Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Immunity ; 54(6): 1304-1319.e9, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34048708

RESUMO

Despite mounting evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) engagement with immune cells, most express little, if any, of the canonical receptor of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2). Here, using a myeloid cell receptor-focused ectopic expression screen, we identified several C-type lectins (DC-SIGN, L-SIGN, LSECtin, ASGR1, and CLEC10A) and Tweety family member 2 (TTYH2) as glycan-dependent binding partners of the SARS-CoV-2 spike. Except for TTYH2, these molecules primarily interacted with spike via regions outside of the receptor-binding domain. Single-cell RNA sequencing analysis of pulmonary cells from individuals with coronavirus disease 2019 (COVID-19) indicated predominant expression of these molecules on myeloid cells. Although these receptors do not support active replication of SARS-CoV-2, their engagement with the virus induced robust proinflammatory responses in myeloid cells that correlated with COVID-19 severity. We also generated a bispecific anti-spike nanobody that not only blocked ACE2-mediated infection but also the myeloid receptor-mediated proinflammatory responses. Our findings suggest that SARS-CoV-2-myeloid receptor interactions promote immune hyperactivation, which represents potential targets for COVID-19 therapy.


Assuntos
COVID-19/metabolismo , COVID-19/virologia , Interações Hospedeiro-Patógeno , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Proteínas de Neoplasias/metabolismo , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , Sítios de Ligação , COVID-19/genética , Linhagem Celular , Citocinas , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mediadores da Inflamação/metabolismo , Lectinas Tipo C/química , Proteínas de Membrana/química , Modelos Moleculares , Proteínas de Neoplasias/química , Ligação Proteica , Conformação Proteica , Anticorpos de Domínio Único/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Relação Estrutura-Atividade
2.
Nano Lett ; 23(4): 1496-1504, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36758952

RESUMO

Despite intense scrutiny throughout the pandemic, development of efficacious drugs against SARS-CoV-2 spread remains hindered. Understanding the underlying mechanisms of viral infection is fundamental for developing novel treatments. While angiotensin converting enzyme 2 (ACE2) is accepted as the key entry receptor of the virus, other infection mechanisms exist. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) and its counterpart DC-SIGN-related (DC-SIGNR, also known as L-SIGN) have been recognized as possessing functional roles in COVID-19 disease and binding to SARS-CoV-2 has been demonstrated previously with ensemble and qualitative techniques. Here we examine the thermodynamic and kinetic parameters of the ligand-receptor interaction between these C-type lectins and the SARS-CoV-2 S1 protein using force-distance curve-based AFM and biolayer interferometry. We evidence that the S1 receptor binding domain is likely involved in this bond formation. Further, we employed deglycosidases and examined a nonglycosylated S1 variant to confirm the significance of glycosylation in this interaction. We demonstrate that the high affinity interactions observed occur through a mechanism distinct from that of ACE2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Lectinas Tipo C/metabolismo , Ligantes , Ligação Proteica
3.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791534

RESUMO

C-type lectins play a crucial role as pathogen-recognition receptors for the dengue virus, which is responsible for causing both dengue fever (DF) and dengue hemorrhagic fever (DHF). DHF is a serious illness caused by the dengue virus, which exists in four different serotypes: DEN-1, DEN-2, DEN-3, and DEN-4. We conducted a genetic association study, during a significant DEN-2 outbreak in southern Taiwan, to explore how variations in the neck-region length of L-SIGN (also known as CD209L, CD299, or CLEC4M) impact the severity of dengue infection. PCR genotyping was utilized to identify polymorphisms in variable-number tandem repeats. We constructed L-SIGN variants containing either 7- or 9-tandem repeats and transfected these constructs into K562 and U937 cells, and cytokine and chemokine levels were evaluated using enzyme-linked immunosorbent assays (ELISAs) following DEN-2 virus infection. The L-SIGN allele 9 was observed to correlate with a heightened risk of developing DHF. Subsequent results revealed that the 9-tandem repeat was linked to elevated viral load alongside predominant T-helper 2 (Th2) cell responses (IL-4 and IL-10) in K562 and U937 cells. Transfecting K562 cells in vitro with L-SIGN variants containing 7- and 9-tandem repeats confirmed that the 9-tandem repeat transfectants facilitated a higher dengue viral load accompanied by increased cytokine production (MCP-1, IL-6, and IL-8). Considering the higher prevalence of DHF and an increased frequency of the L-SIGN neck's 9-tandem repeat in the Taiwanese population, individuals with the 9-tandem repeat may necessitate more stringent protection against mosquito bites during dengue outbreaks in Taiwan.


Assuntos
Vírus da Dengue , Lectinas Tipo C , Receptores de Superfície Celular , Dengue Grave , Replicação Viral , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Citocinas/metabolismo , Citocinas/genética , Vírus da Dengue/genética , Vírus da Dengue/imunologia , Células K562 , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Repetições Minissatélites/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Dengue Grave/imunologia , Dengue Grave/virologia , Dengue Grave/genética , Taiwan , Células U937 , Carga Viral , Replicação Viral/genética
4.
Microb Pathog ; 157: 104956, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34022357

RESUMO

Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus that causes great economic losses in the porcine industry. Although the functional receptor for the virus has not been identified, multiple isolates are able to infect different cell lines. Recently, it has been shown that the human C-type lectin DC-SIGN/L-SIGN (hDC-SIGN/L-SIGN) can promote entry of several coronaviruses. Here we examined whether hDC-SIGN/L-SIGN and its porcine homolog (pDC-SIGN) are entry determinants for PEDV. Expression of hDC-SIGN/L-SIGN or pDC-SIGN in refractory cells dramatically increased infection by a recombinant PEDV expressing green fluorescent protein. In both cases, lectin-mediated infection was inhibited by mannan or anti-hDC-SIGN/L-SIGN or pDC-SIGN antibodies; however, d-galactose had no effect on the virus-infected cells. Our results demonstrate that hDC-SIGN/L-SIGN or pDC-SIGN can mediate the cellular entry and propagation of PEDV, which provides a new theoretical basis for further understanding the infection mechanism of PEDV, and will be helpful for the development of novel therapeutic agents.


Assuntos
Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Moléculas de Adesão Celular , Linhagem Celular , Chlorocebus aethiops , Humanos , Lectinas Tipo C/genética , Vírus da Diarreia Epidêmica Suína/genética , Receptores de Superfície Celular/genética , Suínos , Células Vero
5.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502134

RESUMO

The current spreading coronavirus SARS-CoV-2 is highly infectious and pathogenic. In this study, we screened the gene expression of three host receptors (ACE2, DC-SIGN and L-SIGN) of SARS coronaviruses and dendritic cells (DCs) status in bulk and single cell transcriptomic datasets of upper airway, lung or blood of COVID-19 patients and healthy controls. In COVID-19 patients, DC-SIGN gene expression was interestingly decreased in lung DCs but increased in blood DCs. Within DCs, conventional DCs (cDCs) were depleted while plasmacytoid DCs (pDCs) were augmented in the lungs of mild COVID-19. In severe cases, we identified augmented types of immature DCs (CD22+ or ANXA1+ DCs) with MHCII downregulation. In this study, our observation indicates that DCs in severe cases stimulate innate immune responses but fail to specifically present SARS-CoV-2. It provides insights into the profound modulation of DC function in severe COVID-19.


Assuntos
COVID-19/imunologia , Moléculas de Adesão Celular/genética , Células Dendríticas/imunologia , Regulação da Expressão Gênica/imunologia , Lectinas Tipo C/genética , Receptores de Superfície Celular/genética , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/diagnóstico , COVID-19/patologia , COVID-19/virologia , Moléculas de Adesão Celular/metabolismo , Conjuntos de Dados como Assunto , Células Dendríticas/metabolismo , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Lectinas Tipo C/metabolismo , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Análise da Randomização Mendeliana , Nasofaringe/imunologia , Nasofaringe/patologia , Nasofaringe/virologia , RNA-Seq , Receptores de Superfície Celular/metabolismo , Índice de Gravidade de Doença , Análise de Célula Única
6.
J Virol ; 93(12)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30944176

RESUMO

Zika virus (ZIKV) is an emerging mosquito-borne flavivirus. Recent ZIKV outbreaks have produced serious human disease, including neurodevelopmental malformations (congenital Zika syndrome) and Guillain-Barré syndrome. These outcomes were not associated with ZIKV infection prior to 2013, raising the possibility that viral genetic changes could contribute to new clinical manifestations. All contemporary ZIKV isolates encode an N-linked glycosylation site in the envelope (E) protein (N154), but this glycosylation site is absent in many historical ZIKV isolates. Here, we investigated the role of E protein glycosylation in ZIKV pathogenesis using two contemporary Asian-lineage strains (H/PF/2013 and PRVABC59) and the historical African-lineage strain (MR766). We found that glycosylated viruses were highly pathogenic in Ifnar1-/- mice. In contrast, nonglycosylated viruses were attenuated, producing lower viral loads in the serum and brain when inoculated subcutaneously but remaining neurovirulent when inoculated intracranially. These results suggest that E glycosylation is advantageous in the periphery but not within the brain. Accordingly, we found that glycosylation facilitated infection of cells expressing the lectins dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) or DC-SIGN-related (DC-SIGNR), suggesting that inefficient infection of lectin-expressing leukocytes could contribute to the attenuation of nonglycosylated ZIKV in mice.IMPORTANCE It is unclear why the ability of Zika virus (ZIKV) to cause serious disease, including Guillain-Barré syndrome and birth defects, was not recognized until recent outbreaks. One contributing factor could be genetic differences between contemporary ZIKV strains and historical ZIKV strains. All isolates from recent outbreaks encode a viral envelope protein that is glycosylated, whereas many historical ZIKV strains lack this glycosylation. We generated nonglycosylated ZIKV mutants from contemporary and historical strains and evaluated their virulence in mice. We found that nonglycosylated viruses were attenuated and produced lower viral loads in serum and brains. Our studies suggest that envelope protein glycosylation contributes to ZIKV pathogenesis, possibly by facilitating attachment to and infection of lectin-expressing leukocytes.


Assuntos
Efeito Citopatogênico Viral/genética , Proteínas do Envelope Viral/genética , Zika virus/metabolismo , Células A549 , Animais , Moléculas de Adesão Celular/metabolismo , Chlorocebus aethiops , Feminino , Flavivirus/metabolismo , Glicosilação , Humanos , Lectinas Tipo C/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Superfície Celular/metabolismo , Células Vero , Proteínas do Envelope Viral/metabolismo , Virulência , Replicação Viral , Zika virus/genética , Zika virus/patogenicidade , Infecção por Zika virus/virologia
7.
Traffic ; 17(6): 639-56, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26990254

RESUMO

Bunyaviruses represent a growing threat to humans and livestock globally. The receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely unidentified and poorly characterized. DC-SIGN is a C-type lectin highly expressed on dermal dendritic cells that has been found to act as an authentic entry receptor for many phleboviruses (Bunyaviridae), including Rift Valley fever virus (RVFV), Toscana virus (TOSV) and Uukuniemi virus (UUKV). We found that these phleboviruses can exploit another C-type lectin, L-SIGN, for infection. L-SIGN shares 77% sequence homology with DC-SIGN and is expressed on liver sinusoidal endothelial cells. L-SIGN is required for UUKV binding but not for virus internalization. An endocytosis-defective mutant of L-SIGN was still able to mediate virus uptake and infection, indicating that L-SIGN acts as an attachment receptor for phleboviruses rather than an endocytic receptor. Our results point out a fundamental difference in the use of the C-type lectins L-SIGN and DC-SIGN by UUKV to enter cells, although both proteins are closely related in terms of molecular structure and biological function. This study sheds new light on the molecular mechanisms by which phleboviruses target the liver and also highlights the added complexity in virus-receptor interactions beyond attachment.


Assuntos
Moléculas de Adesão Celular/metabolismo , Endocitose , Lectinas Tipo C/metabolismo , Phlebovirus/fisiologia , Receptores de Superfície Celular/metabolismo , Moléculas de Adesão Celular/genética , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Células HeLa , Humanos , Lectinas Tipo C/genética , Fígado/citologia , Fígado/virologia , Phlebovirus/patogenicidade , Ligação Proteica , Receptores de Superfície Celular/genética , Internalização do Vírus
8.
Cells ; 9(7)2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660065

RESUMO

The newly emergent novel coronavirus disease 2019 (COVID-19) outbreak, which is caused by SARS-CoV-2 virus, has posed a serious threat to global public health and caused worldwide social and economic breakdown. Angiotensin-converting enzyme 2 (ACE2) is expressed in human vascular endothelium, respiratory epithelium, and other cell types, and is thought to be a primary mechanism of SARS-CoV-2 entry and infection. In physiological condition, ACE2 via its carboxypeptidase activity generates angiotensin fragments (Ang 1-9 and Ang 1-7), and plays an essential role in the renin-angiotensin system (RAS), which is a critical regulator of cardiovascular homeostasis. SARS-CoV-2 via its surface spike glycoprotein interacts with ACE2 and invades the host cells. Once inside the host cells, SARS-CoV-2 induces acute respiratory distress syndrome (ARDS), stimulates immune response (i.e., cytokine storm) and vascular damage. SARS-CoV-2 induced endothelial cell injury could exacerbate endothelial dysfunction, which is a hallmark of aging, hypertension, and obesity, leading to further complications. The pathophysiology of endothelial dysfunction and injury offers insights into COVID-19 associated mortality. Here we reviewed the molecular basis of SARS-CoV-2 infection, the roles of ACE2, RAS signaling, and a possible link between the pre-existing endothelial dysfunction and SARS-CoV-2 induced endothelial injury in COVID-19 associated mortality. We also surveyed the roles of cell adhesion molecules (CAMs), including CD209L/L-SIGN and CD209/DC-SIGN in SARS-CoV-2 infection and other related viruses. Understanding the molecular mechanisms of infection, the vascular damage caused by SARS-CoV-2 and pathways involved in the regulation of endothelial dysfunction could lead to new therapeutic strategies against COVID-19.


Assuntos
Infecções por Coronavirus/patologia , Endotélio Vascular/metabolismo , Pneumonia Viral/patologia , Sistema Renina-Angiotensina , Angiotensina I/metabolismo , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/isolamento & purificação , COVID-19 , Moléculas de Adesão Celular/metabolismo , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Interações entre Hospedeiro e Microrganismos , Humanos , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , SARS-CoV-2 , Transdução de Sinais
9.
Biology (Basel) ; 10(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375175

RESUMO

C-type lectin CD209/DC-SIGN and CD209L/L-SIGN proteins are distinct cell adhesion and pathogen recognition receptors that mediate cellular interactions and recognize a wide range of pathogens, including viruses such as SARS, SARS-CoV-2, bacteria, fungi and parasites. Pathogens exploit CD209 family proteins to promote infection and evade the immune recognition system. CD209L and CD209 are widely expressed in SARS-CoV-2 target organs and can contribute to infection and pathogenesis. CD209 family receptors are highly susceptible to alternative splicing and genomic polymorphism, which may influence virus tropism and transmission in vivo. The carbohydrate recognition domain (CRD) and the neck/repeat region represent the key features of CD209 family proteins that are also central to facilitating cellular ligand interactions and pathogen recognition. While the neck/repeat region is involved in oligomeric dimerization, the CRD recognizes the mannose-containing structures present on specific glycoproteins such as those found on the SARS-CoV-2 spike protein. Considering the role of CD209L and related proteins in diverse pathogen recognition, this review article discusses the recent advances in the cellular and biochemical characterization of CD209 and CD209L and their roles in viral uptake, which has important implications in understanding the host-pathogen interaction, the viral pathobiology and driving vaccine development of SARS-CoV-2.

10.
Viruses ; 8(5)2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27223297

RESUMO

Rift Valley fever is a mosquito-transmitted, zoonotic disease that infects humans and ruminants. Dendritic cell specific intercellular adhesion molecule 3 (ICAM-3) grabbing non-integrin (DC-SIGN) acts as a receptor for members of the phlebovirus genus. The Rift Valley fever virus (RVFV) glycoproteins (Gn/Gc) encode five putative N-glycan sequons (asparagine (N)-any amino acid (X)-serine (S)/threonine (T)) at positions: N438 (Gn), and N794, N829, N1035, and N1077 (Gc). The N-glycosylation profile and significance in viral infection via DC-SIGN have not been elucidated. Gc N-glycosylation was first evaluated by using Gc asparagine (N) to glutamine (Q) mutants. Subsequently, we generated a series of recombinant RVFV MP-12 strain mutants, which encode N-to-Q mutations, and the infectivity of each mutant in Jurkat cells stably expressing DC-SIGN was evaluated. Results showed that Gc N794, N1035, and N1077 were N-glycosylated but N829 was not. Gc N1077 was heterogeneously N-glycosylated. RVFV Gc made two distinct N-glycoforms: "Gc-large" and "Gc-small", and N1077 was responsible for "Gc-large" band. RVFV showed increased infection of cells expressing DC-SIGN compared to cells lacking DC-SIGN. Infection via DC-SIGN was increased in the presence of either Gn N438 or Gc N1077. Our study showed that N-glycans on the Gc and Gn surface glycoproteins redundantly support RVFV infection via DC-SIGN.


Assuntos
Moléculas de Adesão Celular/metabolismo , Glicoproteínas/metabolismo , Lectinas Tipo C/metabolismo , Polissacarídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Vírus da Febre do Vale do Rift/fisiologia , Proteínas Estruturais Virais/metabolismo , Ligação Viral , Substituição de Aminoácidos , Glicoproteínas/genética , Humanos , Células Jurkat , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Vírus da Febre do Vale do Rift/genética , Proteínas Estruturais Virais/genética
11.
Clin Microbiol Infect ; 21(5): 513.e1-5, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25656622

RESUMO

In order to investigate the association between length variation of the CD209L neck region and human immunodeficiency virus (HIV)-1 susceptibility, disease progression, and treatment response outcomes, we genotyped 139 HIV-1-seropositive and 109 seronegative individuals. The heterozygous genotype 6/5 showed a significant increased risk of HIV-1 infection (OR 3.03, 95% CI 0.99-9.33, p 0.046). Moreover, after highly active antiretroviral therapy (HAART), HIV-1-seropositive individuals carrying the 6/5, 7/5 and 7/7 genotypes and alleles 5, 6 and 7 showed good CD4(+) T-cell recovery. In addition, individuals with the 7/5, 6/6 and 7/7 genotypes showed a significant decrease in viral load during the treatment period as compared with baseline (p < 0.05). Interestingly, we found that alleles 4 and 6 were associated with protection against AIDS progression. D209L variation may influence susceptibility to HIV-1, response to treatment, and disease progression.


Assuntos
Moléculas de Adesão Celular/genética , Predisposição Genética para Doença , Infecções por HIV/genética , HIV-1/isolamento & purificação , Lectinas Tipo C/genética , Polimorfismo Genético , Receptores de Superfície Celular/genética , Sequências de Repetição em Tandem , Adulto , Idoso , Antirretrovirais/uso terapêutico , Terapia Antirretroviral de Alta Atividade , Contagem de Linfócito CD4 , Estudos de Coortes , Progressão da Doença , Suscetibilidade a Doenças , Feminino , Genótipo , Técnicas de Genotipagem , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Marrocos , Resultado do Tratamento , Carga Viral
12.
Dev Comp Immunol ; 50(1): 19-25, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25596146

RESUMO

Dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN/CD209) and liver/lymph node-specific ICAM-grabbing non-integrin (L-SIGN/CD299) which are homologues of DC-SIGN are important members in C-type lectin receptors family as key molecules to recognize and eliminate pathogens in the innate immune system. DC-SIGN and L-SIGN have become hot topics in recent studies which both served as cell adhesion and phagocytic pathogen recognition receptors in mammals. However, there have been almost no studies of DC-SIGN and L-SIGN structure and characters in fish, only DC-SIGN in the zebrafish had been studied. In our study, we identified and characterized the full-length miiuy croaker (Miichthys miiuy) DC-SIGN (mmDC-SIGN) and L-SIGN (mmL-SIGN) genes. The sequence analysis results showed that mmDC-SIGN and mmL-SIGN have the same domains with other vertebrates except primates, and share some conserved motifs in CRD among all the vertebrates which play a crucial role in interacting with Ca(2+) and for recognizing mannose-containing motifs. Gene synteny of DC-SIGN and L-SIGN were analyzed for the first time and gene synteny of L-SIGN was conserved among the five fishes. Interestingly, one gene next to L-SIGN from gene synteny had high similarity with L-SIGN gene that was described as L-SIGN-like in fish species. While only one L-SIGN gene existed in other vertebrates, two L-SIGN in fish may be in consequence of the fish-specific genome duplication to adapt the specific environment. The evolutionary analysis showed that the ancestral lineages of L-SIGN gene in fishes experienced purifying selection and the current lineages of L-SIGN gene in fishes underwent positive selection, indicating that the ancestral lineages and current lineages of L-SIGN gene in fishes underwent different evolutionary patterns. Both mmDC-SIGN and mmL-SIGN were expressed in all tested tissues and ubiquitously up-regulated in infected liver, spleen and kidney at different sampling time points, indicating that the mmDC-SIGN and mmL-SIGN participated in the immune response to defense against bacteria infection.


Assuntos
Proteínas de Peixes/genética , Peixes/genética , Perciformes/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Evolução Molecular , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Rim/metabolismo , Fígado/metabolismo , Dados de Sequência Molecular , Filogenia , Baço/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA