Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Virol ; 95(15): e0032721, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33963054

RESUMO

The human protein-coding gene ILRUN (inflammation and lipid regulator with UBA-like and NBR1-like domains; previously C6orf106) was identified as a proviral factor for Hendra virus infection and was recently characterized to function as an inhibitor of type I interferon expression. Here, we have utilized transcriptome sequencing (RNA-seq) to define cellular pathways regulated by ILRUN in the context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of Caco-2 cells. We find that inhibition of ILRUN expression by RNA interference alters transcription profiles of numerous cellular pathways, including upregulation of the SARS-CoV-2 entry receptor ACE2 and several other members of the renin-angiotensin aldosterone system. In addition, transcripts of the SARS-CoV-2 coreceptors TMPRSS2 and CTSL were also upregulated. Inhibition of ILRUN also resulted in increased SARS-CoV-2 replication, while overexpression of ILRUN had the opposite effect, identifying ILRUN as a novel antiviral factor for SARS-CoV-2 replication. This represents, to our knowledge, the first report of ILRUN as a regulator of the renin-angiotensin-aldosterone system (RAAS). IMPORTANCE There is no doubt that the current rapid global spread of COVID-19 has had significant and far-reaching impacts on our health and economy and will continue to do so. Research in emerging infectious diseases, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is growing rapidly, with new breakthroughs in the understanding of host-virus interactions to assist with the development of innovative and exciting therapeutic strategies. Here, we present the first evidence that modulation of the human protein-coding gene ILRUN functions as an antiviral factor for SARS-CoV-2 infection, likely through its newly identified role in regulating the expression of SARS-CoV-2 entry receptors ACE2, TMPRSS2, and CTSL. These data improve our understanding of biological pathways that regulate host factors critical to SARS-CoV-2 infection, contributing to the development of antiviral strategies to deal with the current SARS-CoV-2 pandemic.


Assuntos
Enzima de Conversão de Angiotensina 2/biossíntese , COVID-19/metabolismo , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/genética , Células CACO-2 , Catepsina L/biossíntese , Catepsina L/genética , Chlorocebus aethiops , Humanos , Proteínas de Neoplasias/genética , Sistema Renina-Angiotensina , SARS-CoV-2/genética , Serina Endopeptidases/biossíntese , Serina Endopeptidases/genética , Células Vero
2.
Ann Hum Genet ; 85(6): 213-220, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34145571

RESUMO

OBJECTIVE: Systemic lupus erythematosus (SLE) is a complex autoimmune disease with strong genetic predisposition. Genome-wide association studies (GWAS) of SLE have identified more than 50 robust susceptibility loci. However, traditional individual SNP-based GWAS have made it difficult to identify variants with small effects. Moreover, variants revealed by GWAS only explain a limited disease heritability, suggesting that many susceptibility genes remain uncovered. METHODS: We first curated the published SLE GWAS data from 1047 SLE patients and 1205 healthy controls of Chinese ancestry and performed a gene-based association study. Then quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was conducted to verify novel genes identified above. RESULTS: Gene-based association study identified 10 SLE-associated genes, nine of which were reported by previous GWAS, the other one, ILRUN, is a newly identified gene and was further validated by qRT-PCR. Gene expression analysis of Gene Expression Omnibus (GEO) datasets also showed that the expression of ILRUN in patients with SLE was lower than that in normal subjects. CONCLUSION: In this study, gene-based association study and qRT-PCR identified that ILRUN is a novel susceptibility gene of SLE. ILRUN may regulate inflammation and antiviral response through its effect on the transcription of type I interferons )I-IFN, and participate in the pathogenesis of SLE.


Assuntos
Predisposição Genética para Doença , Lúpus Eritematoso Sistêmico/genética , Adulto , Povo Asiático , Estudos de Casos e Controles , China , Estudos de Associação Genética , Humanos , Polimorfismo de Nucleotídeo Único
3.
Immunobiology ; 228(3): 152380, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031606

RESUMO

Inflammation and lipid regulator with UBA-like and NBR1-like domains (ILRUN) is a protein-encoding gene associated with innate immune signaling, lipid metabolism and cancer. In the context of innate immunity, ILRUN inhibits IRF3-mediated transcription of antimicrobial and proinflammatory cytokines by inducing degradation of the transcriptional coactivators CBP and p300. There remains a paucity of information, however, regarding the innate immune roles of ILRUN beyond in vitro analyses. To address this, we utilize a knockout mouse model to investigate the effect of ILRUN on cytokine expression in splenocytes and on the development of immune cell populations in the spleen and thymus. We show elevated production of tumor necrosis factor and interleukin-6 cytokines in ILRUN-deficient splenocytes following stimulation with the innate immune ligands polyinosinic:polycytidylic acid or lipopolysaccharide. Differences were also observed in the populations of several T cell subsets, including regulatory, mucosal-associated invariant and natural killer. These data identify novel functions for ILRUN in the development of certain immune cell populations and support previous in vitro findings that ILRUN negatively regulates the synthesis of pathogen-stimulated cytokines. This establishes the ILRUN knockout mouse model as a valuable resource for further study of the functions of ILRUN in health and disease.


Assuntos
Citocinas , Subpopulações de Linfócitos T , Camundongos , Animais , Citocinas/metabolismo , Imunidade Inata , Fatores Imunológicos/metabolismo , Adjuvantes Imunológicos/metabolismo , Camundongos Knockout
4.
Heliyon ; 6(6): e04115, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32518853

RESUMO

Regulation of type-I interferon (IFN) production is essential to the balance between antimicrobial defence and autoimmune disorders. The human protein-coding gene ILRUN (inflammation and lipid regulator with UBA-like and NBR1-like domains, previously C6orf106) was recently characterised as an inhibitor of antiviral and proinflammatory cytokine (interferon-alpha/beta and tumor necrosis factor alpha) transcription. Currently there is a paucity of information about the molecular characteristics of ILRUN, despite it being associated with several diseases including virus infection, coronary artery disease, obesity and cancer. Here, we characterise ILRUN as a highly phylogenetically conserved protein containing UBA-like and a NBR1-like domains that are both essential for inhibition of type-I interferon and tumor necrosis factor alpha) transcription in human cells. We also solved the crystal structure of the NBR1-like domain, providing insights into its potential role in ILRUN function. This study provides critical information for future investigations into the role of ILRUN in health and disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA