Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 614
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(12): 5589-5597, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38485130

RESUMO

Heavy metal pollution treatment in industrial wastewater is crucial for protecting biological and environmental safety. However, the highly efficient and selective removal of heavy metal ions from multiple cations in wastewater is a significant challenge. This work proposed a pulse electrochemical method with a low-/high-voltage periodic appearance to selectively recover heavy metal ions from complex wastewater. It exhibited a higher recovery efficiency for heavy metal ions (100% for Pb2+ and Cd2+, >98% for Mn2+) than other alkali and alkaline earth metal ions (Na+, Ca2+, and Mg2+ were kept below 3.6, 1.3, and 2.6%, respectively) in the multicomponent solution. The energy consumption was only 34-77% of that of the direct current electrodeposition method. The results of characterization and experiment unveil the mechanism that the low-/high-voltage periodic appearance can significantly suppress the water-splitting reaction and break the mass-transfer limitation between heavy metal ions and electrodes. In addition, the plant study demonstrates the feasibility of treated wastewater for agricultural use, further proving the high sustainability of the method. Therefore, it provides new insights into the selective recovery of heavy metals from industrial wastewater.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Águas Residuárias , Metais Pesados/química , Eletricidade , Água , Íons , Adsorção , Poluentes Químicos da Água/química
2.
Environ Sci Technol ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38247403

RESUMO

The mobility and distribution of heavy metal ions (HMs) in aquatic environments are significantly influenced by humic acid (HA), which is ubiquitous. A quantitative understanding of the interaction mechanism underlying the adsorption and retention of HMs by HA is of vital significance but remains elusive. Herein, the interaction mechanism between HA and different types of HMs (i.e., Cd(II), Pb(II), arsenate, and chromate) was quantitatively investigated at the nanoscale. Based on quartz crystal microbalance with dissipation tests, the adsorption capacities of Pb(II), Cd(II), As(V), and Cr(VI) ionic species on the HA surface were measured as ∼0.40, ∼0.25, ∼0.12, and ∼0.02 nmol cm-2, respectively. Atomic force microscopy force results showed that the presence of Pb(II)/Cd(II) cations suppressed the electrostatic double-layer repulsion during the approach of two HA surfaces and the adhesion energy during separation was considerably enhanced from ∼2.18 to ∼5.05/∼4.18 mJ m-2. Such strong adhesion stems from the synergistic metal-HA complexation and cation-π interaction, as evidenced by spectroscopic analysis and theoretical simulation. In contrast, As(V)/Cr(VI) oxo-anions could form only weak hydrogen bonds with HA, resulting in similar adhesion energies for HA-HA (∼2.18 mJ m-2) and HA-As(V)/Cr(VI)-HA systems (∼2.26/∼1.96 mJ m-2). This work provides nanoscale insights into quantitative HM-HA interactions, improving the understanding of HMs biogeochemical cycling.

3.
J Fluoresc ; 34(1): 449-463, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37294382

RESUMO

Luminescent antimony doped tin oxide nanoparticles have drawn tremendous attention from researchers due to its low cost, chemical inertness and stability. Herein, a quick, facile and economic hydrothermal/solvothermal method was utilized for the preparation of antimony doped (1%, 3%, 5%, 7% and 10%) tin oxide nanoparticles. The antimony doping in a reasonable range can change the properties of SnO2. As such, a lattice distortion increases with increase in doping, which is evidenced through crystallographic studies. It was found that the highest photocatalytic degradation efficiency of malachite green (MG) dye of about 80.86% was achieved with 10% Sb-doped SnO2 in aqueous media due to small particle size. Moreover, 10% Sb-doped SnO2 also showed the highest fluorescence quenching efficiency of about 27% for Cd2+ of concentration 0.11 µg/ml in the drinking water. The limit of detection (LOD) comes out as 0.0152 µg/ml. This sample selectively detected the cadmium ion even in the presence of other heavy metal ions. Notably, 10% Sb-doped SnO2 could appeared as a promising sensor for fast analysis of Cd2+ ions in real samples.

4.
Environ Res ; 260: 119544, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38969312

RESUMO

The main aim of this review is to provide a holistic summary of the latest advances within the research area focusing on the detection of heavy metal ion pollution, particularly the sensing strategies. The review explores various heavy metal ion detection approaches, encompassing spectrometry, electrochemical methods, and optical techniques. Numerous initiatives have been undertaken in recent times in response to the increasing demand for fast, sensitive, and selective sensors. Notably, fluorescent sensors have acquired prominence owing to the numerous advantages such as good specificity, reversibility, and sensitivity. Further, this review also explores the advantages of various nanomaterials employed in sensing heavy metal ions. In this regard, exclusive emphasis is placed on fluorescent nanomaterials based on organic dyes, quantum dots, and fluorescent aptasensors for metal ion removal from aqueous systems, and to identify the fate of heavy metal ions in the natural environment.


Assuntos
Recuperação e Remediação Ambiental , Corantes Fluorescentes , Metais Pesados , Metais Pesados/análise , Corantes Fluorescentes/química , Recuperação e Remediação Ambiental/métodos , Pontos Quânticos/química , Poluentes Químicos da Água/análise
5.
Environ Res ; 244: 117966, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109960

RESUMO

The development of an effective sensing platform is critical for the electrochemical detection of heavy metal ions (HMIs) in water. In this study, we fabricated a newly designed sensor through the in situ assembly of reduced graphene oxide (rGO) and polyphosphate nanoparticles (polyP NPs) on a carbon cloth electrode via microorganism-mediated green biochemical processes. The characterization results revealed that the rGO produced via microbial reduction had a three-dimensional porous structure, serving as an exceptional scaffold for hosting polyP NPs, and the polyP NPs were evenly distributed on the rGO network. In terms of detecting HMIs, the numerous functional groups of polyP NPs play a major role in the coordination with the cations. This electrochemical sensor, based on polyP NPs/rGO, enabled the individual and simultaneous determination of lead ion (Pb2+) and copper ion (Cu2+) with detection limits of 1.6 nM and 0.9 nM, respectively. Additionally, the electrode exhibited outstanding selectivity for the target analytes in the presence of multiple interfering metal ions. The fabricated sensor was successfully used to determine Pb2+/Cu2+ in water samples with satisfactory recovery rates ranging from 92.16% to 104.89%. This study establishes a facile, cost-effective, and environmentally friendly microbial approach for the synthesis of electrode materials and the detection of environmental pollutants.


Assuntos
Cobre , Grafite , Nanopartículas Metálicas , Chumbo , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Eletrodos , Água , Íons
6.
Ecotoxicol Environ Saf ; 275: 116265, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547730

RESUMO

The utilization of gypsum and biomass in environmental remediation has become a novel approach to promote waste recycling. Generally, raw waste materials exhibit limited adsorption capacity for heavy metal ions (HMIs) and often result in poor solid-liquid separation. In this study, through co-pyrolysis with corncob waste, titanium gypsum (TiG) was transformed into magnetic adsorbents (GCx, where x denotes the proportion of corncob in the gypsum-corncob mixture) for the removal of Cd(II) and Pb(II). GC10, the optimal adsorbent, which was composed primarily of anhydrite, calcium sulfide, and magnetic Fe3O4, exhibited significantly faster adsorption kinetics (rate constant k1 was 218 times and 9 times of raw TiG for Cd(II) and Pb(II)) and higher adsorption capacity (Qe exceeded 200 mg/g for Cd(II) and 400 mg/g for Pb(II)) than raw TiG and previous adsorbents. Cd(II) removal was more profoundly inhibited in a Cd(II) + Pb(II) binary system, suggesting that GC10 showed better selectivity for Pb(II). Moreover, GC10 could be easily separated from purified water for further recovery, due to its high saturation magnetization value (6.3 emu/g). The superior removal capabilities of GC10 were due to adsorption and surface precipitation of metal sulfides and metal sulfates on the adsorbent surface. Overall, these waste-derived magnetic adsorbents provide a novel and sustainable approach to waste recycling and the deep purification of multiple HMIs.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Cádmio/análise , Sulfato de Cálcio , Zea mays , Chumbo , Poluentes Químicos da Água/análise , Titânio , Adsorção , Fenômenos Magnéticos , Cinética
7.
Mikrochim Acta ; 191(5): 246, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38580781

RESUMO

Heavy metal pollution has attracted global attention because of its high toxicity, non-biodegradability, and carcinogenicity. Electrochemical sensors are extensively employed for the detection of low concentrations of heavy metal ions (HMIs). However, their applicability is often limited to the detection of ions that exhibit electrochemical signals exclusively in aqueous solutions. In this study, we proposed a multi-responsive detection platform based on the modification of horseradish peroxidase@zeolitic imidazolate frameworks-8/thionine/gold/ionic liquid-reduced graphene oxide (HRP@ZIF-8/THI/Au/IL-rGO). This platform demonstrated its capability to detect various metal ions, including those without conventional electrochemical signals. The Au/IL-rGO composite structure enhanced the specific surface area available for the reaction. Furthermore, the in situ growth of HRP@ZIF-8 not only shielded the THI signal prior to detection but also protected the electrode material. It was important to note that the introduced edetate disodium dihydrate (EDTA) had the ability to complex with various HMIs. When excess EDTA was present, it could cleave ZIF-8 and release HRP. In the presence of hydrogen peroxide (H2O2), HRP promoted the oxidation of THI previously reduced by the electrode and thus showed excellent sensitivity for HMIs detection. The proposed method overcame the limitation of traditional electrochemical sensors, which solely relied on electrochemical signals for detecting metal ions. This offers a novel approach to enhance electrochemical ion sensing detection.

8.
Mikrochim Acta ; 191(9): 542, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153097

RESUMO

As an ideal transition metal oxide, Co3O4 is a P-type semiconductor with excellent electrical conductivity, non-toxicity and low cost. This work reports the successful construction of Co3O4 materials derived from metal-organic frameworks (MOFs) using a surfactant micelle template-solvothermal method. The modified electrodes are investigated for their ability to electrochemically detect Pb2+ and Cu2+ in aqueous environments. By adjusting the mass ratios of alkaline modifiers, the morphological microstructures of Co3O4-X exhibit a transition from distinctive microspheres composed of fiber stacks to rods. The results indicate that Co3O4-1(NH4F/CO(NH2)2 = 1:0) has a distinctive microsphere structure composed of stacked fibers, unlike the other two materials. Co3O4-1/GCE is used as the active material of the modified electrode, it shows the largest peak response currents to Pb2+ and Cu2+, and efficiently detects Pb2+ and Cu2+ in the aqueous environment individually and simultaneously. The linear response range of Co3O4-1/GCE for the simultaneous detection of Pb2+ and Cu2+ is 0.5-1.5 µM, with the limits of detection (LOD, S/N = 3) are 9.77 nM and 14.97 nM, respectively. The material exhibits a favorable electrochemical response, via a distinctive Co3O4-1 microsphere structure composed of stacked fibers. This structure enhances the number of active adsorption sites on the material, thereby facilitating the adsorption of heavy metal ions (HMIs). The presence of oxygen vacancies (OV) can also facilitate the adsorption of ions. The Co3O4-1/GCE electrode also exhibits excellent anti-interference ability, stability, and repeatability. This is of great practical significance for detecting Pb2+ and Cu2+ in real water samples and provides a new approach for developing high-performance metal oxide electrochemical sensors derived from MOFs.

9.
Mikrochim Acta ; 191(5): 254, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594554

RESUMO

A fluorescent multichannel sensor array has been established based on three carbon dots derived from Tibetan medicine waste for rapid quantification and discrimination of six heavy metal ions. Due to the chelation between metal ions and carbon dots (CDs), this fluorescence "turn off" mode sensing array can quantify six metal ions as low as "µM" level. Moreover, the six heavy metal ions display varying quenching effects on these three CDs owing to diverse chelating abilities between each other, producing differential fluorescent signals for three sensing channels, which can be plotted as specific fingerprints and converted into intuitive identification profiles via principal component analysis (PCA) and hierarchical cluster analysis (HCA) technologies to accurately distinguish Cu2+, Fe3+, Mn2+, Ag+, Ce4+, and Ni2+ with the minimum differentiated concentration of 5 µM. Valuably, this sensing array unveils good sensitivity, exceptional selectivity, ideal stability, and excellent anti-interference ability for both mixed standards and actual samples. Our contribution provides a novel approach for simultaneous determination of multiple heavy metal ions in environmental samples, and it will inspire the development of other advanced optical sensing array for simultaneous quantification and discrimination of multiple targets.

10.
Sensors (Basel) ; 24(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257509

RESUMO

Gallium liquid metals (LMs) like Galinstan and eutectic Gallium-Indium (EGaIn) have seen increasing applications in heavy metal ion (HMI) sensing, because of their ability to amalgamate with HMIs like lead, their high hydrogen potential, and their stable electrochemical window. Furthermore, coating LM droplets with nanopowders of tungsten oxide (WO) has shown enhancement in HMI sensing owing to intense electrical fields at the nanopowder-liquid-metal interface. However, most LM HMI sensors are droplet based, which show limitations in scalability and the homogeneity of the surface. A scalable approach that can be extended to LM electrodes is therefore highly desirable. In this work, we present, for the first time, WO-Galinstan HMI sensors fabricated via photolithography of a negative cavity, Galinstan brushing inside the cavity, lift-off, and galvanic replacement (GR) in a tungsten salt solution. Successful GR of Galinstan was verified using optical microscopy, SEM, EDX, XPS, and surface roughness measurements of the Galinstan electrodes. The fabricated WO-Galinstan electrodes demonstrated enhanced sensitivity in comparison with electrodes structured from pure Galinstan and detected lead at concentrations down to 0.1 mmol·L-1. This work paves the way for a new class of HMI sensors using GR of WO-Galinstan electrodes, with applications in microfluidics and MEMS for a toxic-free environment.

11.
Sensors (Basel) ; 24(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38257438

RESUMO

Layer-by-layer (LbL) immobilization of DNA aptamers in the realm of electrochemical detection of heavy metal ions (HMIs) offers an enhancement in specificity, sensitivity, and low detection limits by leveraging the cross-reactivity obtained from multiple interactions between immobilized aptamers and developed material surfaces. In this research, we present a LbL approach for the immobilization of thiol- and amino-modified DNA aptamers on a Ag-incorporated cobalt-succinate metal-organic framework (MOF) (Ag@Co-Succinate) to achieve a cross-reactive effect on the electrochemical behavior of the sensor. The solvothermal method was utilized to synthesize Ag@Co-Succinate, which was also characterized through various techniques to elucidate its structure, morphology, and presence of functional groups, confirming its suitability as a host matrix for immobilizing both aptamers. The Ag@Co-Succinate aptasensor exhibited extraordinary sensitivity and selectivity towards Hg(II) ions in electrochemical detection, attributed to the unique binding properties of the immobilized aptamers. The exceptional limit of detection of 0.3 nM ensures the sensor's suitability for trace-level Hg(II) detection in various environmental and analytical applications. Furthermore, the developed sensor demonstrated outstanding repeatability, highlighting its potential for long-term and reliable monitoring of Hg(II).


Assuntos
Aptâmeros de Nucleotídeos , Mercúrio , Estruturas Metalorgânicas , Ácido Succínico , Succinatos , Íons
12.
J Environ Manage ; 351: 119997, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160546

RESUMO

We report a novel modified semi-carbonized fiber (CF) prepared using cotton and acrylic clothes for derisking contaminated water to realize the resource utilization of discarded clothes in wastewater treatment. In this study, amphoteric and auxiliary modifiers were used to modify CFs for preparing amphoteric and amphoteric-auxiliary CFs. The basic physicochemical properties of different modified CFs were determined, and the microscopic morphology of modified CFs was detected. The isothermal adsorption characteristics of Cu(II) and Pb(II) on different modified CFs were investigated by the batch method, and the effect mechanisms of temperature, pH, ionic strength, and material dose were compared. Physicochemical properties and microscopic morphology results proved that amphoteric and auxiliary modifiers were modified on the CF surface and changed the surface properties of CF. The adsorption capacities of Cu(II) and Pb(II) on modified CFs increased with the increase in equilibrium concentration of Cu(II) and Pb(II), and the isotherm was more suitable for Freundlich model fitting than that of the Langmuir model. The maximum adsorption capacities (qm) of Cu(II) and Pb(II) on different modified CFs were 60.72-81.26 mg/g and 102.58-161.72 mg/g, respectively, and presented the trend of amphoteric-auxiliary CFs > amphoteric CFs > CFs. Increasing pH and temperature and decreasing ionic strength and material dose were beneficial to Cu(II) and Pb(II) adsorption. The Cu(II) and Pb(II) adsorption process was a spontaneous, endothermic, and entropy-increasing reaction, and the adsorption rate was controlled by chemisorption. The adsorption amount of amphoteric-auxiliary CFs maintained about 65% of original materials after 3 times of regeneration. Electrostatic attraction, precipitation, complexation, and ion exchange were the main adsorption mechanisms. The cation exchange capacity and total pore volume of modified CFs were key to determining qm of Cu(II) and Pb(II).


Assuntos
Chumbo , Poluentes Químicos da Água , Temperatura , Cátions , Adsorção , Água , Vestuário , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio
13.
J Environ Manage ; 367: 121974, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39079498

RESUMO

Multiple porous carbon materials have great promise and potential in the capacitive deionization (CDI) field. Specific surface area (SSA), pore size distribution, and preparation method of CDI electrode materials are essential for the treatment of heavy metal ions. In this work, PPy composited porous carbon electrodes (hypercrosslinked polymers/polypyrrole, HCPs/PPy) were obtained by one-step crosslinked carbonization preparation and electro-deposition. The diverse pore structure gives the composite electrode a large SSA and excellent adsorption performance. HCPs/PPy-4 gives a high SSA of 251.26 m2/g. In the CDI process, the adsorption capacity of HCPs/PPy-4 for Fe3+, Cu2+, Pb2+, and Ag+ is 20.69 mg/g, 37.81 mg/g, 26.86 mg/g, and 40.95 mg/g. The negative electrode recoveries for the adsorption of the four ions were reached 81.2%, 89.2%, 85.5%, and 100%, respectively. It indicates that HCPs/PPy is a novel and potentially porous carbon electrode for high-performance CDI.


Assuntos
Eletrodos , Metais Pesados , Metais Pesados/química , Adsorção , Porosidade , Íons , Carbono/química , Polímeros/química , Pirróis
14.
Molecules ; 29(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38999112

RESUMO

With the rapid development of industry, the discharge of heavy metal-containing wastewater poses a significant threat to aquatic and terrestrial environments as well as human health. This paper provides a brief introduction to the basic principles of ion-imprinted polymer preparation and focuses on the interaction between template ions and functional monomers. We summarized the current research status on typical heavy metal ions, such as Cu(II), Ni(II), Cd(II), Hg(II), Pb(II), and Cr(VI), as well as metalloid metal ions of the As and Sb classes. Furthermore, it discusses recent advances in multi-ion-imprinted polymers. Finally, the paper addresses the challenges faced by ion-imprinted technology and explores its prospects for application.

15.
Compr Rev Food Sci Food Saf ; 23(4): e13358, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38923121

RESUMO

Low-cost, reliable, and efficient biosensors are crucial in detecting residual heavy metal ions (HMIs) in food products. At present, based on distance-induced localized surface plasmon resonance of noble metal nanoparticles, enzyme-mimetic reaction of nanozymes, and chelation reaction of metal chelators, the constructed optical sensors have attracted wide attention in HMIs detection. Besides, based on the enrichment and signal amplification strategy of nanomaterials on HMIs and the construction of electrochemical aptamer sensing platforms, the developed electrochemical biosensors have overcome the plague of low sensitivity, poor selectivity, and the inability of multiplexed detection in the optical strategy. Moreover, along with an in-depth discussion of these different types of biosensors, a detailed overview of the design and application of innovative devices based on these sensing principles was provided, including microfluidic systems, hydrogel-based platforms, and test strip technologies. Finally, the challenges that hinder commercial application have also been mentioned. Overall, this review aims to establish a theoretical foundation for developing accurate and reliable sensing technologies and devices for HMIs, thereby promoting the widespread application of biosensors in the detection of HMIs in food.


Assuntos
Técnicas Biossensoriais , Contaminação de Alimentos , Metais Pesados , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Metais Pesados/análise , Contaminação de Alimentos/análise , Análise de Alimentos/métodos , Análise de Alimentos/instrumentação
16.
Environ Monit Assess ; 196(7): 611, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862850

RESUMO

The wastewater effluent is responsible for the major ecological impact of the dairy sectors. To avoid the negative consequences of heavy metal pollution on the ecosystem, creative, affordable, and efficient treatment methods are now required before the effluent flows into the surrounding area. This study was aimed at assessing the effectiveness of three different adsorbents for Cd+2 and Cr+6 ions from wastewater effluents of dairy farms, including chitosan (CS), clinoptilolite zeolite (CZ), and chitosan/clinoptilolite zeolite (CS/CZ) composite. The adsorption kinetics of the CS/CZ composite were established using the effects of the key variables (pH, agitation speed, adsorbent concentrations, and contact durations). The removal (%) and adsorption capacities, qe (mg/g), were calculated using the data from the adsorption kinetics. Wastewater samples (n = 60) were collected from the wastewater effluents of five farms. Cd+2 and Cr+6 ion concentrations in all collected samples were determined. Following the CS/CZ composite creation, it was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (X-RD), and Fourier-transform infrared spectrum (FT-IR). The CS/CZ composite had an adsorption capacity of 92.4 and 96.5 mg/g for both Cd+2 and Cr+6 ions at a concentration of 2.0 g/100 ml, respectively, while the CZ adsorption capacities for the two ions were 87.5 mg/g and 61.0 mg/g, respectively, at 4.0 g/100 ml concentration. The CS was achieved at 55.56 mg/g and 33.3 mg/g, respectively, at the same concentration. The efficiency of heavy metal removal was enhanced by increasing adsorbent concentration, agitation speed, and contact duration. Using CS/CZ composite at 2.0 g/100 ml concentration, 180 min of contact time, and 300 rpm agitation speed, the greatest removal efficiencies for Cd+2 and Cr+6 ions (96.43 and 98.75%, respectively) were demonstrated.


Assuntos
Cádmio , Quitosana , Indústria de Laticínios , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Zeolitas , Zeolitas/química , Quitosana/química , Poluentes Químicos da Água/análise , Águas Residuárias/química , Adsorção , Cádmio/análise , Animais , Eliminação de Resíduos Líquidos/métodos , Bovinos , Cromo/análise , Cromo/química , Fazendas , Purificação da Água/métodos
17.
Waste Manag Res ; 42(8): 608-617, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38353237

RESUMO

This study addresses the urgent issue of water pollution caused by iron (Fe) and manganese (Mn) ions. It introduces an innovative approach using graphene oxide (GO) and GO-decorated polyethersulphone (PES) membranes to efficiently remove these ions from contaminated water. The process involves integrating GO into PES membranes to enhance their adsorption capacity. Characterization techniques, including scanning electron microscopy, Fourier-transform infrared, and contact angle measurements, were used to assess structural and surface properties. The modified membranes demonstrated significantly improved adsorption compared to pristine PES. Notably, they achieved over 94% removal of Mn2+ and 93.6% of Fe2+ in the first filtration cycle for water with an initial concentration of 100 ppm. Continuous filtration for up to five cycles maintained removal rates above 60%. This research advances water purification materials, offering a promising solution for heavy metal ion removal. GO-decorated PES membranes may find application in large-scale water treatment, addressing environmental and public health concerns.


Assuntos
Grafite , Ferro , Manganês , Membranas Artificiais , Polímeros , Sulfonas , Poluentes Químicos da Água , Purificação da Água , Grafite/química , Polímeros/química , Manganês/química , Ferro/química , Purificação da Água/métodos , Adsorção , Sulfonas/química , Filtração/métodos
18.
J Fluoresc ; 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37542589

RESUMO

In this work, we introduced a simple aggregation-induced emission enhancement (AIEE) sensor (PHCS) which can selectively detect and discriminate three environmentally and biologically imperative heavy metal ions (Cu2+, Co2+ and Hg2+) and a hazard class 1 categorized nitro-explosive picric acid (PA) in differential media. By virtue of its weak fluorescence attributes in pure organic medium owing to the synergistic operation of multiple photophysical quenching mechanisms, the molecular probe showcased highly selective 'TURN ON' fluorogenic response towards hazardous Hg2+ with a limit of detection (LOD) as low as 97 nM. Comprehensive investigation of binding mechanism throws light on the cumulative effect of probe-metal complexation induced chelation enhanced fluorescence (CHEF) effect and subsequent AIEE activation within the formed probe-metal adducts. Noteworthily, the probe (PHCS) can be readily used in real water samples for the quantitative determination of Hg2+ in a wide concentration range. In addition, the probe displayed modest colorimetric recognition performances to selectively detect and discriminate two essential heavy metal ions (Cu2+ and Co2+) with a LOD of 96 nM and 65 nM for Cu2+ and Co2+ respectively, in semi-aqueous medium. Intriguingly, based on high photoluminescence efficiency, the AIEE active nano-aggregated PHCS displayed a remarkable propensity to be used as a selective and ultra-sensitive 'TURN-OFF' fluorogenic chemosensor towards PA with LOD of 34.4 ppb in aqueous medium. Finally, we specifically shed light on the interaction of PHCS hydrosol towards PA using some unprecedented techniques, which helped uncover new photophysical insights of probe-explosive molecule interaction. We shed light on novel photophysical insights toward unique multifunctional sensory aptitude of a simple aggregation-induced emission enhancement active organic functional molecule in differential media, enabling ultra-sensitive discriminative detection of toxic heavy metal ions and explosive molecule simultaneously.

19.
Anal Bioanal Chem ; 415(14): 2705-2713, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37017723

RESUMO

This work describes two new colorimetric nanosensors for label-free, equipment-free quantitative detection of nanomolar copper (II) (Cu2+) and mercury (II) (Hg2+) ions. Both are based on the analyte-promoted growth of Au nanoparticles (AuNPs) from the reduction of chloroauric acid by 4-morpholineethanesulfonic acid. For the Cu2+ nanosensor, the analyte can accelerate such a redox system to rapidly form a red solution containing dispersed, uniform, spherical AuNPs that is related to these particles' surface plasmon resonance property. For the Hg2+ nanosensor, on the other hand, a blue mixture consisting of aggregated, ill-defined AuNPs with various sizes can be created, showing a significantly enhanced Tyndall effect (TE) signal (in comparison with that produced in the red solution of AuNPs). By using a timer and a smartphone to quantitatively measure the time of producing the red solution and the TE intensity (i.e., the average gray value of the corresponding image) of the blue mixture, respectively, the developed nanosensors are well demonstrated to achieve linear ranges of 6.4 nM to 100 µM and 6.1 nM to 1.56 µM for Cu2+ and Hg2+, respectively, with detection limits down to 3.5 and 0.1 nM, respectively. The acceptable recovery results obtained from the analysis of the two analytes in the complex real water samples including drinking water, tap water, and pond water ranged from 90.43 to 111.56%.

20.
Biometals ; 36(4): 829-845, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36454510

RESUMO

In the present work, the removal of Cr (VI), Cd (II) and Pb (II) at 50 mg/L of each metal ion concentration was investigated by Microbacterium paraoxydans strain VSVM IIT(BHU). The heavy metal binding on the bacterial cell surface was confirmed through X-ray photoelectron spectroscopy and energy dispersive X-ray. X-ray photoelectron spectroscopy analysis also confirmed the reduction of Cr (VI) to Cr (III). Heavy metal removal dynamics was investigated by evaluating dimensionless, and the value of Nk (9.49 × 10-3, 9.92 × 10-3 and 1.23 × 10-2 for Cr (VI), Cd (II) and Pb (II) ions) indicated that the removal of heavy metals by bacterial isolate was mixed diffusion and transfer controlled. It was found that both the experimental and predicted values for isolated bacterial strain coincided with each other with a good R2 value in the L-M Algorithm range of 0.94-0.98 for the ternary metal ion system. The bacterial isolate presented a maximum heavy metal ion removal efficiency of 91.62% Cr (VI), 89.29% Pb (II), and 83.29% Cd (II) at 50 mg/L.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Cádmio/análise , Chumbo , Metais Pesados/química , Íons , Cromo , Adsorção , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA