Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38078650

RESUMO

Cochlear inner hair cells (IHCs) are primary sound receptors, and are therefore a target for developing treatments for hearing impairment. IHC regeneration in vivo has been widely attempted, although not yet in the IHC-damaged cochlea. Moreover, the extent to which new IHCs resemble wild-type IHCs remains unclear, as is the ability of new IHCs to improve hearing. Here, we have developed an in vivo mouse model wherein wild-type IHCs were pre-damaged and nonsensory supporting cells were transformed into IHCs by ectopically expressing Atoh1 transiently and Tbx2 permanently. Notably, the new IHCs expressed the functional marker vGlut3 and presented similar transcriptomic and electrophysiological properties to wild-type IHCs. Furthermore, the formation efficiency and maturity of new IHCs were higher than those previously reported, although marked hearing improvement was not achieved, at least partly due to defective mechanoelectrical transduction (MET) in new IHCs. Thus, we have successfully regenerated new IHCs resembling wild-type IHCs in many respects in the damaged cochlea. Our findings suggest that the defective MET is a critical barrier that prevents the restoration of hearing capacity and should thus facilitate future IHC regeneration studies.


Assuntos
Células Ciliadas Vestibulares , Perda Auditiva , Camundongos , Animais , Células Ciliadas Auditivas Internas , Cóclea/fisiologia , Perda Auditiva/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
2.
Cell Mol Life Sci ; 81(1): 80, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334784

RESUMO

Dominant optic atrophy (DOA) is one of the most prevalent forms of hereditary optic neuropathies and is mainly caused by heterozygous variants in OPA1, encoding a mitochondrial dynamin-related large GTPase. The clinical spectrum of DOA has been extended to a wide variety of syndromic presentations, called DOAplus, including deafness as the main secondary symptom associated to vision impairment. To date, the pathophysiological mechanisms underlying the deafness in DOA remain unknown. To gain insights into the process leading to hearing impairment, we have analyzed the Opa1delTTAG mouse model that recapitulates the DOAplus syndrome through complementary approaches combining morpho-physiology, biochemistry, and cellular and molecular biology. We found that Opa1delTTAG mutation leads an adult-onset progressive auditory neuropathy in mice, as attested by the auditory brainstem response threshold shift over time. However, the mutant mice harbored larger otoacoustic emissions in comparison to wild-type littermates, whereas the endocochlear potential, which is a proxy for the functional state of the stria vascularis, was comparable between both genotypes. Ultrastructural examination of the mutant mice revealed a selective loss of sensory inner hair cells, together with a progressive degeneration of the axons and myelin sheaths of the afferent terminals of the spiral ganglion neurons, supporting an auditory neuropathy spectrum disorder (ANSD). Molecular assessment of cochlea demonstrated a reduction of Opa1 mRNA level by greater than 40%, supporting haploinsufficiency as the disease mechanism. In addition, we evidenced an early increase in Sirtuin 3 level and in Beclin1 activity, and subsequently an age-related mtDNA depletion, increased oxidative stress, mitophagy as well as an impaired autophagic flux. Together, these results support a novel role for OPA1 in the maintenance of inner hair cells and auditory neural structures, addressing new challenges for the exploration and treatment of OPA1-linked ANSD in patients.


Assuntos
Surdez , Perda Auditiva Central , Atrofia Óptica Autossômica Dominante , Animais , Humanos , Camundongos , GTP Fosfo-Hidrolases/genética , Perda Auditiva Central/genética , Mutação , Atrofia Óptica Autossômica Dominante/genética
3.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791192

RESUMO

The synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) are the most vulnerable structures in the noise-exposed cochlea. Cochlear synaptopathy results from the disruption of these synapses following noise exposure and is considered the main cause of poor speech understanding in noisy environments, even when audiogram results are normal. Cochlear synaptopathy leads to the degeneration of SGNs if damaged IHC-SGN synapses are not promptly recovered. Oxidative stress plays a central role in the pathogenesis of cochlear synaptopathy. C-Phycocyanin (C-PC) has antioxidant and anti-inflammatory activities and is widely utilized in the food and drug industry. However, the effect of the C-PC on noise-induced cochlear damage is unknown. We first investigated the therapeutic effect of C-PC on noise-induced cochlear synaptopathy. In vitro experiments revealed that C-PC reduced the H2O2-induced generation of reactive oxygen species in HEI-OC1 auditory cells. H2O2-induced cytotoxicity in HEI-OC1 cells was reduced with C-PC treatment. After white noise exposure for 3 h at a sound pressure of 118 dB, the guinea pigs intratympanically administered 5 µg/mL C-PC exhibited greater wave I amplitudes in the auditory brainstem response, more IHC synaptic ribbons and more IHC-SGN synapses according to microscopic analysis than the saline-treated guinea pigs. Furthermore, the group treated with C-PC had less intense 4-hydroxynonenal and intercellular adhesion molecule-1 staining in the cochlea compared with the saline group. Our results suggest that C-PC improves cochlear synaptopathy by inhibiting noise-induced oxidative stress and the inflammatory response in the cochlea.


Assuntos
Cóclea , Molécula 1 de Adesão Intercelular , Ruído , Estresse Oxidativo , Ficocianina , Sinapses , Animais , Estresse Oxidativo/efeitos dos fármacos , Cobaias , Ficocianina/farmacologia , Ficocianina/uso terapêutico , Cóclea/metabolismo , Cóclea/efeitos dos fármacos , Cóclea/patologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Ruído/efeitos adversos , Molécula 1 de Adesão Intercelular/metabolismo , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Perda Auditiva Provocada por Ruído/metabolismo , Perda Auditiva Provocada por Ruído/patologia , Espécies Reativas de Oxigênio/metabolismo , Masculino , Gânglio Espiral da Cóclea/efeitos dos fármacos , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/patologia , Peróxido de Hidrogênio/metabolismo , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Antioxidantes/farmacologia , Linhagem Celular , Perda Auditiva Oculta
4.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473985

RESUMO

In mammalian hearing, type-I afferent auditory nerve fibers comprise the basis of the afferent auditory pathway. They are connected to inner hair cells of the cochlea via specialized ribbon synapses. Auditory nerve fibers of different physiological types differ subtly in their synaptic location and morphology. Low-spontaneous-rate auditory nerve fibers typically connect on the modiolar side of the inner hair cell, while high-spontaneous-rate fibers are typically found on the pillar side. In aging and noise-damaged ears, this fine-tuned balance between auditory nerve fiber populations can be disrupted and the functional consequences are currently unclear. Here, using immunofluorescent labeling of presynaptic ribbons and postsynaptic glutamate receptor patches, we investigated changes in synaptic morphology at three different tonotopic locations along the cochlea of aging gerbils compared to those of young adults. Quiet-aged gerbils showed about 20% loss of afferent ribbon synapses. While the loss was random at apical, low-frequency cochlear locations, at the basal, high-frequency location it almost exclusively affected the modiolar-located synapses. The subtle differences in volumes of pre- and postsynaptic elements located on the inner hair cell's modiolar versus pillar side were unaffected by age. This is consistent with known physiology and suggests a predominant, age-related loss in the low-spontaneous-rate auditory nerve population in the cochlear base, but not the apex.


Assuntos
Cóclea , Sinapses , Animais , Gerbillinae , Cóclea/metabolismo , Sinapses/metabolismo , Nervo Coclear/metabolismo , Células Ciliadas Auditivas Internas/metabolismo
5.
Mol Cell Neurosci ; 118: 103692, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883241

RESUMO

Afferent innervation of the cochlea by the auditory nerve declines during aging and potentially after sound overexposure, producing the common pathology known as cochlear synaptopathy. Auditory-nerve-fiber loss is difficult to detect with the clinical audiogram and has been proposed to cause 'hidden hearing loss' including impaired speech-in-noise perception. While evidence that auditory-nerve-fiber loss causes hidden hearing loss in humans is controversial, behavioral animal models hold promise to rigorously test this hypothesis because neural lesions can be induced and histologically validated. Here, we review recent animal behavioral studies on the impact of auditory-nerve-fiber loss on perception in a range of species. We first consider studies of tinnitus and hyperacusis inferred from acoustic startle reflexes, followed by a review of operant-conditioning studies of the audiogram, temporal integration for tones of varying duration, temporal resolution of gaps in noise, and tone-in-noise detection. Studies quantifying the audiogram show that tone-in-quiet sensitivity is unaffected by auditory-nerve-fiber loss unless neural lesions exceed 80%, at which point large deficits are possible. Changes in other aspects of perception, which were typically investigated for moderate-to-severe auditory-nerve-fiber loss of 50-70%, appear heterogeneous across studies and might be small compared to impairment caused by hair-cell pathologies. Future studies should pursue recent findings that behavioral sensitivity to brief tones and silent gaps in noise may be particularly vulnerable to auditory-nerve-fiber loss. Furthermore, aspects of auditory perception linked to central inhibition and fine neural response timing, such as modulation masking release and spatial hearing, may be productive directions for further animal behavioral research.


Assuntos
Potenciais Evocados Auditivos do Tronco Encefálico , Perda Auditiva , Animais , Percepção Auditiva , Limiar Auditivo/fisiologia , Nervo Coclear , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Perda Auditiva/etiologia , Modelos Animais
6.
FASEB J ; 35(11): e21855, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34644430

RESUMO

Glutamate is the most pivotal excitatory neurotransmitter in the central nervous system. Metabotropic glutamate receptors (mGluRs) dimerize and can couple to inhibitory intracellular signal cascades, thereby protecting glutamatergic neurons from excessive excitation and cell death. MGluR7 is correlated with age-related hearing deficits and noise-induced hearing loss; however its exact localization in the cochlea is unknown. Here, we analyzed the expression and localization of mGluR7a and mGluR7b in mouse cochlear wholemounts in detail, using confocal microscopy and 3D reconstructions. We observed a presynaptic localization of mGluR7a at inner hair cells (IHCs), close to the synaptic ribbon. To detect mGluR7b, newly generated antibodies were characterized and showed co-localization with mGluR7a at IHC ribbon synapses. Compared to the number of synaptic ribbons, the numbers of mGluR7a and mGluR7b puncta were reduced at higher frequencies (48 to 64 kHz) and in older animals (6 and 12 months). Previously, we reported a presynaptic localization of mGluR4 and mGluR8b at this synapse type. This enables the possibility for the formation of homo- and/or heterodimeric receptors composed of mGluR4, mGluR7a, mGluR7b and mGluR8b at IHC ribbon synapses. These receptor complexes might represent new molecular targets suited for pharmacological concepts to protect the cochlea against noxious stimuli and excitotoxicity.


Assuntos
Células Ciliadas Auditivas Internas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores Pré-Sinápticos/metabolismo , Sinapses/metabolismo , Animais , Anticorpos/imunologia , Ácido Glutâmico/metabolismo , Células HEK293 , Perda Auditiva Provocada por Ruído/metabolismo , Humanos , Imageamento Tridimensional/métodos , Imuno-Histoquímica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal/métodos , Receptores de Glutamato Metabotrópico/imunologia , Transfecção
7.
J Neurophysiol ; 125(6): 2461-2479, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949873

RESUMO

Spiral ganglion neurons (SGNs) form single synapses on inner hair cells (IHCs), transforming sound-induced IHC receptor potentials into trains of action potentials. SGN neurons are classified by spontaneous firing rates as well as their threshold response to sound intensity levels. We investigated the hypothesis that synaptic specializations underlie mouse SGN response properties and vary with pillar versus modiloar synapse location around the hair cell. Depolarizing hair cells with 40 mM K+ increased the rate of postsynaptic responses. Pillar synapses matured later than modiolar synapses. Excitatory postsynaptic current (EPSC) amplitude, area, and number of underlying events per EPSC were similar between synapse locations at steady state. However, modiolar synapses produced larger monophasic EPSCs when EPSC rates were low and EPSCs became more multiphasic and smaller in amplitude when rates were higher, while pillar synapses produced more monophasic and larger EPSCs when the release rates were higher. We propose that pillar and modiolar synapses have different operating points. Our data provide insight into underlying mechanisms regulating EPSC generation.NEW & NOTEWORTHY Data presented here provide the first direct functional evidence of late synaptic maturation of the hair cell- spiral ganglion neuron synapse, where pillar synapses mature after postnatal day 20. Data identify a presynaptic difference in release during stimulation. This difference may in part drive afferent firing properties.


Assuntos
Cóclea/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Células Ciliadas Auditivas Internas/fisiologia , Neurônios/fisiologia , Gânglio Espiral da Cóclea/fisiologia , Sinapses/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gânglio Espiral da Cóclea/crescimento & desenvolvimento
8.
Proc Natl Acad Sci U S A ; 114(9): E1717-E1726, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28183797

RESUMO

Ca2+-binding protein 2 (CaBP2) inhibits the inactivation of heterologously expressed voltage-gated Ca2+ channels of type 1.3 (CaV1.3) and is defective in human autosomal-recessive deafness 93 (DFNB93). Here, we report a newly identified mutation in CABP2 that causes a moderate hearing impairment likely via nonsense-mediated decay of CABP2-mRNA. To study the mechanism of hearing impairment resulting from CABP2 loss of function, we disrupted Cabp2 in mice (Cabp2LacZ/LacZ ). CaBP2 was expressed by cochlear hair cells, preferentially in inner hair cells (IHCs), and was lacking from the postsynaptic spiral ganglion neurons (SGNs). Cabp2LacZ/LacZ mice displayed intact cochlear amplification but impaired auditory brainstem responses. Patch-clamp recordings from Cabp2LacZ/LacZ IHCs revealed enhanced Ca2+-channel inactivation. The voltage dependence of activation and the number of Ca2+ channels appeared normal in Cabp2LacZ/LacZ mice, as were ribbon synapse counts. Recordings from single SGNs showed reduced spontaneous and sound-evoked firing rates. We propose that CaBP2 inhibits CaV1.3 Ca2+-channel inactivation, and thus sustains the availability of CaV1.3 Ca2+ channels for synaptic sound encoding. Therefore, we conclude that human deafness DFNB93 is an auditory synaptopathy.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Linhagem Celular , Cóclea/metabolismo , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Células HEK293 , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Vestibulares/metabolismo , Perda Auditiva/metabolismo , Humanos , Camundongos , Técnicas de Patch-Clamp/métodos , RNA Mensageiro/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Sinapses/metabolismo
9.
BMC Biol ; 16(1): 99, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30253762

RESUMO

BACKGROUND: Perineuronal nets (PNNs) are specialized aggregations of extracellular matrix (ECM) molecules surrounding specific neurons in the central nervous system (CNS). PNNs are supposed to control synaptic transmission and are frequently associated with neurons firing at high rates, including principal neurons of auditory brainstem nuclei. The origin of high-frequency activity of auditory brainstem neurons is the indefatigable sound-driven transmitter release of inner hair cells (IHCs) in the cochlea. RESULTS: Here, we show that synaptic poles of IHCs are ensheathed by basket-like ECM complexes formed by the same molecules that constitute PNNs of neurons in the CNS, including brevican, aggreccan, neurocan, hyaluronan, and proteoglycan link proteins 1 and 4 and tenascin-R. Genetic deletion of brevican, one of the main components, resulted in a massive degradation of ECM baskets at IHCs, a significant impairment in spatial coupling of pre- and postsynaptic elements and mild impairment of hearing. CONCLUSIONS: These ECM baskets potentially contribute to control of synaptic transmission at IHCs and might be functionally related to PNNs of neurons in the CNS.


Assuntos
Brevicam/genética , Orelha Interna/fisiologia , Matriz Extracelular/metabolismo , Transmissão Sináptica/fisiologia , Animais , Brevicam/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout
10.
Cell Mol Biol (Noisy-le-grand) ; 64(12): 2-10, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-30301494

RESUMO

The cochlea of guinea pigs was irradiated with different frequencies of bone-conducted ultrasound (BCU) at a specific dose to induce cochlear hair cell-specific injuries, in order to establish frequency-related cochlear hair cell-specific injury models. Cochlear near-field potentials were then evoked using BCU of different frequencies and intensities to explore the peripheral coding and recognition of BCU by the cochlea. The inner ears of guinea pigs were irradiated by 30 kHz at 100 db and 80 kHz at100 db BCU for 6h to create frequency-related, ultrasound-specific cochlear injury models. Then, 30 kHz and 80 kHz BCU of different intensities were used to evoke auditory brainstem response (ABR) thresholds, compound action potential (CAP) thresholds, and action potential (AP) intensity-amplitude input-output curves in the normal control group and the ultrasonic cochlear injury group. This allowed us to explore the coding and recognition of BCU frequencies and intensities by cochlear hair cells. Immunofluorescence assay of outer hair cell (OHC) Prestin and inner hair cell (IHC) Otofelin was performed to verify the injury models. Irradiation of guinea pig inner ears by 30 kHz and 80 kHz BCU at a specific dose induced hair cell injuries at different sites. Irradiation with low frequency BCU mainly induced OHC injury, whereas irradiation with high frequency BCU induced IHC injury; moreover, IHC injury was more serious than OHC injury. The 30 kHz-evoked ABR threshold was significantly higher in the 30 kHz ultrasonic cochlear injury group compared to the normal control group. The 30 kHz-evoked ABR threshold was significantly higher in the 30 kHz ultrasonic cochlear injury group compared to the 80 kHz ultrasonic cochlear injury group. The difference in the 80 kHz-evoked ABR thresholds were not significant between the 30 kHz and 80 kHz ultrasonic cochlear injury groups. The click- and 30 kHz-evoked AP intensity-amplitude curves for the 30 kHz ultrasonic cochlear injury group indicate that the AP amplitude evoked at the same intensity was higher in the 30 kHz-evoked group than the click-evoked group. The spatial positions of cochlear hair cells in guinea pigs had a coding function for the frequencies of low-frequency ultrasound. OHCs have an amplification effect on the coding of low-frequency ultrasonic intensities. The peripheral perception of high frequency BCU may not require the participation of cochlear hair cells.


Assuntos
Cóclea/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Ondas Ultrassônicas , Animais , Cóclea/efeitos da radiação , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos da radiação , Cobaias , Células Ciliadas Auditivas Internas/fisiologia , Células Ciliadas Auditivas Internas/efeitos da radiação
11.
J Neurosci ; 36(1): 222-34, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26740663

RESUMO

The Neuroplastin gene encodes two synapse-enriched protein isoforms, Np55 and Np65, which are transmembrane glycoproteins that regulate several cellular processes, including the genesis, maintenance, and plasticity of synapses. We found that an absence of Np65 causes early-onset sensorineural hearing loss and prevented the normal synaptogenesis in inner hair cells (IHCs) in the newly identified mouse mutant pitch. In wild-type mice, Np65 is strongly upregulated in the cochlea from around postnatal day 12 (P12), which corresponds to the onset of hearing. Np65 was specifically localized at the presynaptic region of IHCs. We found that the colocalization of presynaptic IHC ribbons and postsynaptic afferent terminals is greatly reduced in pitch mutants. Moreover, IHC exocytosis is also reduced with mutant mice showing lower rates of vesicle release. Np65 appears to have a nonessential role in vision. We propose that Np65, by regulating IHC synaptogenesis, is critical for auditory function in mammals. SIGNIFICANCE STATEMENT: In the mammalian cochlea, the sensory inner hair cells (IHCs) encode auditory information. They do this by converting sound wave-induced mechanical motion of their hair bundles into an electrical current. This current generates a receptor potential that controls release of glutamate neurotransmitter from their ribbon synapses onto the auditory afferent fiber. We show that the synapse-enriched protein Np65, encoded by the Neuroplastin gene, is localized at the IHC presynaptic region. In mutant mice, absence of Np65 causes early-onset sensorineural hearing loss and prevents normal neurotransmitter release in IHCs and colocalization of presynaptic ribbons with postsynaptic afferents. We identified Neuroplastin as a novel deafness gene required for ribbon synapse formation and function, which is critical for sound perception in mammals.


Assuntos
Surdez/fisiopatologia , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Glicoproteínas de Membrana/metabolismo , Sinapses/metabolismo , Sinapses/patologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese
12.
J Neurosci ; 36(43): 11024-11036, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27798183

RESUMO

The auxiliary subunit α2δ2 modulates the abundance and function of voltage-gated calcium channels. Here we show that α2δ2 mRNA is expressed in neonatal and mature hair cells. A functional α2δ2-null mouse, the ducky mouse (du), showed elevated auditory brainstem response click and frequency-dependent hearing thresholds. Otoacoustic emissions were not impaired pointing to normal outer hair cell function. Peak Ca2+ and Ba2+ currents of mature du/du inner hair cells (IHCs) were reduced by 30-40%, respectively, and gating properties, such as the voltage of half-maximum activation and voltage sensitivity, were altered, indicating that Cav1.3 channels normally coassemble with α2δ2 at IHC presynapses. The reduction of depolarization-evoked exocytosis in du/du IHCs reflected their reduced Ca2+ currents. Ca2+- and voltage-dependent K+ (BK) currents and the expression of the pore-forming BKα protein were normal. Cav1.3 and Cavß2 protein expression was unchanged in du/du IHCs, forming clusters at presynaptic ribbons. However, the close apposition of presynaptic Cav1.3 clusters with postsynaptic glutamate receptor GluA4 and PSD-95 clusters was significantly impaired in du/du mice. This implies that, in addition to controlling the expression and gating properties of Cav1.3 channels, the largely extracellularly localized α2δ2 subunit moreover plays a so far unknown role in mediating trans-synaptic alignment of presynaptic Ca2+ channels and postsynaptic AMPA receptors. SIGNIFICANCE STATEMENT: Inner hair cells possess calcium channels that are essential for transmitting sound information into synaptic transmitter release. Voltage-gated calcium channels can coassemble with auxiliary subunit α2δ isoforms 1-4. We found that hair cells of the mouse express the auxiliary subunit α2δ2, which is needed for normal hearing thresholds. Using a mouse model with a mutant, nonfunctional α2δ2 protein, we showed that the α2δ2 protein is necessary for normal calcium currents and exocytosis in inner hair cells. Unexpectedly, the α2δ2 protein is moreover required for the optimal spatial alignment of presynaptic calcium channels and postsynaptic glutamate receptor proteins across the synaptic cleft. This suggests that α2δ2 plays a novel role in organizing the synapse.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio/metabolismo , Células Ciliadas Auditivas Internas/fisiologia , Audição/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Sinalização do Cálcio/fisiologia , Feminino , Ativação do Canal Iônico/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
J Cell Sci ; 128(14): 2529-40, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26045447

RESUMO

The ways in which cell architecture is modelled to meet cell function is a poorly understood facet of cell biology. To address this question, we have studied the cytoarchitecture of a cell with highly specialised organisation, the cochlear inner hair cell (IHC), using multiple hierarchies of three-dimensional (3D) electron microscopy analyses. We show that synaptic terminal distribution on the IHC surface correlates with cell shape, and the distribution of a highly organised network of membranes and mitochondria encompassing the infranuclear region of the cell. This network is juxtaposed to a population of small vesicles, which represents a potential new source of neurotransmitter vesicles for replenishment of the synapses. Structural linkages between organelles that underlie this organisation were identified by high-resolution imaging. Taken together, these results describe a cell-encompassing network of membranes and mitochondria present in IHCs that support efficient coding and transmission of auditory signals. Such techniques also have the potential for clarifying functionally specialised cytoarchitecture of other cell types.


Assuntos
Células Ciliadas Auditivas Internas/ultraestrutura , Imageamento Tridimensional , Vesículas Sinápticas/ultraestrutura , Animais , Cobaias , Células Ciliadas Auditivas Internas/metabolismo , Camundongos , Microscopia Eletrônica , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo
14.
J Neurosci ; 35(26): 9701-6, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26134652

RESUMO

Hearing loss among the elderly correlates with diminished social, mental, and physical health. Age-related cochlear cell death does occur, but growing anatomical evidence suggests that synaptic rearrangements on sensory hair cells also contribute to auditory functional decline. Here we present voltage-clamp recordings from inner hair cells of the C57BL/6J mouse model of age-related hearing loss, which reveal that cholinergic synaptic inputs re-emerge during aging. These efferents are functionally inhibitory, using the same ionic mechanisms as do efferent contacts present transiently before the developmental onset of hearing. The strength of efferent inhibition of inner hair cells increases with hearing threshold elevation. These data indicate that the aged cochlea regains features of the developing cochlea and that efferent inhibition of the primary receptors of the auditory system re-emerges with hearing impairment. SIGNIFICANCE STATEMENT: Synaptic changes in the auditory periphery are increasingly recognized as important factors in hearing loss. To date, anatomical work has described the loss of afferent contacts from cochlear hair cells. However, relatively little is known about the efferent innervation of the cochlea during hearing loss. We performed intracellular recordings from mouse inner hair cells across the lifespan and show that efferent innervation of inner hair cells arises in parallel with the loss of afferent contacts and elevated hearing threshold during aging. These efferent neurons inhibit inner hair cells, raising the possibility that they play a role in the progression of age-related hearing loss.


Assuntos
Cóclea/patologia , Células Ciliadas Auditivas Internas/fisiologia , Perda Auditiva/patologia , Inibição Neural/fisiologia , Acetilcolina/farmacologia , Fatores Etários , Oxirredutases do Álcool , Animais , Animais Recém-Nascidos , Apamina/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Proteínas Correpressoras , Conotoxinas/farmacologia , Curare/farmacologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Glicinérgicos/farmacologia , Perda Auditiva/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuromusculares não Despolarizantes/farmacologia , Fosfoproteínas/metabolismo , Estricnina/farmacologia
15.
J Comput Neurosci ; 41(2): 193-206, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27480847

RESUMO

Neural spike trains are commonly characterized as a Poisson point process. However, the Poisson assumption is a poor model for spiking in auditory nerve fibres because it is known that interspike intervals display positive correlation over long time scales and negative correlation over shorter time scales. We have therefore developed a biophysical model based on the well-known Meddis model of the peripheral auditory system, to produce simulated auditory nerve fibre spiking statistics that more closely match the firing correlations observed in empirical data. We achieve this by introducing biophysically realistic ion channel noise to an inner hair cell membrane potential model that includes fractal fast potassium channels and deterministic slow potassium channels. We succeed in producing simulated spike train statistics that match empirically observed firing correlations. Our model thus replicates macro-scale stochastic spiking statistics in the auditory nerve fibres due to modeling stochasticity at the micro-scale of potassium channels.


Assuntos
Potenciais de Ação , Nervo Coclear , Canais Iônicos/fisiologia , Modelos Neurológicos , Neurônios , Canais de Potássio
16.
J Neurosci ; 34(3): 705-16, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24431429

RESUMO

Synaptic vesicle recycling sustains high rates of neurotransmission at the ribbon-type active zones (AZs) of mouse auditory inner hair cells (IHCs), but its modes and molecular regulation are poorly understood. Electron microscopy indicated the presence of clathrin-mediated endocytosis (CME) and bulk endocytosis. The endocytic proteins dynamin, clathrin, and amphiphysin are expressed and broadly distributed in IHCs. We used confocal vglut1-pHluorin imaging and membrane capacitance (Cm) measurements to study the spatial organization and dynamics of IHC exocytosis and endocytosis. Viral gene transfer expressed vglut1-pHluorin in IHCs and targeted it to synaptic vesicles. The intravesicular pH was ∼6.5, supporting only a modest increase of vglut1-pHluorin fluorescence during exocytosis and pH neutralization. Ca(2+) influx triggered an exocytic increase of vglut1-pHluorin fluorescence at the AZs, around which it remained for several seconds. The endocytic Cm decline proceeded with constant rate (linear component) after exocytosis of the readily releasable pool (RRP). When exocytosis exceeded three to four RRP equivalents, IHCs additionally recruited a faster Cm decline (exponential component) that increased with the amount of preceding exocytosis and likely reflects bulk endocytosis. The dynamin inhibitor Dyngo-4a and the clathrin blocker pitstop 2 selectively impaired the linear component of endocytic Cm decline. A missense mutation of dynamin 1 (fitful) inhibited endocytosis to a similar extent as Dyngo-4a. We propose that IHCs use dynamin-dependent endocytosis via CME to support vesicle cycling during mild stimulation but recruit bulk endocytosis to balance massive exocytosis.


Assuntos
Membrana Celular/metabolismo , Clatrina/fisiologia , Dinamina I/fisiologia , Exocitose/fisiologia , Células Ciliadas Auditivas Internas/metabolismo , Hidrazonas/farmacologia , Naftóis/farmacologia , Animais , Membrana Celular/efeitos dos fármacos , Dinamina I/antagonistas & inibidores , Dinamina I/genética , Exocitose/efeitos dos fármacos , Feminino , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação de Sentido Incorreto/fisiologia , Órgão Espiral/citologia , Órgão Espiral/metabolismo
17.
J Neurosci ; 34(2): 434-45, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24403143

RESUMO

The auxiliary subunit α2δ3 modulates the expression and function of voltage-gated calcium channels. Here we show that α2δ3 mRNA is expressed in spiral ganglion neurons and auditory brainstem nuclei and that the protein is required for normal acoustic responses. Genetic deletion of α2δ3 led to impaired auditory processing, with reduced acoustic startle and distorted auditory brainstem responses. α2δ3(-/-) mice learned to discriminate pure tones, but they failed to discriminate temporally structured amplitude-modulated tones. Light and electron microscopy analyses revealed reduced levels of presynaptic Ca(2+) channels and smaller auditory nerve fiber terminals contacting cochlear nucleus bushy cells. Juxtacellular in vivo recordings of sound-evoked activity in α2δ3(-/-) mice demonstrated impaired transmission at these synapses. Together, our results identify a novel role for the α2δ3 auxiliary subunit in the structure and function of specific synapses in the mammalian auditory pathway and in auditory processing disorders.


Assuntos
Transtornos da Percepção Auditiva/metabolismo , Canais de Cálcio/metabolismo , Nervo Coclear/metabolismo , Aprendizagem por Discriminação/fisiologia , Sinapses/metabolismo , Animais , Transtornos da Percepção Auditiva/genética , Transtornos da Percepção Auditiva/fisiopatologia , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Canais de Cálcio/genética , Nervo Coclear/patologia , Eletrofisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/fisiologia , Sinapses/patologia , Transmissão Sináptica/fisiologia
18.
Hum Mutat ; 36(1): 98-105, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25331638

RESUMO

Autosomal-recessive nonsyndromic hearing loss (ARNSHL) features a high degree of genetic heterogeneity. Many genes responsible for ARNSHL have been identified or mapped. We previously mapped an ARNSHL locus at 17q12, herein designated DFNB99, in a consanguineous Chinese family. In this study, whole-exome sequencing revealed a homozygous missense mutation (c.1259G>A, p.Arg420Gln) in the gene-encoding transmembrane protein 132E (TMEM132E) as the causative variant. Immunofluorescence staining of the Organ of Corti showed Tmem132e highly expressed in murine inner hair cells. Furthermore, knockdown of the tmem132e ortholog in zebrafish affected the mechanotransduction of hair cells. Finally, wild-type human TMEM132E mRNA, but not the mRNA carrying the c.1259G>A mutation rescued the Tmem132e knockdown phenotype. We conclude that the variant in TMEM132E is the most likely cause of DFNB99.


Assuntos
Células Ciliadas Auditivas Internas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Análise de Sequência de DNA/métodos , Animais , China , Cromossomos Humanos Par 15/genética , Surdez/genética , Exoma , Técnicas de Silenciamento de Genes , Genes Recessivos , Humanos , Masculino , Camundongos , Mutação de Sentido Incorreto , Linhagem , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
J Neurosci Res ; 92(10): 1409-18, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24840118

RESUMO

The present study was conducted to elucidate the presence of the transient receptor potential cation channel subfamily M member 4, TRPM4, in the mouse inner ear. TRPM4 immunoreactivity (IR) was found in the cell body of inner hair cells (IHCs) in the organ of Corti in the apical side of marginal cells of the stria vascularis, in the apical portion of the dark cells of the vestibule, and in a subset of the type II neurons in the spiral ganglion. Subsequently, changes in the distribution and expression of TRPM4 in the inner ear during embryonic and postnatal developments were also evaluated. Immunohistochemical localization demonstrated that the emergence of the TRPM4-IR in IHCs occurs shortly before the onset of hearing, whereas that in the marginal cells happens earlier, at the time of birth, coinciding with the onset of endolymph formation. Furthermore, semiquantitative real-time PCR assay showed that expressions of TRPM4 in the organ of Corti and in the stria vascularis increased dramatically at the onset of hearing. Because TRPM4 is a Ca(2+) -activated monovalent-selective cation channel, these findings imply that TRPM4 contributes to potassium ion transport, essential for the signal transduction in IHCs and the formation of endolymph by marginal cells.


Assuntos
Cóclea/anatomia & histologia , Cóclea/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células Ciliadas Auditivas Internas/metabolismo , Canais de Cátion TRPM/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Membrana Celular/metabolismo , Cóclea/crescimento & desenvolvimento , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Audição/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Cadeias Pesadas de Miosina/metabolismo , Células Receptoras Sensoriais/metabolismo , Gânglio Espiral da Cóclea/citologia , Canais de Cátion TRPM/genética
20.
Mol Cell Neurosci ; 56: 29-38, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23511189

RESUMO

Sensorineural hearing loss, which is mainly caused by cochlear hair cell damage, is an intractable disease, as cochlear hair cells and supporting cells are unable to proliferate in postnatal mammals. As a novel and potent treatment for sensorineural hearing loss, we have studied IGF-1 and found that it protects cochlear hair cells from the damage caused by noise and ischemic trauma. Through a clinical trial, we have also confirmed that IGF-1 is an effective treatment for idiopathic sudden sensorineural hearing loss. In the current study, we attempted to identify the downstream pathways of the IGF-1 signal and the mechanisms by which IGF-1 protects the neonatal mouse cochlear hair cells that have been damaged by neomycin. IGF-1 activated both the PI3K/Akt and MEK/ERK pathways to maintain the hair cell numbers in the injured cochlea. The PI3K/Akt pathway specifically protected the cochlear inner hair cells through the inhibition of apoptosis. In contrast, the MEK/ERK pathway induced the cell cycle promotion of Hensen's and Claudius' cells, the supporting cells that are located lateral to the outer hair cells of the cochlea. This cell cycle promotion of the supporting cells resulted in the maintenance of the outer hair cell numbers. These results indicate that IGF-1 is a growth factor that efficiently regulates different mechanisms through different downstream cascades, thereby protecting cochlear hair cells.


Assuntos
Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Animais , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos ICR , Neomicina/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA