorated lung damage and pro-inflammatory cytokine levels (TNF-α, IL-6, IL-1ß) in both cells and lung tissues via inhibiting the activation of STAT3, NF-κB, and NLRP3 inflammatory signaling pathways through GRP18 receptor activation. In addition, NDC can also partly reverse the imbalance of gut microbiota composition caused by CLP via increasing the proportion of Firmicutes/Bacteroidetes and Lactobacillus and decreasing the relative abundance of Proteobacteria. Meanwhile, the fecal metabolites in the NDC treatment group also significantly were changed, including decreased secretion of Phenylalanin, Glycine, and bile secretion, and increased secretion of Lysine. In conclusion, these findings suggest that NDC can alleviate sepsis-induced ALI via improving gut microbial homeostasis and metabolism and mitigate inflammation via activating GPR18 receptor. In conclusion, the results indicate that NDC, derived from the typical orange peel of food, could significantly contribute to development by enhancing intestinal microbial balance and metabolic processes, and reducing inflammation by activating the GPR18 receptor, thus mitigating sepsis-induced ALI and expanding the range of functional foods.


Assuntos
Lesão Pulmonar Aguda , Anti-Inflamatórios , Chalconas , Citocinas , Microbioma Gastrointestinal , Receptores Acoplados a Proteínas G , Sepse , Animais , Receptores Acoplados a Proteínas G/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/microbiologia , Lesão Pulmonar Aguda/metabolismo , Masculino , Sepse/tratamento farmacológico , Sepse/complicações , Citocinas/metabolismo , Ratos , Chalconas/farmacologia , Chalconas/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Ratos Sprague-Dawley , Homeostase/efeitos dos fármacos , Linhagem Celular , Pulmão/patologia , Pulmão/efeitos dos fármacos , Modelos Animais de Doenças , Lipopolissacarídeos , Humanos , Flavanonas
17.
Adv Pharmacol ; 97: 257-281, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37236761

RESUMO

Non-resolving inflammation is an underpinning of cardiovascular diseases including atherosclerosis. The resolution of inflammation is an active and highly coordinated process that involves the generation of specialized pro-resolving mediators (SPMs), and other factors including proteins, gases, and nucleotides. SPMs comprise a superfamily of lipid mediators that includes lipoxins, resolvins, maresins and protectins. SPMs act through distinct G protein-coupled receptors (GPCRs) and have been extensively studied in animal models of cardiovascular diseases. An emerging body of literature suggests that SPMs have protective roles in atherosclerosis as demonstrated using specific SPM as well as mice deficient in their receptors. This review will highlight a relatively new pro-resolving signaling axis, namely Resolvin D2-GPR18, and how understanding detailed mechanisms and cellular specificity of this signaling axis may help inform the development of more targeted pro-resolution therapies for atherosclerosis and related cardiovascular pathologies.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Camundongos , Animais , Doenças Cardiovasculares/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Aterosclerose/tratamento farmacológico , Fenômenos Fisiológicos Cardiovasculares , Receptores Acoplados a Proteínas G
18.
Cell Signal ; 109: 110768, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37315751

RESUMO

Acute lung injury is significantly associated with the aberrant activation and pyroptosis of alveolar macrophages. Targeting the GPR18 receptor presents a potential therapeutic approach to mitigate inflammation. Verbenalin, a prominent component of Verbena in Xuanfeibaidu (XFBD) granules, is recommended for treating COVID-19. In this study, we demonstrate the therapeutic effect of verbenalin on lung injury through direct binding to the GPR18 receptor. Verbenalin inhibits the activation of inflammatory signaling pathways induced by lipopolysaccharide (LPS) and IgG immune complex (IgG IC) via GPR18 receptor activation. The structural basis for verbenalin's effect on GPR18 activation is elucidated through molecular docking and molecular dynamics simulations. Furthermore, we establish that IgG IC induces macrophage pyroptosis by upregulating the expression of GSDME and GSDMD through CEBP-δ activation, while verbenalin inhibits this process. Additionally, we provide the first evidence that IgG IC promotes the formation of neutrophil extracellular traps (NETs), and verbenalin suppresses NETs formation. Collectively, our findings indicate that verbenalin functions as a "phytoresolvin" to promote inflammation regression and suggests that targeting the C/EBP-δ/GSDMD/GSDME axis to inhibit macrophage pyroptosis may represent a novel strategy for treating acute lung injury and sepsis.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Sepse , Humanos , Complexo Antígeno-Anticorpo/efeitos adversos , Simulação de Acoplamento Molecular , Lesão Pulmonar Aguda/tratamento farmacológico , Sepse/tratamento farmacológico , Inflamação , Imunoglobulina G/farmacologia , Receptores Acoplados a Proteínas G
19.
Med Chem ; 19(9): 838-847, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37038675

RESUMO

GPCR superfamily, the largest known family of membrane receptors, consists of six classes from A to F. GPR18 and GPR55, δ-branch of A class, had been reported to have no confirmed endogenous ligand and were named as "orphan receptors". Previous studies suggest that both GPR18 and GPR55 are possibly related to the migration and proliferation of cancer cells, macrophages and other inflammation-associated immune cells. Thus, they may be potential targets for inflammation, cancer and analgesia therapy. In this paper, we aimed to summarize the chemical structures and bioactivities of the agonists and antagonists of GPR18 and GPR55; moreover, we have briefly discussed the challenges and future perspectives in this field. This review will be beneficial for further design and synthesis of efficient agonists and antagonists towards GPR18 and GPR55- related disease treatment.


Assuntos
Inflamação , Receptores Acoplados a Proteínas G , Humanos , Receptores de Canabinoides , Ligantes
20.
Pharmaceutics ; 15(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37242769

RESUMO

Inflammation resolution is an active process via specialized pro-resolving mediators (SPMs) to fight invading microbes and repair tissue injury. RvD1 and RvD2 are SPMs produced from DHA during inflammation responses and show a benefit in treating inflammation disorders, but it is not completely understood how they act on vasculature and immune cells in the lung to promote inflammation resolution programs. Here, we studied how RvD1 and RvD2 regulated the interactions between endothelial cells and neutrophils in vitro and in vivo. In an acute lung inflammation (ALI) mouse model, we found that RvD1 and RvD2 resolved lung inflammation via their receptors (ALX/GPR32 or GPR18) and enhanced the macrophage phagocytosis of apoptotic neutrophils, which may be the molecular mechanism of lung inflammation resolution. Interestingly, we observed the higher potency of RvD1 over RvD2, which may be associated with unique downstream signaling pathways. Together, our studies suggest that the targeted delivery of these SPMs into inflammatory sites may be novel strategies with which to treat a wide range of inflammatory diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA