Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 25(3): e202300732, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37917130

RESUMO

Natural products bearing isothiocyanate (ITC) groups are an important group of specialized metabolites that play various roles in health, nutrition, and ecology. Whereas ITC biosynthesis via glucosinolates in plants has been studied in detail, there is a gap in understanding the bacterial route to specialized metabolites with such reactive heterocumulene groups, as in the antifungal sinapigladioside from Burkholderia gladioli. Here we propose an alternative ITC pathway by enzymatic sulfur transfer onto isonitriles catalyzed by rhodanese-like enzymes (thiosulfate:cyanide sulfurtransferases). Mining the B. gladioli genome revealed six candidate genes (rhdA-F), which were individually expressed in E. coli. By means of a synthetic probe, the gene products were evaluated for their ability to produce the key ITC intermediate in the sinapigladioside pathway. In vitro biotransformation assays identified RhdE, a prototype single-domain rhodanese, as the most potent ITC synthase. Interestingly, while RhdE also efficiently transforms cyanide into thiocyanate, it shows high specificity for the natural pathway intermediate, indicating that the sinapigladioside pathway has recruited a ubiquitous detoxification enzyme for the formation of a bioactive specialized metabolite. These findings not only elucidate an elusive step in bacterial ITC biosynthesis but also reveal a new function of rhodanese-like enzymes in specialized metabolism.


Assuntos
Escherichia coli , Tiossulfato Sulfurtransferase , Tiossulfato Sulfurtransferase/genética , Tiossulfato Sulfurtransferase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Sulfurtransferases/metabolismo , Isotiocianatos , Enxofre , Cianetos/metabolismo , Catálise
2.
Chemistry ; 30(5): e202303350, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37872737

RESUMO

Three series of palladium(II) complexes supported by a phosphine-iminophosphorane ligand built upon an ortho-phenylene core were investigated to study the influence of the iminophosphorane N substituent. Cis-dichloride palladium(II) complexes 1 in which the N atom bears an isopropyl (iPr, 1 a), a phenyl (Ph, 1 b), a trimethylsilyl (TMS, 1 c) group or an H atom (1 d) were synthesized in high yield. They were characterized by NMR, IR spectroscopy, HR-mass spectrometry, elemental analysis, and X-ray diffraction. A substantial bond length difference between the Pd-Cl bonds was observed in 1. Complexes 1 a-d were converted into [Pd(LR )Cl(CNt Bu)](OTf)] 2 a-d whose isocyanide is located trans to the iminophosphorane. The corresponding dicationic complexes [Pd(LR )(CNt Bu)2 ](OTf)2 3 a-d were also synthesized, however they exhibited lower stability in solution than 2, the isopropyl derivative 3 a being the most stable of the series. Molecular modeling was performed to rationalize the regioselectivity of the substitution of the single chloride by isocyanide (from 1 to 2) and to study the electronic distribution in the complexes. In particular differences between the TMS and H containing complexes vs. the iPr and Ph ones were found. This suggests that the nature of the N substituent is far from innocent and can help tune the reactivity of iminophosphorane complexes.

3.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33593906

RESUMO

The maintenance of sufficient but nontoxic pools of metal micronutrients is accomplished through diverse homeostasis mechanisms in fungi. Siderophores play a well established role for iron homeostasis; however, no copper-binding analogs have been found in fungi. Here we demonstrate that, in Aspergillus fumigatus, xanthocillin and other isocyanides derived from the xan biosynthetic gene cluster (BGC) bind copper, impact cellular copper content, and have significant metal-dependent antimicrobial properties. xan BGC-derived isocyanides are secreted and bind copper as visualized by a chrome azurol S (CAS) assay, and inductively coupled plasma mass spectrometry analysis of A. fumigatus intracellular copper pools demonstrated a role for xan cluster metabolites in the accumulation of copper. A. fumigatus coculture with a variety of human pathogenic fungi and bacteria established copper-dependent antimicrobial properties of xan BGC metabolites, including inhibition of laccase activity. Remediation of xanthocillin-treated Pseudomonas aeruginosa growth by copper supported the copper-chelating properties of xan BGC isocyanide products. The existence of the xan BGC in several filamentous fungi suggests a heretofore unknown role of eukaryotic natural products in copper homeostasis and mediation of interactions with competing microbes.


Assuntos
Anti-Infecciosos/farmacologia , Aspergillus fumigatus/metabolismo , Cobre/metabolismo , Cianetos/metabolismo , Anti-Infecciosos/química , Aspergillus fumigatus/química , Aspergillus fumigatus/genética , Aspergillus nidulans/efeitos dos fármacos , Butadienos/síntese química , Butadienos/metabolismo , Butadienos/farmacologia , Cianetos/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Lacase/metabolismo , Testes de Sensibilidade Microbiana , Família Multigênica , Mutação , Fenóis/síntese química , Fenóis/metabolismo , Fenóis/farmacologia , Pigmentação , Esporos Fúngicos/fisiologia
4.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256119

RESUMO

To develop a novel 99mTc-labeled ubiquicidin 29-41 derivative for bacterial infection single-photon emission computed tomography (SPECT) imaging with improved target-to-nontarget ratio and lower nontarget organ uptake, a series of isocyanide ubiquicidin 29-41 derivatives (CNnUBI 29-41, n = 5-9) with different carbon linkers were designed, synthesized and radiolabeled with the [99mTc]Tc(I)+ core, [99mTc][Tc(I)(CO)3(H2O)3]+ core and [99mTc][Tc(V)N]2+ core. All the complexes are hydrophilic, maintain good stability and specifically bind Staphylococcus aureus in vitro. The biodistribution in mice with bacterial infection and sterile inflammation demonstrated that [99mTc]Tc-CN5UBI 29-41 was able to distinguish bacterial infection from sterile inflammation, which had an improved abscess uptake and a greater target-to-nontarget ratio. SPECT imaging study of [99mTc]Tc-CN5UBI 29-41 in bacterial infection mice showed that there was a clear accumulation in the infection site, suggesting that this radiotracer could be a potential radiotracer for bacterial infection imaging.


Assuntos
Proteínas Ribossômicas , Infecções Estafilocócicas , Animais , Camundongos , Distribuição Tecidual , Infecções Estafilocócicas/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Cianetos , Inflamação/diagnóstico por imagem
5.
Molecules ; 29(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257258

RESUMO

A new class of palladium-indenyl complexes characterized by the presence of one bulky alkyl isocyanide and one aryl phosphine serving as ancillary ligands has been prepared, presenting high yields and selectivity. All the new products were completely characterized using spectroscopic and spectrometric techniques (NMR, FT-IR, and HRMS), and, for most of them, it was also possible to define their solid-state structures via X-ray diffractometry, revealing that the indenyl fragment always binds to the metal centre with a hapticity intermediate between ƞ3 and ƞ5. A reactivity study carried out using piperidine as a nucleophilic agent proved that the indenyl moiety is the eligible site of attack rather than the isocyanide ligand or the metal centre. All complexes were tested as potential anticancer agents against three ovarian cancer cell lines (A2780, A2780cis, and OVCAR-5) and one breast cancer cell line (MDA-MB-231), displaying comparable activity with respect to cisplatin, which was used as a positive control. Moreover, the similar cytotoxicity observed towards A2780 and A2780cis cells (cisplatin-sensitive and cisplatin-resistant, respectively) suggests that our palladium derivatives presumably act with a mechanism of action different than that of the clinically approved platinum drugs. For comparison, we also synthesized Pd-ƞ3-allyl derivatives, which generally showed a slightly higher activity towards ovarian cancer cells and lower activity towards breast cancer cells with respect to their Pd-indenyl congeners.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Fosfinas , Humanos , Feminino , Cisplatino , Linhagem Celular Tumoral , Ligantes , Paládio , Espectroscopia de Infravermelho com Transformada de Fourier , Cianetos
6.
Molecules ; 29(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474631

RESUMO

A wide range of platinum(0)-η2-(E)-1,2-ditosylethene complexes bearing isocyanide, phosphine and N-heterocyclic carbene ancillary ligands have been prepared with high yields and selectivity. All the novel products underwent thorough characterization using spectroscopic techniques, including NMR and FT-IR analyses. Additionally, for some compounds, the solid-state structures were elucidated through X-ray diffractometry. The synthesized complexes were successively evaluated for their potential as anticancer agents against two ovarian cancer cell lines (A2780 and A2780cis) and one breast cancer cell line (MDA-MB-231). The majority of the compounds displayed promising cytotoxicity within the micromolar range against A2780 and MDA-MB-231 cells, with IC50 values comparable to or even surpassing those of cisplatin. However, only a subset of compounds was cytotoxic against cisplatin-resistant cancer cells (A2780cis). Furthermore, the assessment of antiproliferative activity on MRC-5 normal cells revealed certain compounds to exhibit in vitro selectivity. Notably, complexes 3d, 6a and 6b showed low cytotoxicity towards normal cells (IC50 > 100 µM) while concurrently displaying potent cytotoxicity against cancer cells.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Metano/análogos & derivados , Neoplasias Ovarianas , Fosfinas , Feminino , Humanos , Cisplatino/química , Platina/química , Linhagem Celular Tumoral , Cianetos , Espectroscopia de Infravermelho com Transformada de Fourier , Complexos de Coordenação/química , Antineoplásicos/química , Ligantes
7.
Angew Chem Int Ed Engl ; 63(15): e202319804, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329155

RESUMO

Ligand-exchange reactions on a mangana(II)cyclopentasilane complex that contains two THF ligands with aryl isocyanides led to the formation of manganese(0) bis(η2-disilene) complexes via a retrocyclization. In stark contrast, ligand-exchange reactions with CNtBu, an N-heterocyclic carbene, or pyridine-based ligands furnished manganese(II) complexes wherein the manganacyclopentasilane framework remained intact. The thermolysis of the obtained bis(η2-disilene) complex in the presence of mesityl isocyanide led to the formation of a cyclotetrasilane via the formal dimerization of the two η2-disilene moieties. The insertion of a mesityl isocyanide into the Mn-Siß bond results in the formation of a manganese(II) complex supported by a [SiCSi]-type tridentate ligand scaffold.

8.
Angew Chem Int Ed Engl ; : e202414726, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39215589

RESUMO

Functionalized isocyanide chemistry represents an important research area in organic synthesis. A structurally unique 2-isocyanophenl propargylic ester has been designed to incorporate the reactivity of isocyanide and propargylic ester. Thus, the reaction of 2-isocyanophenyl propargylic ester and 2-aminoaromatic aldimine facilitates the synthesis of a wide range of polycyclic benzo[b]indolo[3,2-h][1,6]naphthyridine derivatives. Furthermore, reacting with 2-hydroxyaromatic aldimine enables the divergent synthesis of both the aforementioned scaffolds and another structurally distinctive diazabenzo[f]naphtho[2,3,4-ij]azulenes featuring a [7-6-5] core skeleton. Experimental results and DFT calculations suggest that these transformations likely proceed via the in situ generation of a strained cyclopropen-imine species followed by [3+2] cycloaddition. Next, switchable nucleophilic attack/ring-expansion/aromatization and nucleophilic addition/ring-expansion/elimination account for the observed selectivity.

9.
Angew Chem Int Ed Engl ; : e202417658, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354679

RESUMO

Metal-organic frameworks (MOFs) have been widely studied due to their versatile applications and easily tunable structures. However, heteroatom-metal coordination dominates the MOFs community, and the rational synthesis of carbon-metal coordination-based MOFs remains a significant challenge. Herein, two-dimensional (2D) MOFs based on silver-carbon linkages are synthesized through the coordination between silver(I) salt and isocyanide-based monomers at ambient condition. The as-synthesized 2D MOFs possess well-defined crystalline structures and a staggered AB stacking mode. Most interestingly, these 2D MOFs, without π-π stacking between layers, exhibit narrow bandgaps down to 1.42 eV. As electrochemical catalysts for converting CO2 to CO, such 2D MOFs demonstrate Faradaic efficiency over 92%. Surprisingly, the CO2 reduction catalyzed by these MOFs indicates favorable adsorption of CO2 and *COOH on the active carbon sites of the isocyanide groups rather than on silver sites. This is attributed to the critical σ donor role of isocyanides and the corresponding ligand-to-metal charge-transfer effect. This work not only paves the way toward a new family of MOFs based on metal-isocyanide coordination but also offers a rare platform for understanding the electrocatalysis processes on strongly polarized carbon species.

10.
Beilstein J Org Chem ; 20: 2114-2128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224232

RESUMO

Isocyanide is a promising synthetic reagent not only as a one-carbon homologation reagent but also as a nitrogen source for nitrogen-containing molecules. Because of their isoelectronic structure with carbon monoxide, isocyanides also react with nucleophiles, electrophiles, carbon radicals, and transition metal reagents, and are widely used in organic synthesis. On the other hand, the use of isocyanides in reactions with heteroatom radicals is limited. However, the reaction of isocyanides with heteroatom radicals is a promising synthetic tool for the construction of nitrogen-containing organic molecules modified with a variety of heteroatoms. In this Perspective, we review the addition and cyclization reactions of heteroatom radicals with isocyanides and discuss the synthetic prospects of the reaction of isocyanides with heteroatom radicals.

11.
Beilstein J Org Chem ; 20: 1436-1443, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952962

RESUMO

An efficient protocol for the synthesis of polyfunctionalized tetrahydrocyclopenta[4,5]pyrrolo[2,3-b]pyridine-3,4b,5,6,7(1H)-pentacarboxylates was developed by a three-component reaction. In the absence of any catalyst, the three-component reaction of alkyl isocyanides, dialkyl but-2-ynedioates and 5,6-unsubstituted 1,4-dihydropyridines in refluxing acetonitrile afforded polyfunctionalized tetrahydrocyclopenta[4,5]pyrrolo[2,3-b]pyridine-3,4b,5,6,7(1H)-pentacarboxylates in high yields and with high diastereoselectivity. The reaction was finished by in situ generation of activated 5-(alkylimino)cyclopenta-1,3-dienes from addition of alkyl isocyanide to two molecules of but-2-ynedioates and sequential formal [3 + 2] cycloaddition reaction with 5,6-unsubstituted 1,4-dihydropyridine.

12.
Fungal Genet Biol ; 169: 103839, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37709127

RESUMO

Phytopathogenic Alternaria species are renown for production of toxins that contribute to virulence on host plants. Typically, these toxins belong to well-known secondary metabolite chemical classes including polyketides, non-ribosomal peptides and terpenes. However, the purported host toxin brassicicolin A produced by A. brassicicola is an isocyanide, a chemical class whose genetics and encoding gene structure is largely unknown. The chemical structure of brassicicolin A shows it to have similarity to the recently characterized fumicicolins derived from the Aspergillus fumigatus isocyanide synthase CrmA. Examination of the A. brassicicola genome identified AbcrmA, a putative homolog with 64% identity to A. fumigatus CrmA. Deletion of AbcrmA resulted in loss of production of brassicicolin A. Contrary to reports that brassicicolin A is a host-specific toxin, the ΔAbcrmA mutants were equally virulent as the wildtype on Brassica hosts. However, in line with results of A. fumigatus CrmA generated metabolites, we find that brassicicolin A increased 360-fold under copper limited conditions. Also, like A. fumigatus CrmA derived metabolites, we find brassicicolin A to be a broad-spectrum antimicrobial. We speculate that CrmA-like isocyanide synthase products provide the producing fungi a fitness advantage in copper depleted environments.


Assuntos
Alternaria , Anti-Infecciosos , Alternaria/genética , Cianetos/metabolismo , Cobre/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Anti-Infecciosos/metabolismo , Doenças das Plantas/microbiologia
13.
Chemistry ; 29(9): e202203074, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36305372

RESUMO

An iron-catalysed carbene transfer reaction of diazo compounds to isocyanides has been developed. The resulting ketenimines are trapped in situ with various bisnucleophiles to access a range of densely functionalized heterocycles (pyrimidinones, dihydropyrazolones, 1H-tetrazoles) in a one-pot process. The electron-rich Hieber anion ([Fe(CO)3 NO]- ) facilitates efficient catalytic carbene transfer from acceptor-type α-diazo carbonyl compounds to isocyanides, providing a cost-efficient and benign alternative to similar noble metal-catalysed processes. Based on DFT calculations a plausible reaction mechanism for activation of the α-diazo carbonyl carbene precursor and ketenimine formation is provided.

14.
Mol Divers ; 27(5): 2345-2352, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36752999

RESUMO

This paper describes the development of 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylate compound as a heterocyclic enols containing a Michael acceptor so that it participates in an Ugi-type multicomponent condensation through a Smiles rearrangement in replacement of acid components. The new four-component containing 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylate, aldehyde derivatives, amine derivatives and isocyanides process leads readily and efficiently to heterocyclic enamines. This report is an outstanding strategy for the preparation of new biologically structures containing peptidic or pseudo-peptidic with quinolin-2(1H)-one scaffolds.


Assuntos
Aminoácidos , Ácidos Carboxílicos , Aldeídos
15.
Mol Divers ; 27(6): 2895-2934, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36538208

RESUMO

First-row transition metal catalyzed transformations that are able to construct complex molecules from simple, readily obtainable feedstocks have become a keystone of modern synthetic organic chemistry. Particularly, the multicomponent reaction (MCR) involving carbon-carbon (C-C) as well as carbon-heteroatom (C-X) bond formation plays an essential role in many chemical conversions, and insurgencies in these reactions powerfully improve the overall synthetic efficiency. Recently, MCRs emerges rapidly because of its greener sides like eco-friendly nature, swift and straightforward execution, high atom/step economy, and construction of aimed product with lowest or no by-product, usually in quantitative yield. Curiously, the exceptional divalent carbon atoms of isocyanides make them predominantly useful components in multicomponent reactions. As a result of widespread research over the past few decades, numerous well-designed and effective procedures for the first-row TM-catalyzed MCR to afford the various entities have been reported. These aspects are summarized in this review article. A particular focus on comparative discussion of various first-row transition-metal catalyzed isocyanide-based multicomponent reactions through mechanistic details included in the review article.


Assuntos
Química Orgânica , Cianetos , Estrutura Molecular , Cianetos/química , Carbono
16.
Molecules ; 28(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37513215

RESUMO

α-Ketoamide moieties, as privileged units, may represent a valuable option to develop compounds with favorable biological activities, such as low toxicity, promising PK and drug-like properties. An efficient silver-catalyzed decarboxylative acylation of α-oxocarboxylic acids with isocyanides was developed to derivatize the α-ketoamide functional group via a multicomponent reaction (MCR) cascade sequence in one pot. A series of α-ketoamides was synthesized with three components of isocyanides, aromatic α-oxocarboxylic acid analogues and water in moderate yields. Based on the research, the silver-catalyzed decarboxylative acylation confirmed that an oxygen atom of the amide moiety was derived from the water and air as a sole oxidant for the whole process.

17.
Molecules ; 28(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38067492

RESUMO

A series of platinum complexes featuring phosphine and isocyanide ligands [PtX2(PPh3)(CNCy)] (X = Cl, Br, and I) as well as their parent phosphine [PtX2(PPh3)2] and isocyanide [PtX2(CNCy)2] analogues have been prepared and evaluated as catalysts for the photocatalytic hydrosilylation of alkynes. Under violet light irradiation (λmax = 400 nm), phosphine-isocyanides complexes [PtX2(PPh3)(CNCy)] gave high yields of silylated products (product yield up to 99%, TONs up to 1.98 × 103). The blue light irradiation (λmax = 450 nm) was more suitable for the parent phosphine complexes [PtX2(PPh3)2], which showed comparable efficiency (product yield up to 99%, TON up to 1.98 × 103), while isocyanide complexes [PtX2(CNCy)2] were not active.

18.
Molecules ; 28(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36838630

RESUMO

The Ugi four-component reaction (Ugi-4CR) undoubtedly is the most prominent multicomponent reaction (MCRs) that has sparked organic chemists' interest in the field. It has been widely used in the synthesis of diverse heterocycle molecules such as potential drugs, natural product analogs, pseudo peptides, macrocycles, and functional materials. The Ugi-4CRs involve the use of an amine, an aldehyde or ketone, an isocyanide, and a carboxylic acid to produce an α-acetamido carboxamide derivative, which has significantly advanced the field of isocyanide-based MCRs. The so-called intermediate nitrilium ion could be trapped by a nucleophile such as azide, N-hydroxyphthalimide, thiol, saccharin, phenol, water, and hydrogen sulfide instead of the original carboxylic acid to allow for a wide variety of Ugi-type reactions to occur.ß In addition to isocyanide, there are alternative reagents for the other three components: amine, isocyanide, and aldehyde or ketone. All these alternative components render the Ugi reaction an aptly diversity-oriented synthesis of a myriad of biologically active molecules and complex scaffolds. Consequently, this review will delve deeper into alternative components used in the Ugi MCRs, particularly over the past ten years.


Assuntos
Aminas , Peptídeos , Cianetos/química , Ácidos Carboxílicos , Aldeídos
19.
Angew Chem Int Ed Engl ; 62(34): e202307352, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37319123

RESUMO

The C-C bond formation between C1 molecules plays an important role in chemistry as manifested by the Fischer-Tropsch (FT) process. Serving as models for the FT process, we report here the reactions between a neutral AlI complex (Me NacNac)Al (1, Me NacNac=HC[(CMe)(NDipp)]2 , Dipp=2,6-diisopropylphenyl) and various isocyanides. The step-by-step coupling mechanism was studied in detail by low-temperature NMR monitoring, isotopic labeling, as well as quantum chemical calculations. Three different products were isolated in reaction of 1 with the sterically encumbered 2,6-bis(benzhydryl)-4-Me-phenyl isocyanide (BhpNC). These products substantiate carbene intermediates. The reaction between 1 and adamantyl isocyanide (AdNC) generated a trimerization product, and a corresponding carbene intermediate could be trapped in the form of a molybdenum(0) complex. Tri-, tetra-, and even pentamerization products were isolated with the sterically less congested phenyl and p-methoxyphenyl isocyanides (PhNC and PMPNC) with concurrent construction of quinoline or indole heterocycles. Overall, this study provides evidence for carbene intermediates in FT-type chemistry of aluminium(I) and isocyanides.

20.
Beilstein J Org Chem ; 19: 727-735, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284590

RESUMO

Peptidomimetics with a substituted imidazo[1,2-a]pyridine fragment were synthesized by a tandem of Groebke-Blackburn-Bienaymé and Ugi reactions. The target products contain substituted imidazo[1,2-a]pyridine and peptidomimetic moieties as pharmacophores with four diversity points introduced from readily available starting materials, including scaffold diversity. A small focused compound library of 20 Ugi products was prepared and screened for antibacterial activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA