Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 29(5): 1011-1014, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37081591

RESUMO

Infection with Borrelia miyamotoi in California, USA, has been suggested by serologic studies. We diagnosed B. miyamotoi infection in an immunocompromised man in California. Diagnosis was aided by plasma microbial cell-free DNA sequencing. We conclude that the infection was acquired in California.


Assuntos
Infecções por Borrelia , Borrelia , Ixodes , Animais , Humanos , Masculino , Borrelia/genética , Borrelia/isolamento & purificação , Infecções por Borrelia/diagnóstico , California/epidemiologia , Hospedeiro Imunocomprometido
2.
Emerg Infect Dis ; 28(6): 1170-1179, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35608612

RESUMO

Approximately 476,000 cases of Lyme disease are diagnosed in the United States annually, yet comprehensive economic evaluations are lacking. In a prospective study among reported cases in Lyme disease-endemic states, we estimated the total patient cost and total societal cost of the disease. In addition, we evaluated disease and demographic factors associated with total societal cost. Participants had a mean patient cost of ≈$1,200 (median $240) and a mean societal cost of ≈$2,000 (median $700). Patients with confirmed disseminated disease or probable disease had approximately double the societal cost of those with confirmed localized disease. The annual, aggregate cost of diagnosed Lyme disease could be $345-968 million (2016 US dollars) to US society. Our findings emphasize the importance of effective prevention and early diagnosis to reduce illness and associated costs. These results can be used in cost-effectiveness analyses of current and future prevention methods, such as a vaccine.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Estresse Financeiro , Humanos , Incidência , Doença de Lyme/diagnóstico , Doença de Lyme/epidemiologia , Estudos Prospectivos , Estados Unidos/epidemiologia
3.
Mol Ecol ; 31(9): 2698-2711, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35231145

RESUMO

A vector's susceptibility and ability to transmit a pathogen-termed vector competency-determines disease outcomes, yet the ecological factors influencing tick vector competency remain largely unknown. Ixodes pacificus, the tick vector of Borrelia burgdorferi (Bb) in the western U.S., feeds on rodents, birds, and lizards. Rodents and birds are reservoirs for Bb and infect juvenile ticks, while lizards are refractory to Bb and cannot infect feeding ticks. Additionally, the lizard bloodmeal contains borreliacidal properties, clearing previously infected feeding ticks of their Bb infection. Despite I. pacificus feeding on a range of hosts, it is undetermined how the host identity of the larval bloodmeal affects future nymphal vector competency. We experimentally evaluate the influence of larval host bloodmeal on Bb acquisition by nymphal I. pacificus. Larval I. pacificus were fed on either lizards or mice and after molting, nymphs were fed on Bb-infected mice. We found that lizard-fed larvae were significantly more likely to become infected with Bb during their next bloodmeal than mouse-fed larvae. We also conducted the first RNA-seq analysis on whole-bodied I. pacificus and found significant upregulation of tick antioxidants and antimicrobial peptides in the lizard-fed group. Our results indicate that the lizard bloodmeal significantly alters vector competency and gene regulation in ticks, highlighting the importance of host bloodmeal identity in vector-borne disease transmission and upends prior notions about the role of lizards in Lyme disease community ecology.


Assuntos
Ixodes , Lagartos , Doença de Lyme , Animais , Aves , Vetores de Doenças , Expressão Gênica , Ixodes/genética , Larva/genética , Lagartos/genética , Doença de Lyme/genética , Camundongos , Ninfa/genética , Roedores
4.
Emerg Infect Dis ; 27(12): 3193-3195, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34808077

RESUMO

During 2013-2019, Borrelia miyamotoi infection was detected in 19 US states. Infection rate was 0.5%-3.2%; of B. miyamotoi-positive ticks, 59.09% had concurrent infections. B. miyamotoi is homogeneous with 1 genotype from Ixodes scapularis ticks in northeastern and midwestern states and 1 from I. pacificus in western states.


Assuntos
Infecções por Borrelia , Borrelia , Ixodes , Animais , Borrelia/genética , Infecções por Borrelia/epidemiologia , Humanos , Estados Unidos/epidemiologia
5.
Mol Ecol ; 30(10): 2207-2213, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33615594

RESUMO

Kwan et al. (2017) published an informative study comparing results obtained by next-generation sequencing (NGS) of mean bacterial genera richness among different life stages, male and female adults, and rearing conditions (field vs. laboratory) for Ixodes pacificus. The current paper examines Kwan et al. (2017) as a case study to provide guidance on statistical design and analysis for estimation of richness, derived from next generation sequencing technology, of the bacterial microbiome in field-collected I. pacificus. Suggestions are provided to further strengthen quantification of microbiome richness in studies in ticks, with focus on sampling design. In-depth treatment is provided of the relative merits of estimating mean richness versus median richness. Research on microbiome diversity in ticks can be made quantitatively rigorous; although, more research on methods is needed.


Assuntos
Ixodes , Microbiota , Animais , Bactérias/genética , Vetores de Doenças , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Microbiota/genética
6.
Glob Chang Biol ; 27(4): 738-754, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33150704

RESUMO

Lyme disease is the most common vector-borne disease in temperate zones and a growing public health threat in the United States (US). The life cycles of the tick vectors and spirochete pathogen are highly sensitive to climate, but determining the impact of climate change on Lyme disease burden has been challenging due to the complex ecology of the disease and the presence of multiple, interacting drivers of transmission. Here we incorporated 18 years of annual, county-level Lyme disease case data in a panel data statistical model to investigate prior effects of climate variation on disease incidence while controlling for other putative drivers. We then used these climate-disease relationships to project Lyme disease cases using CMIP5 global climate models and two potential climate scenarios (RCP4.5 and RCP8.5). We find that interannual variation in Lyme disease incidence is associated with climate variation in all US regions encompassing the range of the primary vector species. In all regions, the climate predictors explained less of the variation in Lyme disease incidence than unobserved county-level heterogeneity, but the strongest climate-disease association detected was between warming annual temperatures and increasing incidence in the Northeast. Lyme disease projections indicate that cases in the Northeast will increase significantly by 2050 (23,619 ± 21,607 additional cases), but only under RCP8.5, and with large uncertainty around this projected increase. Significant case changes are not projected for any other region under either climate scenario. The results demonstrate a regionally variable and nuanced relationship between climate change and Lyme disease, indicating possible nonlinear responses of vector ticks and transmission dynamics to projected climate change. Moreover, our results highlight the need for improved preparedness and public health interventions in endemic regions to minimize the impact of further climate change-induced increases in Lyme disease burden.


Assuntos
Ixodes , Doença de Lyme , Animais , Mudança Climática , Previsões , Incidência , Doença de Lyme/epidemiologia , Estados Unidos/epidemiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-34214027

RESUMO

A previously unrecognized Rickettsia species was isolated in 1976 from a pool of Ixodes pacificus ticks collected in 1967 from Tillamook County, Oregon, USA. The isolate produced low fever and mild scrotal oedema following intraperitoneal injection into male guinea pigs (Cavia porcellus). Subsequent serotyping characterized this isolate as distinct from recognized typhus and spotted fever group Rickettsia species; nonetheless, the isolate remained unevaluated by molecular techniques and was not identified to species level for the subsequent 30 years. Ixodes pacificus is the most frequently identified human-biting tick in the western United States, and as such, formal identification and characterization of this potentially pathogenic Rickettsia species is warranted. Whole-genome sequencing of the Tillamook isolate revealed a genome 1.43 Mbp in size with 32.4 mol% G+C content. Maximum-likelihood phylogeny of core proteins places it in the transitional group of Rickettsia basal to both Rickettsia felis and Rickettsia asembonensis. It is distinct from existing named species, with maximum average nucleotide identity of 95.1% to R. asembonensis and maximum digital DNA-DNA hybridization score similarity to R. felis at 80.1%. The closest similarity at the 16S rRNA gene (97.9%) and sca4 (97.5%/97.6% respectively) is to Candidatus 'Rickettsia senegalensis' and Rickettsia sp. cf9, both isolated from cat fleas (Ctenocephalides felis). We characterized growth at various temperatures and in multiple cell lines. The Tillamook isolate grows aerobically in Vero E6, RF/6A and DH82 cells, and growth is rapid at 28 °C and 32 °C. Using accepted genomic criteria, we propose the name Rickettsia tillamookensis sp. nov., with the type strain Tillamook 23. Strain Tillamook 23 is available from the Centers for Disease Control and Prevention Rickettsial Isolate Reference Collection (WDCM 1093), Atlanta, GA, USA (CRIRC accession number RTI001T) and the Collection de Souches de l'Unité des Rickettsies (WDCM 875), Marseille, France (CSUR accession number R5043). Using accepted genomic criteria, we propose the name Rickettsia tillamookensis sp. nov., with the type strain Tillamook 23 (=CRIRC RTI001=R5043).


Assuntos
Ixodes/microbiologia , Filogenia , Rickettsia/classificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Cobaias , Masculino , Oregon , RNA Ribossômico 16S/genética , Rickettsia/isolamento & purificação , Análise de Sequência de DNA
8.
Oecologia ; 196(2): 305-316, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33580399

RESUMO

Lyme disease is the most prevalent vector-borne disease in the United States, yet critical gaps remain in our understanding of tick and host interactions that shape disease dynamics. Rodents such as deer mice (Peromyscus spp.) and dusky-footed woodrats (Neotoma fuscipes) are key reservoirs for Borrelia burgdorferi, the etiological bacterium of Lyme disease, and can vary greatly in abundance between habitats. The aggregation of Ixodes pacificus, the western black-legged tick, on rodent hosts is often assumed to be constant across various habitats and not dependent on the rodent or predator communities; however, this is rarely tested. The factors that determine tick burdens on key reservoir hosts are important in estimating Lyme disease risk because larger tick burdens can amplify pathogen transmission. This study is the first to empirically measure I. pacificus larval burdens on competent reservoir hosts as a function of community factors such as rodent diversity, predator diversity, and questing tick abundance. Rodents were live trapped at oak woodland sites to collect tick burdens and tissue samples to test for infection with Borrelia burgdorferi sensu lato. We found that N. fuscipes tick burdens were negatively correlated with predator diversity, but positively correlated with questing I. pacificus larvae. In addition, rodent hosts that were infected with B. burgdorferi sensu lato tend to have higher burdens of larval ticks. These results demonstrate that tick burdens can be shaped by variability between individuals, species, and the broader host community with consequences for transmission and prevalence of tick-borne pathogens.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Ecossistema , Camundongos , Roedores
9.
Glob Chang Biol ; 26(10): 5459-5474, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32649017

RESUMO

Global environmental change is having profound effects on the ecology of infectious disease systems, which are widely anticipated to become more pronounced under future climate and land use change. Arthropod vectors of disease are particularly sensitive to changes in abiotic conditions such as temperature and moisture availability. Recent research has focused on shifting environmental suitability for, and geographic distribution of, vector species under projected climate change scenarios. However, shifts in seasonal activity patterns, or phenology, may also have dramatic consequences for human exposure risk, local vector abundance and pathogen transmission dynamics. Moreover, changes in land use are likely to alter human-vector contact rates in ways that models of changing climate suitability are unlikely to capture. Here we used climate and land use projections for California coupled with seasonal species distribution models to explore the response of the western blacklegged tick (Ixodes pacificus), the primary Lyme disease vector in western North America, to projected climate and land use change. Specifically, we investigated how environmental suitability for tick host-seeking changes seasonally, how the magnitude and direction of changing seasonal suitability differs regionally across California, and how land use change shifts human tick-encounter risk across the state. We found vector responses to changing climate and land use vary regionally within California under different future scenarios. Under a hotter, drier scenario and more extreme land use change, the duration and extent of seasonal host-seeking activity increases in northern California, but declines in the south. In contrast, under a hotter, wetter scenario seasonal host-seeking declines in northern California, but increases in the south. Notably, regardless of future scenario, projected increases in developed land adjacent to current human population centers substantially increase potential human-vector encounter risk across the state. These results highlight regional variability and potential nonlinearity in the response of disease vectors to environmental change.


Assuntos
Ixodes , Doença de Lyme , Animais , California , Mudança Climática , Humanos , Estações do Ano
10.
Exp Appl Acarol ; 82(4): 515-527, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33206311

RESUMO

Ticks (Chelicerata, Ixodida) are blood-feeding ectoparasites believed to have evolved at least about 120 millions of years ago and found worldwide. However, many aspects of their unique life cycle and anatomy, including their mechanical properties, remain to be understood. Here, we compared the mechanical properties of the cuticle of the argasid tick Ornithodoros moubata to those of two species of ixodid tick, Amblyomma hebraeum and Ixodes pacificus that we explored in our earlier studies of the tick exoskeleton. Significant differences were expected given the substantial difference in life cycle, including a five-fold increase during the repeated adult blood meal for female O. moubata vs. 70- to 120-fold during the single feeding of the adult female A. hebraeum and I. pacificus. We demonstrate here that the layered structure and mechanical properties (stiffness and viscosity) of the cuticle show minor differences, but the difference in cuticle thickness is substantial. Ductility is lost during feeding; reduced pH restores ductility. Previous work suggests that this occurs in vivo in engorged ixodid ticks; there is no evidence of this occurring in vivo in O. moubata. Thinning of cuticle in O. moubata fed females is consistent with the predicted stretch of cuticle due to the blood meal; there is no evidence of cuticle synthesis during the short feeding period. Dimensional analysis suggests that the soft feel of argasid ticks is related to cuticle thickness, not cuticle stiffness. Relative to argasid ticks, the hard ixodid ticks accommodate a ca. 20-fold higher size of blood meal by starting with a thicker cuticle and growing much additional cuticle during engorgement.


Assuntos
Argasidae , Ixodes , Ixodidae , Ornithodoros , Amblyomma , Animais , Feminino
11.
Exp Appl Acarol ; 76(3): 365-380, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30306503

RESUMO

The mechanical properties of the cuticle of Ixodes pacificus (Ip) are compared to those of Amblyomma hebraeum (Ah) from our earlier work. The 10-fold size difference between the species is expected to lead to significant differences in mechanical properties, because cuticular stretch depends on high internal hydrostatic pressure during the rapid phase of engorgement. We demonstrate here: (1) The cuticle of partially fed Ip is less stiff and viscous than that of Ah. (2) A stretch-recoil cycle in both ticks consists of recoverable deformation (ESv) and permanent deformation (ESp); ESp is higher in Ip, and increases sharply during the slow phase of engorgement, but not in Ah. (3) Injected dopamine (DA) increases ESp and reduces all measures of stiffness and viscosity, suggesting that a catecholaminergic neurotransmitter plays a fundamental role in modulating mechanical properties of the cuticle. However, unlike Ah, DA's effect was not different from that of the control (1.2% NaCl). Mere insertion of the needle may have punctured the gut, causing the release of perhaps a catecholamine that increases ESp, an hypothesis supported by the fact that inserting a needle without any injection also caused an increase in ESp. (4) Stretch reduces ESp, but subjecting loops to pH 6.5 in vitro restores it. (5) Despite the smaller size of Ip, later onset of the rapid phase of engorgement, a thinner cuticle and different mechanical properties all reduce the internal pressure needed for stretch.


Assuntos
Exoesqueleto/fisiologia , Ixodes/fisiologia , Exoesqueleto/crescimento & desenvolvimento , Animais , Fenômenos Biomecânicos , Tamanho Corporal , Comportamento Alimentar , Feminino , Ixodes/crescimento & desenvolvimento , Ixodidae/crescimento & desenvolvimento , Ixodidae/fisiologia
12.
Mol Ecol ; 26(23): 6578-6589, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29178531

RESUMO

Vector-borne pathogens are increasingly found to interact with the vector's microbiome, influencing disease transmission dynamics. However, the processes that regulate the formation and development of the microbiome are largely unexplored for most tick species, an emerging group of disease vectors. It is not known how much of the tick microbiome is acquired through vertical transmission vs. horizontally from the environment or interactions with bloodmeal sources. Using 16S rRNA sequencing, we examined the microbiome of Ixodes pacificus, the vector of Lyme disease in the western USA, across life stages and infection status. We also characterized microbiome diversity in field and laboratory-collected nymphal ticks to determine how the surrounding environment affects microbiome diversity. We found a decrease in both species richness and evenness as the tick matures from larva to adult. When the dominant Rickettsial endosymbiont was computationally removed from the tick microbial community, we found that infected nymphs had lower species evenness than uninfected ticks, suggesting that lower microbiome diversity is associated with pathogen transmission in wild-type ticks. Furthermore, laboratory-reared nymph microbiome diversity was found to be compositionally distinct and significantly depauperate relative to field-collected nymphs. These results highlight unique patterns in the microbial community of I. pacificus that is distinct from other tick species. We provide strong evidence that ticks acquire a significant portion of their microbiome through exposure to their environment despite a loss of overall diversity through life stages. We provide evidence that loss of microbial diversity is at least in part due to elimination of microbial diversity with bloodmeal feeding but other factors may also play a role.


Assuntos
Ixodes/microbiologia , Microbiota , Animais , Biodiversidade , Borrelia/classificação , California , Vetores de Doenças , Feminino , Larva/microbiologia , Masculino , Ninfa/microbiologia , RNA Ribossômico 16S/genética , Rickettsia/classificação , Simbiose
13.
Ticks Tick Borne Dis ; 15(3): 102325, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387162

RESUMO

Ixodes pacificus (the western blacklegged tick) occurs in the far western United States (US), where it commonly bites humans. This tick was not considered a species of medical concern until it was implicated in the 1980s as a vector of Lyme disease spirochetes. Later, it was discovered to also be the primary vector to humans in the far western US of agents causing anaplasmosis and hard tick relapsing fever. The core distribution of I. pacificus in the US includes California, western Oregon, and western Washington, with outlier populations reported in Utah and Arizona. In this review, we provide a history of the documented occurrence of I. pacificus in the US from the 1890s to present, and discuss associations of its geographic range with landscape, hosts, and climate. In contrast to Ixodes scapularis (the blacklegged tick) in the eastern US, there is no evidence for a dramatic change in the geographic distribution of I. pacificus over the last half-century. Field surveys in the 1930s and 1940s documented I. pacificus along the Pacific Coast from southern California to northern Washington, in the Sierra Nevada foothills, and in western Utah. County level collection records often included both immatures and adults of I. pacificus, recovered by drag sampling or from humans, domestic animals, and wildlife. The estimated geographic distribution presented for I. pacificus in 1945 by Bishopp and Trembley is similar to that presented in 2022 by the Centers for Disease Control and Prevention. There is no clear evidence of range expansion for I. pacificus, separate from tick records in new areas that could have resulted from newly initiated or intensified surveillance efforts. Moreover, there is no evidence from long-term studies that the density of questing I. pacificus ticks has increased over time in specific areas. It therefore is not surprising that the incidence of Lyme disease has remained stable in the Pacific Coast states from the early 1990s, when it became a notifiable condition, to present. We note that deforestation and deer depredation were less severe in the far western US during the 1800s and early 1900s compared to the eastern US. This likely contributed to I. pacificus maintaining stable, widespread populations across its geographic range in the far western US in the early 1900s, while I. scapularis during the same time period appears to have been restricted to a small number of geographically isolated refugia sites within its present range in the eastern US. The impact that a warming climate may have had on the geographic distribution and local abundance of I. pacificus in recent decades remains unclear.


Assuntos
Borrelia burgdorferi , Cervos , Ixodes , Doença de Lyme , Humanos , Estados Unidos/epidemiologia , Animais , Doença de Lyme/epidemiologia , Washington
14.
Microbiol Resour Announc ; 13(2): e0087923, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38179914

RESUMO

Whole-genome sequences are presented for three Borrelia burgdorferi, a causative agent of Lyme disease in North America, isolated from Ixodes pacificus ticks collected in British Columbia, Canada. Shotgun DNA libraries were prepared with Illumina DNA Prep and sequenced using the MiniSeq platform. Genome assemblies enabled multilocus sequence typing and ospC typing.

15.
Artigo em Inglês | MEDLINE | ID: mdl-39092518

RESUMO

Introduction: Lyme disease is the most common vector-borne disease in the United States and Canada. The primary vector for the causative agent of Lyme disease, Borrelia burgdorferi, in the Pacific Northwest is the western blacklegged tick, Ixodes pacificus. Materials and Methods: Using active tick surveillance data from British Columbia, Canada, and Washington State, USA, habitat suitability models using MaxEnt (maximum entropy) were developed for I. pacificus to predict its current and mid-century geographic distributions. Passive surveillance data both from BC and WA were also visualized. Results: According to the constructed models, the number of frost-free days during the winter is the most relevant predictor of its habitat suitability, followed by summer climate moisture, ecoregion, and mean minimum fall temperature. The ensemble geographic distribution map predicts that the coastal regions and inland valleys of British Columbia and the Puget Lowlands of Washington State provide the most suitable habitats for I. pacificus. The density map of ticks submitted from passive surveillance data was overlaid on the current distribution map and demonstrates the correlation between numbers of submissions and habitat suitability. Mid-century projections, based on current climate change predictions, indicate a range expansion, especially of low and moderate suitability, from current distribution. Regarding Lyme disease risk, I. pacificus identified from both active and passive surveillance and tested positive for B. burgdorferi were found to be in areas of moderate to very high suitability for I. pacificus. Conclusion: According to developed models, the total suitable habitat area for I. pacificus will expand in the interior regions of British Columbia and Washington State. However, the risk remains small given relatively low infection rates among I. pacificus. Further studies are required to better understand how this might change in the future.

16.
Curr Zool ; 70(1): 59-69, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38476133

RESUMO

Male competition conforms to a cost-benefit model, because while aggression may increase reproductive prospects, it can also increase the risk of injury. We hypothesize that an additional cost in aggressive males would be an increase in parasite load associated with a high energy investment into sexual competition. Some of these infections, in turn, may downmodulate the level of host aggression via energetic trade-offs. We staged dyadic male contests in the lab to investigate the relationships of multiple parasites with the agonistic behavior of lizard hosts, Sceloporus occidentalis. We also included both color and behavioral traits from opponents in the analyses because (1) color patches of lizards may serve as intraspecific signals used by conspecifics to assess the quality of opponents, and (2) contests between male lizards fit classical models of escalated aggression, where lizards increase aggression displays in response to an opponent's behavior. The results conform to our hypothesis because male lizards displayed more pushups when they had more ticks. Moreover, some parasites may modulate the levels of aggression because lizards infected by hematic coccidians performed fewer pushups. Interestingly, lizards also displayed fewer pushups when both the chroma and size of the opponent's blue patch were greater. The results thus also supported the role of the blue patch of S. occidentalis as a sexual armament, because it contributed to the deterrence of aggression from opponent lizards. We revealed that natural parasitic infections in lizard hosts can contribute to their agonistic behavior. We encourage future studies to account for parasites in behavioral tests with lizards.

17.
Ticks Tick Borne Dis ; 14(6): 102217, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37379700

RESUMO

Nutritive symbiosis between bacteria and ticks is observed across a range of ecological contexts; however, little characterization on the molecular components responsible for this symbiosis has been done. Previous studies in our lab demonstrated that Rickettsia monacensis str. Humboldt (strain Humboldt) can synthesize folate de novo via the folate biosynthesis pathway involving folA, folC, folE, folKP, and ptpS genes. In this study, expression of the strain Humboldt folA gene within a folA mutant Escherichia coli construct was used to functionally characterize the strain Humboldt folA folate gene in vivo. The strain Humboldt folA folate gene was subcloned into a TransBac vector and transformed into a folA mutant E. coli construct. The mutant containing strain Humboldt folA subclone and a pFE604 clone of the knocked-out folA gene was cured of pFE604. Curing of the folA mutant E. coli construct was successful using acridine orange and 43.5 °C incubation temperature. The plasmid curing assay showed curing efficiency of the folA mutant at 100%. Functional complementation was assessed by growth phenotype on minimal media with and without IPTG between strain Humboldt folA and E. coli folA. Large and homogenous wild-type colony growth was observed for both strain Humboldt and E. coli folA on minimal media with 0.1 mM IPTG, wild-type growth for strain Humboldt folA and pin-point growth for E. coli folA on 0.01 mM IPTG, and pin-point growth without IPTG for both strain Humboldt and E. coli folA. This study provides evidence substantiating the in vivo functionality of strain Humboldt folA in producing functional gene products for folate biosynthesis.


Assuntos
Escherichia coli , Rickettsia , Animais , Escherichia coli/genética , Tetra-Hidrofolato Desidrogenase/genética , Isopropiltiogalactosídeo , Rickettsia/genética , Ácido Fólico
18.
R Soc Open Sci ; 10(5): 230084, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206969

RESUMO

Foraging ticks reportedly exploit diverse cues to locate their hosts. Here, we tested the hypothesis that host-seeking Western black-legged ticks, Ixodes pacificus, and black-legged ticks, I. scapularis, respond to microbes dwelling in sebaceous gland secretions of white-tailed deer, Odocoileus virginianus, the ticks' preferred host. Using sterile wet cotton swabs, microbes were collected from the pelage of a sedated deer near forehead, preorbital, tarsal, metatarsal and interdigital glands. Swabs were plated on agar, and isolated microbes were identified by 16S rRNA amplicon sequencing. Of 31 microbial isolates tested in still-air olfactometers, 10 microbes induced positive arrestment responses by ticks, whereas 10 others were deterrent. Of the 10 microbes prompting arrestment by ticks, four microbes-including Bacillus aryabhattai (isolates A4)-also attracted ticks in moving-air Y-tube olfactometers. All four of these microbes emitted carbon dioxide and ammonia as well as volatile blends with overlapping blend constituents. The headspace volatile extract (HVE) of B. aryabhattai (HVE-A4) synergistically enhanced the attraction of I. pacificus to CO2. A synthetic blend of HVE-A4 headspace volatiles in combination with CO2 synergistically attracted more ticks than CO2 alone. Future research should aim to develop a least complex host volatile blend that is attractive to diverse tick taxa.

19.
J Vector Ecol ; 48(1): 19-36, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37255356

RESUMO

Despite increasing severity and frequency of wildfires, knowledge about how fire impacts the ecology of tick-borne pathogens is limited. In 2018, the River Fire burned a forest in the far-western U.S.A. where the ecology of tick-borne pathogens had been studied for decades. Forest structure, avifauna, large and small mammals, lizards, ticks, and tick-borne pathogens (Anaplasma phagocytophilum, Borrelia burgdorferi, Borrelia miyamotoi) were assessed after the wildfire in 2019 and 2020. Burning reduced canopy cover and eliminated the layer of thick leaf litter that hosted free-living ticks, which over time was replaced by forbs and grasses. Tick abundance and the vertebrate host community changed dramatically. Avian species adapted to cavity nesting became most prevalent, while the number of foliage-foraging species increased by 83% as vegetation regenerated. Nine mammalian species were observed on camera traps, including sentinel (black-tailed jackrabbits) and reservoir hosts (western gray squirrels) of B. burgdorferi. One Peromyscus sp. mouse was captured in 2019 but by 2020, numbers were rebounding (n=37), although tick infestations on rodents remained sparse (0.2/rodent). However, western fence lizards (n=19) hosted 8.6 ticks on average in 2020. Assays for pathogens found no B. miyamotoi in either questing or host-feeding ticks, A. phagocytophilum DNA in 4% (1/23) in 2019, and 17% (29/173) in 2020 for questing and host-feeding ticks combined, and B. burgdorferi DNA in just 1% of all ticks collected in 2020 (2/173). We conclude that a moderately severe wildfire can have dramatic impacts on the ecology of tick-borne pathogens, with changes posited to continue for multiple years.


Assuntos
Borrelia burgdorferi , Ixodes , Incêndios Florestais , Animais , Ninfa , Florestas , Borrelia burgdorferi/genética , Vertebrados , Mamíferos
20.
Can Commun Dis Rep ; 49(6): 288-298, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38444700

RESUMO

Background: Ixodes scapularis and Ixodes pacificus ticks are the principal vectors of the agent of Lyme disease and several other tick-borne diseases in Canada. Tick surveillance data can be used to identify local tick-borne disease risk areas and direct public health interventions. The objective of this article is to describe the seasonal and spatial characteristics of the main Lyme disease vectors in Canada, and the tick-borne pathogens they carry, using passive and active surveillance data from 2020. Methods: Passive and active surveillance data were compiled from the National Microbiology Laboratory Branch (Public Health Agency of Canada), provincial and local public health authorities, and eTick (an online, image-based platform). Seasonal and spatial analyses of ticks and their associated pathogens are presented, including infection prevalence estimates. Results: In passive surveillance, I. scapularis (n=7,534) were submitted from all provinces except Manitoba and British Columbia, while I. pacificus (n=718) were submitted only from British Columbia. No ticks were submitted from the Territories. The seasonal distribution of I. scapularis submissions was bimodal, but unimodal for I. pacificus. Four tick-borne pathogens were identified in I. scapularis (Borrelia burgdorferi, Anaplasma phagocytophilum, Babesia microti and Borrelia miyamotoi) and one in I. pacificus (B. miyamotoi). In active surveillance, I. scapularis (n=688) were collected in Ontario, Québec and New Brunswick. Five tick-borne pathogens were identified: B. burgdorferi, A. phagocytophilum, B. microti, B. miyamotoi and Powassan virus. Conclusion: This article provides a snapshot of the distribution of I. scapularis and I. pacificus and their associated human pathogens in Canada in 2020, which can help assess the risk of exposure to tick-borne pathogens in different provinces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA