RESUMO
The introduction of resistant and lightweight materials in the construction industry has led to civil structures being vulnerable to excessive vibrations, particularly in footbridges exposed to human-induced gait loads. This interaction, known as Human-Structure Interaction (HSI), involves a complex interplay between structural vibrations and gait loads. Despite extensive research on HSI, the simultaneous effects of lateral structural vibrations with fundamental frequencies close to human gait frequency (around 1.0 Hz) and wide amplitudes (over 30.0 mm) remain inadequately understood, posing a contemporary structural challenge highlighted by incidents in iconic bridges like the Millennium Bridge in London, Solferino Bridge in Paris, and Premier Bridge in Cali, Colombia. This paper focuses on the experimental exploration of Structure-to-Human Interaction (S2HI) effects using the Human-Structure Interaction Multi-Axial Test Framework (HSI-MTF). The framework enables the simultaneous measurement of vertical and lateral loads induced by human gait on surfaces with diverse frequency ranges and wide-amplitude lateral harmonic motions. The study involved seven test subjects, evaluating gait loads on rigid and harmonic lateral surfaces with displacements ranging from 5.0 to 50.0 mm and frequency content from 0.70 to 1.30 Hz. A low-cost vision-based motion capture system with smartphones analyzed the support (Tsu) and swing (Tsw) periods of human gait. Results indicated substantial differences in Tsu and Tsw on lateral harmonic protocols, reaching up to 96.53% and 58.15%, respectively, compared to rigid surfaces. Normalized lateral loads (LL) relative to the subject's weight (W0) exhibited a linear growth proportional to lateral excitation frequency, with increased proportionality constants linked to higher vibration amplitudes. Linear regressions yielded an average R2 of 0.815. Regarding normalized vertical load (LV) with respect to W0, a consistent behavior was observed for amplitudes up to 30.0 mm, beyond which a linear increase, directly proportional to frequency, resulted in a 28.3% increment compared to rigid surfaces. Correlation analyses using Pearson linear coefficients determined relationships between structural surface vibration and pedestrian lateral motion, providing valuable insights into Structure-to-Human Interaction dynamics.
Assuntos
Marcha , Pedestres , Vibração , Humanos , Marcha/fisiologia , Masculino , Adulto , Smartphone , Suporte de Carga/fisiologia , Caminhada/fisiologia , Fenômenos BiomecânicosRESUMO
Inclusive design does not stop at removing physical obstacles such as staircases. It also involves identifying architectural features that impose sensory burdens, such as repetitive visual patterns that are known to potentially cause dizziness or visual discomfort. In order to assess their influence on human gait and its stability, three repetitive patterns-random dots, repetitive stripes, and repetitive waves (Lisbon pattern)-were displayed in a coloured and greyscale variant in a virtual reality (VR) environment. The movements of eight participants were recorded using a motion capture system and electromyography (EMG). During all test conditions, a significant increase in the muscular activity of leg flexor muscles was identified just before touchdown. Further, an increase in the activity of laterally stabilising muscles during the swing phase was observed for all of the test conditions. The lateral and vertical centre of mass (CoM) deviation was statistically evaluated using a linear mixed model (LMM). The patterns did cause a significant increase in the CoM excursion in the vertical direction but not in the lateral direction. These findings are indicative of an inhibited and more cautious gait style and a change in control strategy. Furthermore, we quantified the induced discomfort by using both algorithmic estimates and self-reports. The Fourier-based methods favoured the greyscaled random dots over repetitive stripes. The colour metric favoured the striped pattern over the random dots. The participants reported that the wavey Lisbon pattern was the most disruptive. For architectural and structural design, this study indicates (1) that highly repetitive patterns should be used with care in consideration of their impact on the human visuomotor system and its behavioural effects and (2) that coloured patterns should be used with greater caution than greyscale patterns.
Assuntos
Eletromiografia , Marcha , Realidade Virtual , Caminhada , Humanos , Caminhada/fisiologia , Masculino , Marcha/fisiologia , Feminino , Adulto , Músculo Esquelético/fisiologia , Adulto Jovem , Fenômenos Biomecânicos/fisiologia , AlgoritmosRESUMO
The dynamics and interaction of spinal and supraspinal centers during locomotor adaptation remain vaguely understood. In this work, we use Hoffmann reflex measurements to investigate changes in spinal reflex gains during split-belt locomotor adaptation. We show that spinal reflex gains are dynamically modulated during split-belt locomotor adaptation. During first exposure to split-belt transitions, modulation occurs mostly on the leg ipsilateral to the speed change and constitutes rapid suppression or facilitation of the reflex gains, followed by slow recovery to baseline. Over repeated exposure, the modulation pattern washes out. We further show that reflex gain modulation strongly correlates with correction of leg asymmetry, and cannot be explained by speed modulation solely. We argue that reflex modulation is likely of supraspinal origins and constitutes an integral part of the neural substrate underlying split-belt locomotor adaptation.NEW & NOTEWORTHY This work presents direct evidence for spinal reflex modulation during locomotor adaptation. In particular, we show that reflexes can be modulated on-demand unilaterally during split-belt locomotor adaptation and speculate about reflex modulation as an underlying mechanism for adaptation of gait asymmetry in healthy adults.
Assuntos
Marcha , Reflexo , Adulto , Humanos , Eletromiografia , Coluna Vertebral , Adaptação Fisiológica , Caminhada , Teste de EsforçoRESUMO
Recent approaches in gait analysis involve the use of wearable motion sensors to extract spatio-temporal parameters that characterize multiple aspects of an individual's gait. In particular, the medical community could largely benefit from this type of devices as they could provide the clinicians with a valuable tool for assessing gait impairment. Motion sensor data are however complex and there is an urgent unmet need to develop sound statistical methods for analyzing such data and extracting clinically relevant information. In this article, we measure gait by following the hip rotation over time and the resulting statistical unit is a time series of unit quaternions. We explore the possibility to form groups of patients with similar walking impairment by taking into account their walking data and their global decease severity with semi-supervised clustering. We generalize a compromise-based method named hclustcompro to unit quaternion time series by combining it with the proper dissimilarity quaternion dynamic time warping. We apply this method on patients diagnosed with multiple sclerosis to form groups of patients with similar walking deficiencies while accounting for the clinical assessment of their overall disability. We also compare the compromise-based clustering approach with the method mergeTrees that falls into a sub-class of ensemble clustering named collaborative clustering. The results provide a first proof of both the interest of using wearable motion sensors for assessing gait impairment and the use of prior knowledge to guide the clustering process. It also demonstrates that compromise-based clustering is a more appropriate approach in this context.
Assuntos
Análise da Marcha , Esclerose Múltipla , Humanos , Fatores de Tempo , Marcha , CaminhadaRESUMO
In a society centered on hyper-connectivity, information sharing is crucial, but it must be ensured that each piece of information is viewed only by legitimate users; for this purpose, the medium that connects information and users must be able to identify illegal users. In this paper, we propose a smartphone authentication system based on human gait, breaking away from the traditional authentication method of using the smartphone as the medium. After learning human gait features with a convolutional neural network deep learning model, it is mounted on a smartphone to determine whether the user is a legitimate user by walking for 1.8 s while carrying the smartphone. The accuracy, precision, recall, and F1-score were measured as evaluation indicators of the proposed model. These measures all achieved an average of at least 90%. The analysis results show that the proposed system has high reliability. Therefore, this study demonstrates the possibility of using human gait as a new user authentication method. In addition, compared to our previous studies, the gait data collection time for user authentication of the proposed model was reduced from 7 to 1.8 s. This reduction signifies an approximately four-fold performance enhancement through the implementation of filtering techniques and confirms that gait data collected over a short period of time can be used for user authentication.
Assuntos
Aprendizado Profundo , Smartphone , Humanos , Reprodutibilidade dos Testes , Marcha , CaminhadaRESUMO
Human gait recognition is one of the most interesting issues within the subject of behavioral biometrics. The most significant problems connected with the practical application of biometric systems include their accuracy as well as the speed at which they operate, understood both as the time needed to recognize a particular person as well as the time necessary to create and train a biometric system. The present study made use of an ensemble of heterogeneous base classifiers to address these issues. A Heterogeneous ensemble is a group of classification models trained using various algorithms and combined to output an effective recognition A group of parameters identified on the basis of ground reaction forces was accepted as input signals. The proposed solution was tested on a sample of 322 people (5980 gait cycles). Results concerning the accuracy of recognition (meaning the Correct Classification Rate quality at 99.65%), as well as operation time (meaning the time of model construction at <12.5 min and the time needed to recognize a person at <0.1 s), should be considered as very good and exceed in quality other methods so far described in the literature.
Assuntos
Algoritmos , Biometria , Humanos , MarchaRESUMO
This paper presents a framework for accurately and efficiently estimating a walking human's trajectory using a computationally inexpensive non-Gaussian recursive Bayesian estimator. The proposed framework fuses global and inertial measurements with predictions from a kinematically driven step model to provide robustness in localization. A maximum a posteriori-type filter is trained on typical human kinematic parameters and updated based on live measurements. Local step size estimates are generated from inertial measurement units using the zero-velocity update (ZUPT) algorithm, while global measurements come from a wearable GPS. After each fusion event, a gradient ascent optimizer efficiently locates the highest likelihood of the individual's location which then triggers the next estimator iteration.The proposed estimator was compared to a state-of-the-art particle filter in several Monte Carlo simulation scenarios, and the original framework was found to be comparable in accuracy and more efficient at higher resolutions. It is anticipated that the methods proposed in this work could be more useful in general real-time estimation (beyond just personal navigation) than the traditional particle filter, especially if the state is many-dimensional. Applications of this research include but are not limited to: in natura biomechanics measurement, human safety in manual fieldwork environments, and human/robot teaming.
RESUMO
Human gait activity recognition is an emerging field of motion analysis that can be applied in various application domains. One of the most attractive applications includes monitoring of gait disorder patients, tracking their disease progression and the modification/evaluation of drugs. This paper proposes a robust, wearable gait motion data acquisition system that allows either the classification of recorded gait data into desirable activities or the identification of common risk factors, thus enhancing the subject's quality of life. Gait motion information was acquired using accelerometers and gyroscopes mounted on the lower limbs, where the sensors were exposed to inertial forces during gait. Additionally, leg muscle activity was measured using strain gauge sensors. As a matter of fact, we wanted to identify different gait activities within each gait recording by utilizing Machine Learning algorithms. In line with this, various Machine Learning methods were tested and compared to establish the best-performing algorithm for the classification of the recorded gait information. The combination of attention-based convolutional and recurrent neural networks algorithms outperformed the other tested algorithms and was individually tested further on the datasets of five subjects and delivered the following averaged results of classification: 98.9% accuracy, 96.8% precision, 97.8% sensitivity, 99.1% specificity and 97.3% F1-score. Moreover, the algorithm's robustness was also verified with the successful detection of freezing gait episodes in a Parkinson's disease patient. The results of this study indicate a feasible gait event classification method capable of complete algorithm personalization.
Assuntos
Qualidade de Vida , Dispositivos Eletrônicos Vestíveis , Humanos , Marcha , Algoritmos , Aprendizado de MáquinaRESUMO
Gait-based gender classification is a challenging task since people may walk in different directions with varying speed, gait style, and occluded joints. The majority of research studies in the literature focused on gender-specific joints, while there is less attention on the comparison of all of a body's joints. To consider all of the joints, it is essential to determine a person's gender based on their gait using a Kinect sensor. This paper proposes a logistic-regression-based machine learning model using whole body joints for gender classification. The proposed method consists of different phases including gait feature extraction based on three dimensional (3D) positions, feature selection, and classification of human gender. The Kinect sensor is used to extract 3D features of different joints. Different statistical tools such as Cronbach's alpha, correlation, t-test, and ANOVA techniques are exploited to select significant joints. The Coronbach's alpha technique yields an average result of 99.74%, which indicates the reliability of joints. Similarly, the correlation results indicate that there is significant difference between male and female joints during gait. t-test and ANOVA approaches demonstrate that all twenty joints are statistically significant for gender classification, because the p-value for each joint is zero and less than 1%. Finally, classification is performed based on the selected features using binary logistic regression model. A total of hundred (100) volunteers participated in the experiments in real scenario. The suggested method successfully classifies gender based on 3D features recorded in real-time using machine learning classifier with an accuracy of 98.0% using all body joints. The proposed method outperformed the existing systems which mostly rely on digital images.
Assuntos
Algoritmos , Transtornos Neurológicos da Marcha , Humanos , Masculino , Feminino , Reprodutibilidade dos Testes , Marcha , Aprendizado de Máquina , ArticulaçõesRESUMO
Currently, there is an intensive development of bipedal walking robots. The most known solutions are based on the use of the principles of human gait created in nature during evolution. Modernbipedal robots are also based on the locomotion manners of birds. This review presents the current state of the art of bipedal walking robots based on natural bipedal movements (human and bird) as well as on innovative synthetic solutions. Firstly, an overview of the scientific analysis of human gait is provided as a basis for the design of bipedal robots. The full human gait cycle that consists of two main phases is analysed and the attention is paid to the problem of balance and stability, especially in the single support phase when the bipedal movement is unstable. The influences of passive or active gait on energy demand are also discussed. Most studies are explored based on the zero moment. Furthermore, a review of the knowledge on the specific locomotor characteristics of birds, whose kinematics are derived from dinosaurs and provide them with both walking and running abilities, is presented. Secondly, many types of bipedal robot solutions are reviewed, which include nature-inspired robots (human-like and birdlike robots) and innovative robots using new heuristic, synthetic ideas for locomotion. Totally 45 robotic solutions are gathered by thebibliographic search method. Atlas was mentioned as one of the most perfect human-like robots, while the birdlike robot cases were Cassie and Digit. Innovative robots are presented, such asslider robot without knees, robots with rotating feet (3 and 4 degrees of freedom), and the hybrid robot Leo, which can walk on surfaces and fly. In particular, the paper describes in detail the robots' propulsion systems (electric, hydraulic), the structure of the lower limb (serial, parallel, mixed mechanisms), the types and structures of control and sensor systems, and the energy efficiency of the robots. Terrain roughness recognition systems using different sensor systems based on light detection and ranging or multiple cameras are introduced. A comparison of performance, control and sensor systems, drive systems, and achievements of known human-like and birdlike robots is provided. Thirdly, for the first time, the review comments on the future of bipedal robots in relation to the concepts of conventional (natural bipedal) and synthetic unconventional gait. We critically assess and compare prospective directions for further research that involve the development of navigation systems, artificial intelligence, collaboration with humans, areas for the development of bipedal robot applications in everyday life, therapy, and industry.
Assuntos
Robótica , Inteligência Artificial , Fenômenos Biomecânicos , Marcha , Locomoção , Estudos Prospectivos , Robótica/métodos , CaminhadaRESUMO
The majority of human gait modeling is based on hip, foot or thigh acceleration. The regeneration accuracy of these modeling approaches is not very high. This paper presents a harmonic approach to modeling human gait during level walking based on gyroscopic signals for a single thigh-mounted Inertial Measurement Unit (IMU) and the flexion-extension derived from a single thigh-mounted IMU. The thigh angle can be modeled with five significant harmonics, with a regeneration accuracy of over 0.999 correlation and less than 0.5° RMSE per stride cycle. Comparable regeneration accuracies can be achieved with nine significant harmonics for the gyro signal. The fundamental frequency of the harmonic model can be estimated using the stride time, with an error level of 0.0479% (±0.0029%). Six commonly observed stride patterns, and harmonic models of thigh angle and gyro signal for those stride patterns, are presented in this paper. These harmonic models can be used to predict or classify the strides of walking trials, and the results are presented herein. Harmonic models may also be used for activity recognition. It has shown that human gait in level walking can be modeled with a harmonic model of thigh angle or gyro signal, using a single thigh-mounted IMU, to higher accuracies than existing techniques.
Assuntos
Coxa da Perna , Caminhada , Aceleração , Pé , Marcha , HumanosRESUMO
This paper proposes a human gait tracking system using a dual foot-mounted IMU and multiple 2D LiDARs. The combining system aims to overcome the disadvantages of each single sensor system (the short tracking range of the single 2D LiDAR and the drift errors of the IMU system). The LiDARs act as anchors to mitigate the errors of an inertial navigation algorithm. In our system, two 2D LiDARs are used. LiDAR 1 is placed around the starting point, and LiDAR 2 is placed at the ending point (in straight walking) or at the turning point (in rectangular path walking). Using the LiDAR 1, we can estimate the initial headings and positions of each IMU without any calibration process. We also propose a method to calibrate two LiDARs that are placed far apart. Then, the measurement from two LiDARs can be combined in a Kalman filter and the smoother algorithm to correct the two estimated feet trajectories. If straight walking is detected, we update the current stride heading and the foot position using the previous stride headings. Then, it is used as a measurement update in the Kalman filter. In the smoother algorithm, a step width constraint is used as a measurement update. We evaluate the stride length estimation through a straight walking experiment along a corridor. The root mean square errors compared with an optical tracking system are less than 3 cm. The performance of proposed method is also verified with a rectangular path walking experiment.
Assuntos
Marcha , Monitorização Ambulatorial , Algoritmos , Pé , Humanos , Monitorização Ambulatorial/métodos , CaminhadaRESUMO
Human Activity Recognition (HAR) that includes gait analysis may be useful for various rehabilitation and telemonitoring applications. Current gait analysis methods, such as wearables or cameras, have privacy and operational constraints, especially when used with older adults. Millimeter-Wave (MMW) radar is a promising solution for gait applications because of its low-cost, better privacy, and resilience to ambient light and climate conditions. This paper presents a novel human gait analysis method that combines the micro-Doppler spectrogram and skeletal pose estimation using MMW radar for HAR. In our approach, we used the Texas Instruments IWR6843ISK-ODS MMW radar to obtain the micro-Doppler spectrogram and point clouds for 19 human joints. We developed a multilayer Convolutional Neural Network (CNN) to recognize and classify five different gait patterns with an accuracy of 95.7 to 98.8% using MMW radar data. During training of the CNN algorithm, we used the extracted 3D coordinates of 25 joints using the Kinect V2 sensor and compared them with the point clouds data to improve the estimation. Finally, we performed a real-time simulation to observe the point cloud behavior for different activities and validated our system against the ground truth values. The proposed method demonstrates the ability to distinguish between different human activities to obtain clinically relevant gait information.
Assuntos
Análise da Marcha , Radar , Idoso , Algoritmos , Marcha , Humanos , Aprendizado de MáquinaRESUMO
Human falls pose a serious threat to the person's health, especially for the elderly and disease-impacted people. Early detection of involuntary human gait change can indicate a forthcoming fall. Therefore, human body fall warning can help avoid falls and their caused injuries for the skeleton and joints. A simple and easy-to-use fall detection system based on gait analysis can be very helpful, especially if sensors of this system are implemented inside the shoes without causing a sensible discomfort for the user. We created a methodology for the fall prediction using three specially designed Velostat®-based wearable feet sensors installed in the shoe lining. Measured pressure distribution of the feet allows the analysis of the gait by evaluating the main parameters: stepping rhythm, size of the step, weight distribution between heel and foot, and timing of the gait phases. The proposed method was evaluated by recording normal gait and simulated abnormal gait of subjects. The obtained results show the efficiency of the proposed method: the accuracy of abnormal gait detection reached up to 94%. In this way, it becomes possible to predict the fall in the early stage or avoid gait discoordination and warn the subject or helping companion person.
Assuntos
Acidentes por Quedas , Dispositivos Eletrônicos Vestíveis , Acidentes por Quedas/prevenção & controle , Idoso , Pé , Marcha , Humanos , SapatosRESUMO
Accurate assessment of Parkinson's disease (PD) ON and OFF states in the usual environment is essential for tailoring optimal treatments. Wearables facilitate measurements of gait in novel and unsupervised environments; however, differences between unsupervised and in-laboratory measures have been reported in PD. We aimed to investigate whether unsupervised gait speed discriminates medication states and which supervised tests most accurately represent home performance. In-lab gait speeds from different gait tasks were compared to home speeds of 27 PD patients at ON and OFF states using inertial sensors. Daily gait speed distribution was expressed in percentiles and walking bout (WB) length. Gait speeds differentiated ON and OFF states in the lab and the home. When comparing lab with home performance, ON assessments in the lab showed moderate-to-high correlations with faster gait speeds in unsupervised environment (r = 0.69; p < 0.001), associated with long WB. OFF gait assessments in the lab showed moderate correlation values with slow gait speeds during OFF state at home (r = 0.56; p = 0.004), associated with short WB. In-lab and daily assessments of gait speed with wearables capture additional integrative aspects of PD, reflecting different aspects of mobility. Unsupervised assessment using wearables adds complementary information to the clinical assessment of motor fluctuations in PD.
Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Marcha , Humanos , Laboratórios , Velocidade de CaminhadaRESUMO
Mobile robotic platforms have made inroads in the rehabilitation area as gait assistance devices. They have rarely been used for human gait monitoring and analysis. The integration of mobile robots in this field offers the potential to develop multiple medical applications and achieve new discoveries. This study proposes the use of a mobile robotic platform based on depth cameras to perform the analysis of human gait in practical scenarios. The aim is to prove the validity of this robot and its applicability in clinical settings. The mechanical and software design of the system is presented, as well as the design of the controllers of the lane-keeping, person-following, and servoing systems. The accuracy of the system for the evaluation of joint kinematics and the main gait descriptors was validated by comparison with a Vicon-certified system. Some tests were performed in practical scenarios, where the effectiveness of the lane-keeping algorithm was evaluated. Clinical tests with patients with multiple sclerosis gave an initial impression of the applicability of the instrument in patients with abnormal walking patterns. The results demonstrate that the system can perform gait analysis with high accuracy. In the curved sections of the paths, the knee joint is affected by occlusion and the deviation of the person in the camera reference system. This issue was greatly improved by adjusting the servoing system and the following distance. The control strategy of this robot was specifically designed for the analysis of human gait from the frontal part of the participant, which allows one to capture the gait properly and represents one of the major contributions of this study in clinical practice.
Assuntos
Transtornos Neurológicos da Marcha , Procedimentos Cirúrgicos Robóticos , Robótica , Fenômenos Biomecânicos , Marcha , Análise da Marcha , Humanos , CaminhadaRESUMO
Estimating the joint torques of lower limbs in human gait is a highly challenging task and of great significance in developing high-level controllers for lower-limb exoskeletons. This paper presents a dependent Gaussian process (DGP)-based learning algorithm for joint-torque estimations with measurements from wearable smart shoes. The DGP was established to perform data fusion, and serves as the mathematical foundation to explore the correlations between joint kinematics and joint torques that are embedded deeply in the data. As joint kinematics are used in the training phase rather than the prediction process, the DGP model can realize accurate predictions in outdoor activities by using only the smart shoe, which is low-cost, nonintrusive for human gait, and comfortable to wearers. The design methodology of dynamic specific kernel functions is presented in accordance to prior knowledge of the measured signals. The designed composite kernel functions can be used to model multiple features at different scales, and cope with the temporal evolution of human gait. The statistical nature of the proposed DGP model and the composite kernel functions offer superior flexibility for time-varying gait-pattern learning, and enable accurate joint-torque estimations. Experiments were conducted with five subjects, whose results showed that it is possible to estimate joint torques under different trained and untrained speed levels. Comparisons were made between the proposed DGP and Gaussian process (GP) models. Obvious improvements were achieved when all DGP r2 values were higher than those of GP.
Assuntos
Exoesqueleto Energizado , Articulações/fisiologia , Sapatos , Torque , Dispositivos Eletrônicos Vestíveis , Fenômenos Biomecânicos , Marcha , Humanos , CaminhadaRESUMO
Activity recognition is one of the most active areas of research in ubiquitous computing. In particular, gait activity recognition is useful to identify various risk factors in people's health that are directly related to their physical activity. One of the issues in activity recognition, and gait in particular, is that often datasets are unbalanced (i.e., the distribution of classes is not uniform), and due to this disparity, the models tend to categorize into the class with more instances. In the present study, two methods for classifying gait activities using accelerometer and gyroscope data from a large-scale public dataset were evaluated and compared. The gait activities in this dataset are: (i) going down an incline, (ii) going up an incline, (iii) walking on level ground, (iv) going down stairs, and (v) going up stairs. The proposed methods are based on conventional (shallow) and deep learning techniques. In addition, data were evaluated from three data treatments: original unbalanced data, sampled data, and augmented data. The latter was based on the generation of synthetic data according to segmented gait data. The best results were obtained with classifiers built with augmented data, with F-measure results of 0.812 (σ = 0.078) for the shallow learning approach, and of 0.927 (σ = 0.033) for the deep learning approach. In addition, the data augmentation strategy proposed to deal with the unbalanced problem resulted in increased classification performance using both techniques.
Assuntos
Aprendizado Profundo , Análise da Marcha , Humanos , Subida de Escada , CaminhadaRESUMO
Due to occlusion or detached markers, information can often be lost while capturing human motion with optical tracking systems. Based on three natural properties of human gait movement, this study presents two different approaches to recover corrupted motion data. These properties are used to define a reconstruction model combining low-rank matrix completion of the measured data with a group-sparsity prior on the marker trajectories mapped in the frequency domain. Unlike most existing approaches, the proposed methodology is fully unsupervised and does not need training data or kinematic information of the user. We evaluated our methods on four different gait datasets with various gap lengths and compared their performance with a state-of-the-art approach using principal component analysis (PCA). Our results showed recovering missing data more precisely, with a reduction of at least 2 mm in mean reconstruction error compared to the literature method. When a small number of marker trajectories is available, our findings showed a reduction of more than 14 mm for the mean reconstruction error compared to the literature approach.
Assuntos
Algoritmos , Marcha , Movimento , Humanos , Monitorização Fisiológica , Movimento (Física) , Análise de Componente PrincipalRESUMO
At present, there are two obvious problems in radar-based gait recognition. First, the traditional radar frequency band is difficult to meet the requirements of fine identification with due to its low carrier frequency and limited micro-Doppler resolution. Another significant problem is that radar signal processing is relatively complex, and the existing signal processing algorithms are poor in real-time usability, robustness and universality. This paper focuses on the two basic problems of human gait detection with radar and proposes a human gait classification and recognition method based on millimeter-wave array radar. Based on deep-learning technology, a multi-channel three-dimensional convolution neural network is proposed on the basis of improving the residual network, which completes the classification and recognition of human gait through the hierarchical extraction and fusion of multi-dimensional features. Taking the three-dimensional coordinates, motion speed and intensity of strong scattering points in the process of target motion as network inputs, multi-channel convolution is used to extract motion features, and the classification and recognition of typical daily actions are completed. The experimental results show that we have more than 92.5% recognition accuracy for common gait categories such as jogging and normal walking.