Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucl Med Mol Imaging ; 57(2): 73-85, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36998592

RESUMO

For more anatomically precise quantitation of mouse brain PET, spatial normalization (SN) of PET onto MR template and subsequent template volumes-of-interest (VOIs)-based analysis are commonly used. Although this leads to dependency on the corresponding MR and the process of SN, routine preclinical/clinical PET images cannot always afford corresponding MR and relevant VOIs. To resolve this issue, we propose a deep learning (DL)-based individual-brain-specific VOIs (i.e., cortex, hippocampus, striatum, thalamus, and cerebellum) directly generated from PET images using the inverse-spatial-normalization (iSN)-based VOI labels and deep convolutional neural network model (deep CNN). Our technique was applied to mutated amyloid precursor protein and presenilin-1 mouse model of Alzheimer's disease. Eighteen mice underwent T2-weighted MRI and 18F FDG PET scans before and after the administration of human immunoglobin or antibody-based treatments. To train the CNN, PET images were used as inputs and MR iSN-based target VOIs as labels. Our devised methods achieved decent performance in terms of not only VOI agreements (i.e., Dice similarity coefficient) but also the correlation of mean counts and SUVR, and CNN-based VOIs was highly accordant with ground-truth (the corresponding MR and MR template-based VOIs). Moreover, the performance metrics were comparable to that of VOI generated by MR-based deep CNN. In conclusion, we established a novel quantitative analysis method both MR-less and SN-less fashion to generate individual brain space VOIs using MR template-based VOIs for PET image quantification. Supplementary Information: The online version contains supplementary material available at 10.1007/s13139-022-00772-4.

2.
Front Aging Neurosci ; 14: 807903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309883

RESUMO

Although skull-stripping and brain region segmentation are essential for precise quantitative analysis of positron emission tomography (PET) of mouse brains, deep learning (DL)-based unified solutions, particularly for spatial normalization (SN), have posed a challenging problem in DL-based image processing. In this study, we propose an approach based on DL to resolve these issues. We generated both skull-stripping masks and individual brain-specific volumes-of-interest (VOIs-cortex, hippocampus, striatum, thalamus, and cerebellum) based on inverse spatial normalization (iSN) and deep convolutional neural network (deep CNN) models. We applied the proposed methods to mutated amyloid precursor protein and presenilin-1 mouse model of Alzheimer's disease. Eighteen mice underwent T2-weighted MRI and 18F FDG PET scans two times, before and after the administration of human immunoglobulin or antibody-based treatments. For training the CNN, manually traced brain masks and iSN-based target VOIs were used as the label. We compared our CNN-based VOIs with conventional (template-based) VOIs in terms of the correlation of standardized uptake value ratio (SUVR) by both methods and two-sample t-tests of SUVR % changes in target VOIs before and after treatment. Our deep CNN-based method successfully generated brain parenchyma mask and target VOIs, which shows no significant difference from conventional VOI methods in SUVR correlation analysis, thus establishing methods of template-based VOI without SN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA