Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Bioorg Med Chem Lett ; 48: 128273, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34298132

RESUMO

The enzyme 2-methylerythritol 2,4-cyclodiphosphate synthase, IspF, is essential for the biosynthesis of isoprenoids in most bacteria, some eukaryotic parasites, and the plastids of plant cells. The development of inhibitors that target IspF may lead to novel classes of anti-infective agents or herbicides. Enantiomers of tryptophan hydroxamate were synthesized and evaluated for binding to Burkholderia pseudomallei (Bp) IspF. The L-isomer possessed the highest potency, binding BpIspF with a KD of 36 µM and inhibited BpIspF activity 55% at 120 µM. The high-resolution crystal structure of the L-tryptophan hydroxamate (3)/BpIspF complex revealed a non-traditional mode of hydroxamate binding where the ligand interacts with the active site zinc ion through the primary amine. In addition, two hydrogen bonds are formed with active site groups, and the indole group is buried within the hydrophobic pocket composed of side chains from the 60 s/70 s loop. Along with the co-crystal structure, STD NMR studies suggest the methylene group and indole ring are potential positions for optimization to enhance binding potency.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Burkholderia pseudomallei/enzimologia , Inibidores Enzimáticos/farmacologia , Triptofano/análogos & derivados , Proteínas de Bactérias/metabolismo , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Triptofano/síntese química , Triptofano/química , Triptofano/farmacologia
2.
Bioorg Med Chem Lett ; 29(20): 126660, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31521478

RESUMO

Enzymes in the methylerythritol phosphate pathway make attractive targets for antibacterial activity due to their importance in isoprenoid biosynthesis and the absence of the pathway in mammals. The fifth enzyme in the pathway, 2-C-methyl-d-erythritol-2,4-cyclodiphosphate synthase (IspF), contains a catalytically important zinc ion in the active site. A series of de novo designed compounds containing a zinc binding group was synthesized and evaluated for antibacterial activity and interaction with IspF from Burkholderia pseudomallei, the causative agent of Whitmore's disease. The series demonstrated antibacterial activity as well as protein stabilization in fluorescence-based thermal shift assays. Finally, the binding of one compound to Burkholderia pseudomallei IspF was evaluated through group epitope mapping by saturation transfer difference NMR.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/biossíntese , Burkholderia pseudomallei/enzimologia , Eritritol/análogos & derivados , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Pirimidinas/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Eritritol/biossíntese , Humanos , Cinética , Estrutura Molecular , Ligação Proteica , Transdução de Sinais , Zinco/química
3.
Plant Mol Biol ; 96(1-2): 5-16, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29143298

RESUMO

KEY MESSAGE: We identified IspF gene through yellow-green leaf mutant 505ys in rice. OsIspF was expressed in all tissues detected, and its encoded protein was targeted to the chloroplast. On expression levels of genes in this mutant, OsIspF itself and the genes encoding other enzymes of the MEP pathway and chlorophyll synthase were all up-regulated, however, among eight genes associated with photosynthesis, only psaA, psaN and psbA genes for three reaction center subunits of photosystem obviously changed. Isoprenoids are the most abundant natural compounds in all organisms, which originate from the basic five-carbon units isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In plants, IPP and DMAPP are synthesized through two independent pathways, the mevalonic acid pathway in cytoplasm and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. The MEP pathway comprises seven enzymatic steps, in which IspF is the fifth enzyme. So far, no IspF gene has been identified in monocotyledonous plants. In this study, we isolated a leaf-color mutant, 505ys, in rice (Oryza sativa). The mutant displayed yellow-green leaf phenotype, reduced level of photosynthetic pigments, and arrested development of chloroplasts. By map-based cloning of this mutant, we identified OsIspF gene (LOC_Os02g45660) showing significant similarity to IspF gene of Arabidopsis, in which a missense mutation occurred in the mutant, resulting in an amino acid change in the encoded protein. OsIspF gene was expressed in all tissues detected, and its encoded protein was targeted to the chloroplast. Further, the mutant phenotype of 505ys was complemented by transformation with the wild-type OsIspF gene. Therefore, we successfully identified an IspF gene in monocotyledonous plants. In addition, real-time quantitative RT-PCR implied that a positive regulation could exist between the OsIspF gene and the genes encoding other enzymes of the MEP pathway and chlorophyll synthase. At the same time, it also implied that the individual genes involved in the MEP pathway might differentially regulated expression levels of the genes associated with photosynthesis.


Assuntos
Mutação/genética , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Terpenos/metabolismo , Eritritol/análogos & derivados , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Hemiterpenos/metabolismo , Compostos Organofosforados/metabolismo , Oryza/genética , Fenótipo , Doenças das Plantas/genética , Proteínas de Plantas/fisiologia , Fosfatos Açúcares
4.
Bioorg Med Chem Lett ; 23(24): 6860-3, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24157367

RESUMO

Published biological data suggest that the methyl erythritol phosphate (MEP) pathway, a non-mevalonate isoprenoid biosynthetic pathway, is essential for certain bacteria and other infectious disease organisms. One highly conserved enzyme in the MEP pathway is 2C-methyl-d-erythritol 2,4-cyclodiphosphate synthase (IspF). Fragment-bound complexes of IspF from Burkholderia pseudomallei were used to design and synthesize a series of molecules linking the cytidine moiety to different zinc pocket fragment binders. Testing by surface plasmon resonance (SPR) found one molecule in the series to possess binding affinity equal to that of cytidine diphosphate, despite lacking any metal-coordinating phosphate groups. Close inspection of the SPR data suggest different binding stoichiometries between IspF and test compounds. Crystallographic analysis shows important variations between the binding mode of one synthesized compound and the pose of the bound fragment from which it was designed. The binding modes of these molecules add to our structural knowledge base for IspF and suggest future refinements in this compound series.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Burkholderia/efeitos dos fármacos , Burkholderia/metabolismo , Citidina/análogos & derivados , Citidina/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Citidina/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Ressonância de Plasmônio de Superfície
5.
ACS Infect Dis ; 4(3): 278-290, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29390176

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a severe infectious disease in need of new chemotherapies especially for drug-resistant cases. To meet the urgent requirement of new TB drugs with novel modes of action, the TB research community has been validating numerous targets from several biosynthetic pathways. The methylerythritol phosphate (MEP) pathway is utilized by Mtb for the biosynthesis of isopentenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate (DMAPP), the universal five-carbon building blocks of isoprenoids. While being a common biosynthetic pathway in pathogens, the MEP pathway is completely absent in humans. Due to its unique presence in pathogens as well as the essentiality of the MEP pathway in Mtb, the enzymes in this pathway are promising targets for the development of new drugs against tuberculosis. In this Review, we discuss three enzymes in the MEP pathway: 1-deoxy-d-xylulose-5-phosphate synthase (DXS), 1-deoxy-d-xylulose-5-phosphate reductoisomerase (IspC/DXR), and 2 C-methyl-d-erythritol 2,4-cyclodiphosphate synthase (IspF), which appear to be the most promising antitubercular drug targets. Structural and mechanistic features of these enzymes are reviewed, as well as selected inhibitors that show promise as antitubercular agents.


Assuntos
Antituberculosos/isolamento & purificação , Vias Biossintéticas/genética , Eritritol/análogos & derivados , Eritritol/metabolismo , Mycobacterium tuberculosis/metabolismo , Fosfatos/metabolismo , Antituberculosos/farmacologia , Hemiterpenos , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Compostos Organofosforados , Tuberculose/tratamento farmacológico
6.
Int J Spine Surg ; 12(2): 172-184, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30276077

RESUMO

BACKGROUND: Rigid interspinous process fixation (ISPF) has received consideration as an efficient, minimally disruptive technique in supporting lumbar interbody fusion. However, despite advantageous intraoperative utility, limited evidence exists characterizing midterm to long-term clinical outcomes with ISPF. The objective of this multicenter study was to prospectively assess patients receiving single-level anterior (ALIF) or lateral (LLIF) lumbar interbody fusion with adjunctive ISPF. METHODS: This was a prospective, randomized, multicenter (11 investigators), noninferiority trial. All patients received single-level ALIF or LLIF with supplemental ISPF (n = 66) or pedicle screw fixation (PSF; n = 37) for degenerative disc disease and/or spondylolisthesis (grade ≤2). The randomization patient ratio was 2:1, ISPF/PSF. Perioperative and follow-up outcomes were collected (6 weeks, 3 months, 6 months, and 12 months). RESULTS: For ISPF patients, mean posterior intraoperative outcomes were: blood loss, 70.9 mL; operating time, 52.2 minutes; incision length, 5.5 cm; and fluoroscopic imaging time, 10.4 seconds. Statistically significant improvement in patient Oswestry Disability Index scores were achieved by just 6 weeks after operation (P < .01) and improved out to 12 months for the ISPF cohort. Patient-reported 36-Item Short Form Health Survey and Zurich Claudication Questionnaire scores were also significantly improved from baseline to 12 months in the ISPF cohort (P < .01). A total of 92.7% of ISPF patients exhibited interspinous fusion at 12 months. One ISPF patient (1.5%) required a secondary surgical intervention of possible relation to the posterior instrumentation/procedure. CONCLUSION: ISPF can be achieved quickly, with minimal tissue disruption and complication. In supplementing ALIF and LLIF, ISPF supported significant improvement in early postoperative (≤12 months) patient-reported outcomes, while facilitating robust posterior fusion.

7.
IUCrdata ; 22017.
Artigo em Inglês | MEDLINE | ID: mdl-29445777

RESUMO

The title compound, C19H12Cl2N2O4S3, is related to a ditosylated 2-iminobenzothiazole with the two methyl groups on the two phenyl rings replaced by chlorine. There is a weak intramolecular π-π contact between the two phenyl rings, with a centroid-to-centroid distance of 4.004 (2) Å. The dihedral angle between the rings is 9.96 (13)°. An intramolecular C-H⋯O hydrogen bond stabilizes the molecular conformation.

8.
Cureus ; 9(5): e1290, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28680778

RESUMO

BACKGROUND: Studies have shown that a significant learning curve may be associated with adopting minimally invasive transforaminal lumbar interbody fusion (MIS TLIF) with bilateral pedicle screw fixation (BPSF). Accordingly, several hybrid TLIF techniques have been proposed as surrogates to the accepted BPSF technique, asserting that less/fewer fixation(s) or less disruptive fixation may decrease the learning curve while still maintaining the minimally disruptive benefits. TLIF with interspinous process fixation (ISPF) is one such surrogate procedure. However, despite perceived ease of adaptability given the favorable proximity of the spinous processes, no evidence exists demonstrating whether or not the technique may possess its own inherent learning curve. The purpose of this study was to determine whether an intraoperative learning curve for one- and two-level TLIF + ISPF may exist for a single lead surgeon. METHODS: Seventy-four consecutive patients who received one- or two-Level TLIF with rigid ISPF by a single lead surgeon were retrospectively reviewed. It was the first TLIF + ISPF case series for the lead surgeon. Intraoperative blood loss (EBL), hospitalization length-of-stay (LOS), fluoroscopy time, and postoperative complications were collected. EBL, LOS, and fluoroscopy time were modeled as a function of case number using multiple linear regression methods. A change point was included in each model to allow the trajectory of the outcomes to change during the duration of the case series. These change points were determined using profile likelihood methods. Models were fit using the maximum likelihood estimates for the change points. Age, sex, body mass index (BMI), and the number of treated levels were included as covariates. RESULTS: EBL, LOS, and fluoroscopy time did not significantly differ by age, sex, or BMI (p ≥ 0.12). Only EBL differed significantly by the number of levels (p = 0.026). The case number was not a significant predictor of EBL, LOS, or fluoroscopy time (p ≥ 0.21). At the time of data collection (mean time from surgery: 13.3 months), six patients had undergone revision due to interbody migration. No ISPF device complications were observed. CONCLUSIONS: Study outcomes support the ideal that TLIF + ISPF can be a readily adopted procedure without a significant intraoperative learning curve. However, the authors emphasize that further assessment of long-term healing outcomes is essential in fully characterizing both the efficacy and the indication learning curve for the TLIF + ISPF technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA