Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurooncol ; 146(3): 513-521, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32020481

RESUMO

PURPOSE: Glioma is the most common malignant primary tumor in the central nervous system (CNS). KIF3C, a motor protein of the kinesin superfamily, is highly expressed in the CNS. Although KIF3C has been identified as a potential therapeutic target in malignant cancers, the expression and function of KIF3C in glioma remains unclear. METHODS: The clinical characteristics of 53 patients with graded glioma (WHO I-IV) were analyzed in this study. The expression of KIF3C in glioma was evaluated by immunohistochemistry (IHC). Survival analysis was compared between higher and lower KIF3C expression groups. Data regarding the expression of KIF3C and survival analysis were also confirmed using the database from The Cancer Genome Atlas (TCGA). The potential mechanism of the regulation of tumor growth by KIF3C was investigated by an analysis of the public database from Oncomine. RESULTS: Expression of the KIF3C protein was higher in the low-grade glioma (LGG) group (n = 20) than that in the high-grade glioma (HGG) group (n = 33) (P < 0.05). Glioma patients with higher expression of KIF3C had longer survival time (P < 0.05). The subgroup analysis showed that higher KIF3C expression predicted longer survival time in the LGG group (P < 0.05). These clinical results were consistent with those in the TCGA database. Bioinformatics analysis showed that the KIF3C mRNA expression was upregulated significantly in response to PI3K/AKT/mTOR pathway inhibition. CONCLUSION: This study demonstrated that KIF3C might inhibit glioma growth to prolong survival time by regulating the PI3K/AKT/mTOR pathway, providing a potential therapeutic target in glioma.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/diagnóstico , Glioma/metabolismo , Cinesinas/metabolismo , Transdução de Sinais , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Análise de Sobrevida , Serina-Treonina Quinases TOR/metabolismo
2.
Clin Genet ; 89(2): 198-204, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26138355

RESUMO

Infantile spasms syndrome (ISs) is characterized by clinical spasms with ictal electrodecrement, usually occurring before the age of 1 year and frequently associated with cognitive impairment. Etiology is widely heterogeneous, the cause remaining elusive in 40% of patients. We searched for de novo mutations in 10 probands with ISs and their parents using whole-exome sequencing (WES). Patients had neither consanguinity nor family history of epilepsy. Common causes of ISs were excluded by brain magnetic resonance imaging (MRI), metabolic screening, array-comparative genomic hybridization (CGH) and testing for mutations in CDKL5, STXBP1, and for ARX duplications. We found a probably pathogenic mutation in four patients. Missense mutations in SCN2A (p.Leu1342Pro) and KCNQ2 (p.Ala306Thr) were found in two patients with no history of epilepsy before the onset of ISs. The p.Asn107Ser missense mutation of ALG13 had been previously reported in four females with ISs. The fourth mutation was an in-frame deletion (p.Phe110del) in NR2F1, a gene whose mutations cause intellectual disability, epilepsy, and optic atrophy. In addition, we found a possibly pathogenic variant in KIF3C that encodes a kinesin expressed during neural development. Our results confirm that WES improves significantly the diagnosis yield in patients with sporadic ISs.


Assuntos
Exoma/genética , Espasmos Infantis/diagnóstico , Espasmos Infantis/genética , Sequência de Aminoácidos , Sequência de Bases , Criança , Pré-Escolar , Sequência Conservada , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Dados de Sequência Molecular , Mutação/genética , Gravidez , Análise de Sequência de DNA , Síndrome
3.
Aging (Albany NY) ; 16(7): 6163-6187, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552217

RESUMO

Kinesin Family Member 3C (KIF3C) assumes a crucial role in various biological processes of specific human cancers. Nevertheless, there exists a paucity of systematic assessments pertaining to the contribution of KIF3C in human malignancies. We conducted an extensive analysis of KIF3C, covering its expression profile, prognostic relevance, molecular function, tumor immunity, and drug sensitivity. Functional enrichment analysis was also carried out. In addition, we conducted in vitro experiments to substantiate the role of KIF3C in gastric cancer (GC). KIF3C expression demonstrated consistent elevation in various tumors compared to their corresponding normal tissues. We further unveiled that heightened KIF3C expression served as a prognostic indicator, and its elevated levels correlated with unfavorable clinical outcomes, encompassing reduced OS, DSS, and PFS in several cancer types. Notably, KIF3C expression exhibited positive associations with the pathological stages of several cancers. Moreover, KIF3C demonstrated varying relationships with the infiltration of various distinct immune cell types in gastric cancer. Functional analysis outcomes indicated that KIF3C played a role in the PI3K-AKT signaling pathway. Drug sensitivity unveiled a positive relationship between KIF3C in gastric cancer and the IC50 values of the majority of identified anti-cancer drugs. Additionally, KIF3C knockdown reduced the proliferation, migration, and invasion capabilities, increased apoptosis, and led to alterations in the cell cycle of gastric cancer cells. Our research has revealed the significant and functional role of KIF3C as a tumorigenic gene in diverse cancer types. These findings indicate that KIF3C may serve as a promising target for the treatment of gastric cancer.


Assuntos
Biomarcadores Tumorais , Cinesinas , Neoplasias Gástricas , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Prognóstico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Movimento Celular/genética , Transdução de Sinais
4.
Cell Cycle ; 20(12): 1163-1172, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34057012

RESUMO

This study aimed to explore the role of micorRNA-2053 in esophageal cancer development. The expression level of miR-2053 in esophageal cancer cell lines was detected. After cell transfection, the effects of miR-2053 overexpression on proliferation, apoptosis, migration and invasion of esophageal cancer cells were determined. Moreover, the potential molecular mechanism was explored by measuring the epithelial-mesenchymal transition (EMT) and apoptosis-related proteins. Luciferase reporter assay was conducted to investigate the target gene of miR-2053. The protein expressions of PI3K/AKT pathway associated factors were detected after overexpression of miR-2053 or administration with the pathway inhibitor LY294002. The miR-2053 was downregulated in esophageal cancer cell lines. Overexpression of miR-2053 inhibited cell proliferation, migration and invasion while promoted apoptosis. Molecular mechanism elucidated that miR-2053 could reduce EMT and elevate the expression of pro-apoptotic proteins. Further study found that overexpressed miR-2053 could negatively regulate KIF3C and involve in PI3K/AKT signaling pathway. Our study demonstrated the downregulation of miR-2053 in esophageal cancer. Downregulation of miR-2053 involved in the proliferation, apoptosis, migration and invasion of esophageal cancer cells through upregulating KIF3C expression and activating the PI3K/AKT signaling pathway. miR-2053 may have the potential in clinical treatment of esophageal cancer.


Assuntos
Carcinogênese/metabolismo , Progressão da Doença , Neoplasias Esofágicas/metabolismo , Cinesinas/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais/genética , Apoptose/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Cromonas/farmacologia , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Humanos , MicroRNAs/genética , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção , Regulação para Cima/genética
5.
Aging (Albany NY) ; 13(18): 22332-22344, 2021 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-34537760

RESUMO

The occurrence of distant metastasis is one of the leading causes of death in patients with prostate cancer (PCa). It is confirmed that kinesin protein is associated with a variety of malignancies, and the KIF3 family is related to cancer, but the relationship between KIF3C and prostate cancer is not clear. Our experiments have confirmed that KIF3C is highly expressed in prostate cancer tissues and cell lines. Further, functional tests have proven that KIF3C can promote the growth migration and invasion of PCa. We used Starbase 3.0 to discover that methyltransferase like 3 (METTL3) interacts with KIF3C. Our hypothesis and experiments concluded that METTL3 induced m6A modification on KIF3C, promoting the stabilization of KIF3C-mRNA by IGF2 binding protein 1 (IGF2BP1). The prediction that miR-320d inhibits KIF3C expression by targeting METTL3 using the miRmap website, was later confirmed experimentally. Further, a recovery experiment was used to confirm that miR-320d inhibited the progression of prostate cancer. KIF3C was overexpressed in prostate cancer, promoting its growth migration and invasion was induced by miR-320d/METTL3 in an m6A dependent process.


Assuntos
Progressão da Doença , Cinesinas/genética , Metiltransferases/genética , MicroRNAs/genética , Metástase Neoplásica , Neoplasias da Próstata , Idoso , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Cinesinas/metabolismo , Masculino , Metiltransferases/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
6.
Bioengineered ; 12(1): 3077-3088, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34193018

RESUMO

This study is aimed at investigating the biological function of kinesin family member 3 C (KIF3C) in non-small cell lung cancer (NSCLC) progression and its upstream regulatory mechanism. Quantitative real-time PCR, Western blot and immunohistochemistry were adopted to examine microRNA-150-5p (miR-150-5p), microRNA-186-3p (miR-186-3p) and kinesin family member 3 C (KIF3C) expression levels. NSCLC cell proliferation, migration, and invasion were detected through cell counting kit-8 (CCK-8) assay, EdU assay, and Transwell assay. The metastasis of NSCLC cells was evaluated utilizing a pulmonary metastasis model in nude mice in vivo. The targeted relationship among KIF3C 3'UTR, miR-186-3p, and miR-150-5p were verified by dual-luciferase reporter gene assays. It was confirmed that in NSCLC tissues and cells, KIF3C expression level was increased and KIF3C overexpression promoted NSCLC cell proliferation and metastasis. Additionally, miR-150-5p and miR-186-3p directly targeted KIF3C to repress its expression. Our data suggest that KIF3C, which is negatively regulated by miR-150-5p and miR-186-3p, is an oncogenic factor in NSCLC progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Cinesinas , Neoplasias Pulmonares/genética , MicroRNAs/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Pessoa de Meia-Idade
7.
Cancer Lett ; 368(1): 105-114, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26272184

RESUMO

Breast cancer is the most common cause of death among women. KIF3C, a member of kinesin superfamily, functions as a motor protein involved in axonal transport in neuronal cells. To explore the expression, regulation and mechanism of KIF3C in breast cancer, 4 breast cancer cell lines and 93 cases of primary breast cancer and paired adjacent tissues were examined. Immunohistochemistry, Real Time Polymerase Chain Reaction (RT-PCR), Western blot, flow cytometry, short hairpin RNA (shRNA) interference, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation techniques and xenograft mice model were used. We found that KIF3C was over-expressed in breast cancer tissues and such high KIF3C expression was also associated with tumor recurrence and lymph node metastasis. Silencing of KIF3C by shRNA inhibited epithelial-mesenchymal transition and metastasis by inhibiting TGF-ß signaling and suppressed breast cancer cell proliferation through inducing G2/M phase arrest. The tumor size was smaller and the number of lung metastatic nodules was less in KIF3C depletion MDA-MB-231 cell xenograft mice than in negative control group. These results suggested that high expression of KIF3C in breast cancer may be associated with the tumor progression and metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Movimento Celular , Proliferação de Células , Cinesinas/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Regulação para Baixo , Transição Epitelial-Mesenquimal , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Cinesinas/genética , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Interferência de RNA , Fatores de Tempo , Transfecção , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA