Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Am Soc Nephrol ; 33(1): 213-224, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34706968

RESUMO

BACKGROUND: α-Globin is expressed in endothelial cells of resistance arteries, where it limits endothelial nitric oxide signaling and enhances α-adrenergic-mediated vasoconstriction. α-Globin gene (HBA) copy number is variable in people of African descent and other populations worldwide. Given the protective effect of nitric oxide in the kidney, we hypothesized that HBA copy number would be associated with kidney disease risk. METHODS: Community-dwelling Black Americans aged ≥45 years old were enrolled in a national longitudinal cohort from 2003 through 2007. HBA copy number was measured using droplet digital PCR. The prevalence ratio (PR) of CKD and the relative risk (RR) of incident reduced eGFR were calculated using modified Poisson multivariable regression. The hazard ratio (HR) of incident ESKD was calculated using Cox proportional hazards multivariable regression. RESULTS: Among 9908 participants, HBA copy number varied from 2 to 6. In analyses adjusted for demographic, clinical, and genetic risk factors, a one-copy increase in HBA was associated with 14% greater prevalence of CKD (PR, 1.14; 95% CI, 1.07 to 1.21; P<0.0001). While HBA copy number was not associated with incident reduced eGFR (RR, 1.06; 95% CI, 0.94 to 1.19; P=0.38), the hazard of incident ESKD was 32% higher for each additional copy of HBA (HR, 1.32; 95% CI, 1.09 to 1.61; P=0.005). CONCLUSIONS: Increasing HBA copy number was associated with a greater prevalence of CKD and incidence of ESKD in a national longitudinal cohort of Black Americans.


Assuntos
Negro ou Afro-Americano/estatística & dados numéricos , Dosagem de Genes , Falência Renal Crônica/etnologia , Falência Renal Crônica/genética , alfa-Globinas/genética , Idoso , Feminino , Taxa de Filtração Glomerular , Humanos , Incidência , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Prevalência , Modelos de Riscos Proporcionais
2.
J Am Soc Nephrol ; 30(5): 811-823, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30967423

RESUMO

BACKGROUND: Mutations in four genes, WNK lysine deficient protein kinase 1 and 4 (WNK1 and WNK4), kelch like family member 3 (KLHL3), or Cullin 3 (CUL3), can result in familial hyperkalemic hypertension (FHHt), a rare Mendelian form of human arterial hypertension. Although all mutations result in an increased abundance of WNK1 or WNK4, all FHHt-causing CUL3 mutations, resulting in the skipping of exon 9, lead to a more severe phenotype. METHODS: We created and compared two mouse models, one expressing the mutant Cul3 protein ubiquitously (pgk-Cul3∆9) and the other specifically in vascular smooth muscle cells (SM22-Cul3∆9). We conducted pharmacologic investigations on isolated aortas and generated stable and inducible HEK293 cell lines that overexpress the wild-type Cul3 or mutant Cul3 (Cul3∆9) protein. RESULTS: As expected, pgk-Cul3∆9 mice showed marked hypertension with significant hyperkalemia, hyperchloremia and low renin. BP increased significantly in SM22-Cul3∆9 mice, independent of any measurable effect on renal transport. Only pgk-Cul3∆9 mice displayed increased expression of the sodium chloride cotransporter and phosphorylation by the WNK-SPAK kinases. Both models showed altered reactivity of isolated aortas to phenylephrine and acetylcholine, as well as marked acute BP sensitivity to the calcium channel blocker amlodipine. Aortas from SM22-Cul3∆9 mice showed increased expression of RhoA, a key molecule involved in regulation of vascular tone, compared with aortas from control mice. We also observed increased RhoA abundance and t1/2 in Cul3∆9-expressing cells, caused by decreased ubiquitination. CONCLUSIONS: Mutations in Cul3 cause severe hypertension by affecting both renal and vascular function, the latter being associated with activation of RhoA.


Assuntos
Pressão Arterial/genética , Proteínas Culina/genética , Hipertensão/genética , Mutação , Análise de Variância , Animais , Modelos Animais de Doenças , Humanos , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Fosforilação/genética , Proteínas Serina-Treonina Quinases/metabolismo , Distribuição Aleatória , Ubiquitinação/genética
3.
J Am Soc Nephrol ; 29(10): 2510-2517, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30206141

RESUMO

BACKGROUND: Renal flow abnormalities are believed to play a central role in the pathogenesis of nephropathy and in primary and secondary hypertension, but are difficult to measure in humans. Handgrip exercise is known to reduce renal arterial flow (RAF) by means of increased renal sympathetic nerve activity. METHODS: To monitor medullary and cortical oxygenation under handgrip exercise-reduced perfusion, we used contrast- and radiation-free magnetic resonance imaging (MRI) to measure regional changes in renal perfusion and blood oxygenation in ten healthy normotensive individuals during handgrip exercise. We used phase-contrast MRI to measure RAF, arterial spin labeling to measure perfusion, and both changes in transverse relaxation time (T2*) and dynamic blood oxygenation level-dependent imaging to measure blood oxygenation. RESULTS: Handgrip exercise induced a significant decrease in RAF. In the renal medulla, this was accompanied by an increase of oxygenation (reflected by an increase in T2*) despite a significant drop in medullary perfusion; the renal cortex showed a significant decrease in both perfusion and oxygenation. We also found a significant correlation (R2=0.8) between resting systolic BP and the decrease in RAF during handgrip exercise. CONCLUSIONS: Renal MRI measurements in response to handgrip exercise were consistent with a sympathetically mediated decrease in RAF. In the renal medulla, oxygenation increased despite a reduction in perfusion, which we interpreted as the result of decreased GFR and a subsequently reduced reabsorptive workload. Our results further indicate that the renal flow response's sensitivity to sympathetic activation is correlated with resting BP, even within a normotensive range.


Assuntos
Força da Mão , Córtex Renal/irrigação sanguínea , Córtex Renal/metabolismo , Medula Renal/irrigação sanguínea , Medula Renal/metabolismo , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Exercício Físico/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Córtex Renal/inervação , Medula Renal/inervação , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Artéria Renal/fisiologia , Circulação Renal/fisiologia , Sistema Nervoso Simpático/fisiologia , Adulto Jovem
4.
J Am Soc Nephrol ; 26(5): 1181-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25294231

RESUMO

Aortic stiffening, assessed by carotid-femoral pulse wave velocity, is associated with CKD. Transmission of excessive flow pulsatility into the low-impedance renal microvasculature may mediate this association. However, direct analyses of macrovascular-microvascular relations in the kidney are limited. Using arterial tonometry, iohexol clearance, and magnetic resonance imaging, we related arterial stiffness, GFR, urinary albumin excretion, and potential mediators, including renal artery pulsatility index, renal vascular resistance, and arterial volume in the cortex, in 367 older adults (ages 72-92 years) participating in the Age, Gene/Environment Susceptibility-Reykjavik Study. In a model adjusted for age, sex, heart rate, and body size, aortic stiffness was related to GFR (Slope of regression B=-2.28±0.85 ml/min per SD, P=0.008) but not urine albumin (P=0.09). After accounting for pulsatility index, the relation between aortic stiffness and GFR was no longer significant (P=0.10). Mediation analysis showed that 34% of the relation between aortic stiffness and GFR was mediated by pulsatility index (95% confidence interval of indirect effect, -1.35 to -0.29). An additional 20% or 36% of the relation was mediated by lower arterial volume in the cortex or higher renal vascular resistance, respectively, when offered as mediators downstream from higher pulsatility index (95% confidence interval of indirect effect including arterial volume in the cortex, -2.22 to -0.40; 95% confidence interval of indirect effect including renal vascular resistance, -2.51 to -0.76). These analyses provide the first evidence that aortic stiffness may contribute to lower GFR by transferring excessive flow pulsatility into the susceptible renal microvasculature, leading to dynamic constriction or vessel loss.


Assuntos
Taxa de Filtração Glomerular , Fluxo Pulsátil , Circulação Renal , Rigidez Vascular , Idoso , Idoso de 80 Anos ou mais , Albuminúria/fisiopatologia , Creatinina/urina , Estudos Transversais , Feminino , Humanos , Masculino , Análise de Onda de Pulso
6.
Kidney360 ; 3(4): 700-713, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35721616

RESUMO

Background: The renal glomerulus is a tuft of capillaries in Bowman's capsule and functions as a blood-filtration unit in the kidney. The unique glomerular capillary tuft structure is relatively conserved through vertebrate species. However, the morphogenetic mechanism governing glomerular capillary tuft formation remains elusive. Methods: To clarify how glomerular capillaries develop, we analyzed glomerular capillary formation in the zebrafish pronephros by exploiting fluorescence-based bio-imaging technology. Results: During glomerular capillary formation in the zebrafish pronephros, endothelial cells initially sprouted from the dorsal aorta and formed the capillaries surrounding the bilateral glomerular primordia in response to podocyte progenitor-derived vascular endothelial growth factor-A. After formation, blood flow immediately occurred in the glomerular primordia-associated capillaries, while in the absence of blood flow, they were transformed into sheet-like structures enveloping the glomerular primordia. Subsequently, blood flow induced formation of Bowman's space at the lateral sides of the bilateral glomerular primordia. Concomitantly, podocyte progenitors enveloped their surrounding capillaries while moving toward and coalescing at the midline. These capillaries then underwent extensive expansion and remodeling to establish a functional glomerular capillary tuft. However, stopping blood flow inhibited the remodeling of bilateral glomerular primordia, which therefore remained unvascularized but covered by the vascular sheets. Conclusions: We delineated the morphogenetic processes governing glomerular capillary tuft formation in the zebrafish pronephros and demonstrated crucial roles of blood flow in its formation. Blood flow maintains tubular structures of the capillaries surrounding the glomerular primordia and promotes glomerular incorporation of these vessels by inducing the remodeling of glomerular primordia.


Assuntos
Pronefro , Peixe-Zebra , Animais , Células Endoteliais , Glomérulos Renais/irrigação sanguínea , Pronefro/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Kidney360 ; 2(8): 1326-1338, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35369665

RESUMO

The management of complex fluid and electrolyte disorders is central to the practice of nephrologists. The sensitivity of physical examination alone to determine fluid status is limited, precluding accurate clinical decision making. Point-of-care ultrasonography (POCUS) is emerging as a valuable, noninvasive, bedside diagnostic tool for objective evaluation of physiologic and hemodynamic parameters related to fluid status, tolerance, and responsiveness. Rapid bedside sonographic evaluation can obtain qualitative data on cardiac function and quantitative data on pulmonary congestion. Advanced POCUS, including goal-directed Doppler echocardiography, provides additional quantitative information, including flow velocities and pressures across the cardiac structures. Recently, abnormal Doppler flow patterns in abdominal organs secondary to increased right atrial pressure have been linked to congestive organ damage, adding another component to the hemodynamic assessment. Integrating POCUS findings with clinical and laboratory data can further elucidate a patient's hemodynamic status. This drives decisions regarding crystalloid administration or, conversely, diuresis or ultrafiltration and allows tailored therapy for individual patients. In this article, we provide an overview of the focused assessment of cardiovascular function and pulmonary and venous congestion using POCUS and review relevant literature.


Assuntos
Sistemas Automatizados de Assistência Junto ao Leito , Desequilíbrio Hidroeletrolítico , Humanos , Nefrologistas , Ultrassonografia , Ultrassonografia Doppler , Desequilíbrio Hidroeletrolítico/diagnóstico
9.
Clin J Am Soc Nephrol ; 10(7): 1179-91, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26034226

RESUMO

BACKGROUND AND OBJECTIVES: Pulse pressure has been shown as a risk factor for mortality in patients on maintenance hemodialysis (MHD). However, the effect of change in pulse pressure during hemodialysis on survival in a large cohort of patients on MHD has not been sufficiently investigated. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: This study examined the association between time-varying Δ pulse pressure (postdialysis minus predialysis pulse pressure) and mortality in a cohort of 98,577 patients on MHD (July 2001-June 2006) using Cox proportional hazard models with restricted cubic splines. RESULTS: The average patient age was 62 years old; among the patients, 33% were black and 59% had diabetes. During 134,814 patient-years of at-risk time, 16,054 (16%) patients died, with 6827 (43%) of the deaths caused by cardiovascular causes. In the models including adjustment for either predialysis systolic BP or mean arterial BP, there was a U-shaped association between change in pulse pressure during hemodialysis and all-cause mortality. In the systolic BP plus case mix plus malnutrition-inflammation complex syndrome-adjusted model, large declines in pulse pressure (>-25 mmHg) and increases in pulse pressure >5 mmHg were associated with higher all-cause mortality (reference: ≥-5 to <5 mmHg): hazard ratios (95% confidence intervals [95% CIs]) for change pulse pressures of <-25, ≥-25 to <-15, ≥-15 to <-5, 5 to <15, 15 to <25, and ≥25 mmHg were 1.21 (95% CI, 1.14 to 1.29), 1.03 (95% CI, 0.97 to 1.10), 1.01 (95% CI, 0.96 to 1.06), 1.06 (95% CI, 1.01 to 1.11), 1.17 (95% CI, 1.11 to 1.24), and 1.15 (95% CI, 1.08 to 1.23), respectively. The U-shaped association was observed with cardiovascular death. CONCLUSIONS: Modest reductions in pulse pressure after hemodialysis are associated with the greatest survival, whereas large declines or rises in pulse pressure are related to higher mortality. Trials determining how to modify pulse pressure response to improve survival in the hemodialysis population are indicated.


Assuntos
Pressão Sanguínea , Doenças Cardiovasculares/etiologia , Nefropatias/terapia , Diálise Renal , Idoso , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/fisiopatologia , Causas de Morte , Estudos de Coortes , Bases de Dados Factuais , Feminino , Humanos , Nefropatias/complicações , Nefropatias/diagnóstico , Nefropatias/mortalidade , Nefropatias/fisiopatologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Modelos de Riscos Proporcionais , Diálise Renal/efeitos adversos , Diálise Renal/mortalidade , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento , Estados Unidos/epidemiologia , Rigidez Vascular
10.
Clin J Am Soc Nephrol ; 10(3): 382-9, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25568216

RESUMO

BACKGROUND AND OBJECTIVES: Evaluation of glomerular hyperfiltration (GH) is difficult; the variable reported definitions impede comparisons between studies. A clear and universal definition of GH would help in comparing results of trials aimed at reducing GH. This study assessed how GH is measured and defined in the literature. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Three databases (Embase, MEDLINE, CINAHL) were systematically searched using the terms "hyperfiltration" or "glomerular hyperfiltration". All studies reporting a GH threshold or studying the effect of a high GFR in a continuous manner against another outcome of interest were included. RESULTS: The literature search was performed from November 2012 to February 2013 and updated in August 2014. From 2013 retrieved studies, 405 studies were included. Threshold use to define GH was reported in 55.6% of studies. Of these, 88.4% used a single threshold and 11.6% used numerous thresholds adapted to participant sex or age. In 29.8% of the studies, the choice of a GH threshold was not based on a control group or literature references. After 2004, the use of GH threshold use increased (P<0.001), but the use of a control group to precisely define that GH threshold decreased significantly (P<0.001); the threshold did not differ among pediatric, adult, or mixed-age studies. The GH threshold ranged from 90.7 to 175 ml/min per 1.73 m(2) (median, 135 ml/min per 1.73 m(2)). CONCLUSION: Thirty percent of studies did not justify the choice of threshold values. The decrease of GFR in the elderly was rarely considered in defining GH. From a methodologic point of view, an age- and sex-matched control group should be used to define a GH threshold.


Assuntos
Glomérulos Renais/fisiopatologia , Insuficiência Renal Crônica/fisiopatologia , Terminologia como Assunto , Taxa de Filtração Glomerular , Humanos , Valores de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA